Femtosecond Laser Microfabrication of Glasses and 2D Materials for Photonics and Energy Storage
Tid: Må 2023-12-18 kl 09.30
Plats: F3 (Flodis), Lindstedtsvägen 26 & 28, Stockholm
Språk: Engelska
Ämnesområde: Elektro- och systemteknik
Respondent: Po-Han Huang , Mikro- och nanosystemteknik
Opponent: Professor Yves Bellouard, École polytechnique fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
Handledare: Professor Frank Niklaus, Mikro- och nanosystemteknik; Göran Stemme, Mikro- och nanosystemteknik; Kristinn Gylfason, Mikro- och nanosystemteknik
QC 20231127
Abstract
Femtosekundlaser-baserade tillverkningsteknologier har genomgått snabb utveckling de senaste årtiondena tack vare femtosekundlasrars förmåga att inducera lokal multifotonabsorption i material. Multifotonabsorption kan resultera i olika typer av materialförändringar som kan utnyttjas för additiv och subtraktiv tillverkning. De mångsidiga tillämpningarna visar på potentialen av femtosekundslasrar för mikro- och nanotillverkning. Dessa inkluderar (1) multifotonkorslänkning för 3D-utskrift med mönsterfrihet och submikrometerupplösning, (2) bildandet av självorganiserade strukturer för multifunktionella subvåglängdsmönster i fasta material och (3) multifotonablation för precisionsformning av flertalet material. Trots detta finns det utrymme för att utforska möjliga material och realiserbara produkter. Denna avhandling syftar till att utöka användningsområdet för femtosekundlasrar till tillverkning av avancerade komponenter utav såväl glas som 2D material, för användning inom fotonik och energilagring. Den första delen av denna avhandling presenterar två tillvägagångssätt för 3D-utskrift av oorganiskt glas. Dessa baseras på materialmodifieringar i vätesilseskvioxan (HSQ) vid exponering för femtosekundslaserstrålning: (1) multifoton-korslänkning och (2) bildandet av självorganiserade strukturer. Det första arbetet redovisar kring 3D-utskrift av fast kiseldioxidglas med submikrometerupplösning genom multifoton-korslänkning av HSQ. Vår metod kräver ingen termisk behandling, vilket ger leder till god överensstämmelse mellan ritning och produkt och ger flexibilitet kring integration. Det andra arbetet redogör för möjligheten att inducera materialmodifieringarna (1) och (2) i HSQ samtidigt, vilket möjliggör additiv tillverkning av självorganiserade nanogitter och 3D-utskrift av hierarkiska strukturer av kiselrikt glas. Det tredje arbetet är en utveckling av ett protokoll för 3D-utskrift på ändarna av optiska fiberkablar för tillverkning av optiska mikroenheter som sensorer och strålformare. Den andra delen av denna avhandling presenterar användningen av femtosekundslasrar för tillverkning av mikrosuperkondensatorer (MSCs) på papper. MSCs har fått stor uppmärksamhet som lovande energilagringsmikroenheter för självdriven elektronik. Papperssubstrat är även attraktiva för sin hållbarhet och flexibilitet. 2D-material har relevanta elektrokemiska egenskaper för MSC-elektroder och elektrodernas form påverkar deras prestanda. I de två sista arbetena utvecklas en metod för mikromaskintillverkning av elektroder utav 2D-material genom multifotonablation, vilket bevarar deras elektrokemiska prestanda och de fysiska egenskaperna av papperssubstraten.