Robot Manipulation Planning Among Obstacles: Grasping, Placing and Rearranging

Tid: Må 2020-02-17 kl 13.00

Plats: F3, Lindstedtsvägen 26, Stockholm (English)

Ämnesområde: Datalogi

Respondent: Joshua Alexander Haustein , Robotik, perception och lärande, RPL

Opponent: Associate Professor Kostas E. Bekris, Rutgers University, USA

Handledare: Danica Kragic, Robotik, perception och lärande, RPL

Abstract

Den här avhandlingen presenterar planeringsalgoritmer för tre olika ma-nipulationsuppgifter för robotar i närheten av hinder: att greppa med hjälpav fingertopparna, att placera objekt och att arrangera om flertalet objekt iolika konfigurationer. Hinder finns oftast i människors miljöer och begränsaren robots rörelse och förmåga att manipulera objekt. Till exempel är den tillsynes enkla uppgiften att hämta och placera objekt i smala hyllor mycketsvår för robotar. Planering av manipulering i detta fall blir svårt därför attmånga rörelser och grepp kommer att kollidera med hinder. För att lösa dessauppgifter behöver man speciella algoritmer som kan hantera dessa hinder imiljön.

För grepp med fingertoppar presenterar vi ett ramverk för inlärning avmodeller som representerar vilka grepp en robothand kan utföra. Dessa mo-deller används sedan för att planera och optimera grepp som sker med hjälpav fingertopparna. Därefter integreras planeringsalgoritmen med rörelsepla-nering för att kunna planera fingertoppsgrepp där också hinder existerar iobjektets närhet.

För objektsplaceringar presenterar vi ett ramverk för att planera hur enrobot kan transportera ett greppat objekt till en placering som optimerar engiven kostnadsfunktion. Därefter utvecklar vi detta ramverk för att visa hurså kallad in-hand manipulation (att byta grepp utan att släppa objektet) kanöka antalet möjliga placeringar som roboten kan utföra.

Till slut utökar vi våra metoder bortom endast undvikande av kollisionoch studerar planering för omarrangering av objekt. Vi studerar det speciellafallet non-prehensile rearrangement där en robot måste ordna om flertaletobjekt genom att skjuta dem framför sig. Vi presenterar först hur en kino-dynamisk rörelseplaneringsalgoritm kan förbättras genom inlärda modeller.Detta görs i syftet att hitta rörelsesekvenser som kan ordna flertalet objekt tillgivna konfigurationer. Sedan presenterar vi hur vi kan använda Monte Carlo-trädsök för att lösa ett stort sådant problem där objekt ska om-arrangeras. Idetta problem ska roboten sortera objekt enligt kategorier som en användarehar specifierat.

urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-266792