Scalable Fabrication of Micro-Supercapacitors via Direct Patterning
From Material Design towards On-Chip Integration
Tid: On 2025-10-29 kl 10.00
Plats: F3, Lindstedtvägen 26
Språk: Engelska
Ämnesområde: Elektro- och systemteknik
Respondent: Shiqian Chen , Elektronik och inbyggda system
Opponent: Professor Per Lundgren, Chalmers University of Technology, Göteborg, Sweden
Handledare: Associate professor Jiantong Li, Elektronik och inbyggda system; Professor Frank Niklaus, Mikro- och nanosystemteknik; Professor Per-Erik Hellström, Elektronik och inbyggda system; Professor Matti Mäntysalo, Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland
QC 20251006
Abstract
Den snabba utvecklingen av miniatyriserad elektronik ställer krav på kompakt, högpresterande energilagring på chip med sömlös integration. Tryckta mikrosuperkondensatorer (MSCs) är lovande kandidater då de erbjuder hög effekttäthet, lång cykellivslängd och inneboende kompatibilitet med plan integration. Direkta trycktekniker såsom direct ink writing (DIW) och direct laser patterning (DLP) möjliggör flexibel design, materialmångfald, skalbarhet och högprecis integrering på chip. Att realisera miniatyriserade MSC:er som kombinerar hög elektrokemisk prestanda, skalbarhet, miljömässig mångsidighet och sömlös integration på chip är dock fortfarande en utmaning. Centrala hinder är utvecklingen av högpresterande materialdesign samt väldefinierade mönstringsstrategier.
Del I av denna avhandling förbättrar MSC-prestanda och tryckbar skalbarhet med hjälp av DIW. Det första arbetet utvecklade ett dopat PEDOT:PSS-elektrodbläck med optimerad reologi och elektrokemiska egenskaper, vilket möjliggjorde fullständigt tryckta, kompakta 100-cells MSC-arrayer på papperssubstrat med hög kapacitans, ultrahög laddnings-/urladdningshastighet samt ett utökat driftspänningsfönster (upp till 160 V) för effektiv omedelbar energilagring av elektricitet. I den andra studien förbättrades den termiska stabiliteten avsevärt genom en DIW-printbar bassanitram kombinerad med jonvätskeelektrolyter, vilket möjliggjorde långtidscykling av MSC-arrayer vid en rekordtemperatur på 300 °C. Dessa framsteg visar på bläckformuleringsdesigner för DIW som möjliggör skalbar tillverkning av högfrekventa, robusta MSC-arrayer kapabla att fungera i varierande applikationsmiljöer.
Del II av denna avhandling förbättrar prestanda och integrering av MSC:er på chip baserat på DLP-metoden. I den tredje studien användes DLP i hydrogen silsesquioxane (HSQ) för att direkt tillverka 3D-hierarkiska oorganiska elektroder med självorganiserade nanogitter. Baserat på denna struktur framställdes kompakta MSC:er på chip med exceptionell frekvensprestanda, uppvisande en arealkapacitans på 1 mF cm⁻² vid 50 V s⁻¹ och hög temperaturstabilitet upp till 200 °C. I den fjärde studien vidareutvecklades 3D-nanogitterstrategin för att skräddarsy MSC-elektroders mikrostrukturer på chip och därigenom uppnå högfrekvent linjefiltrering upp till 10 kHz. Den precisa framställningen av stående 3D-nanogitterstrukturer ger en stor öppen yta, vilket underlättar snabb jontransport och resulterar i en mycket kompakt MSC på chip med den högsta rapporterade arealkapacitansen, 0,32 mF cm⁻² vid 10 kHz. Detta möjliggör effektiva filtreringsapplikationer och driver ytterligare miniatyriseringen av kondensatorer i mikroelektroniska system. Dessa resultat etablerar DLP som en kraftfull metod för högprecisionskonstruktion av 3D-strukturer på chip och för integrering av ultrakompakta MSC:er i miniatyriserade elektroniska system för högfrekventa applikationer.