

Smart stations

- Many stations are operating over or near capacity and crowding at stations are connected to on-board crowding.
- Station performance is important for the efficiency and attractiveness of the public transport system.
- Develop methods to support station planning and operations with respect to
 - Passenger streams
 - Impact on crowding in vehicles
- The project supports the final stages of two PhD students.

Modelling on-board crowding

Soumela (Melina) Peftitsi¹, Erik Jenelius¹, Oded Cats^{1,2}

¹Dept. of Civil and Architectural Engineering, KTH Royal Institute of Technology, Stockholm, Sweden ²Dept. of Transport and Planning, Delft University of Technology (TU Delft), Delft, The Netherlands

Background

Overcrowding at stations and on-board PT vehicles

- Discomfort
- Longer dwell times
- Denied boarding

Uneven passenger distribution

- Higher experienced crowding
- Larger fleet requirements
- Higher operating costs

Modelling on-board crowding distribution

BusMezzo - Dynamic Transit Operations and Assignment Model

- Individual transit vehicle movements.
- Individual passenger car boarding choices.
- Experienced passengers wrt car crowding level.
- Captures on-board crowding distribution and evaluates user cost in a more realistic way.

Demand and infrastructure intervention effect

Increased demand →

Experienced passengers board less crowded cars.

Closure of an access point \rightarrow

Skewed boarding distribution towards the single entrance at DAS which cancels out at the downstream stations.

Real-time crowding information

- Potential to reduce
 - crowding unevenness.
 - fail-to-board incidents in higher demand scenarios.
- There is still limited research on the inclusion of RTCI in passenger route choice and assignment models.

Objective:

Extend existing PT simulation models to account for passengers' access to car-specific RTCI.

Modelling carspecific RTCI in BusMezzo

- Record the crowding factor in each train car when train departs from a stop.
 - Crowding factor is a function of the car occupancy level.

RTCI level	Car capacity utilization	Crowding factor
•000	<80% seated capacity	1.0
0000	<100% seated capacity	1.2
	<80% total capacity	1.5
••••	<100% total capacity	1.8

(Drabicki et al. 2020)

- Generate crowding information and update it for each trip segment every time a train trip departs.
 - Generated RTCI is based on the car crowding level of the latest train run only.
- Each passenger utilizes the generated car-specific RTCI, as an in-vehicle time multiplier of each given line segment, in the decision making process.

Effect of RTCI on crowding unevenness

 Positive statistically significant effects of RTCI on crowding unevenness.

Improved vehicle capacity utilization 2% less seats are left empty.

On-going work

- Extend the generation of RTCI, adding dependence on the crowding level of multiple previous train runs.
- Investigate the effect of other **control measures** on reducing crowding unevenness.

Thank you

soumela@kth.se

vti

BACKGROUND

- No one likes to transfer
- Need to be well-functioning and facilitate easy transfers
- Previous research:
 - Methods to evaluate the physical planning
 - Could also be used to evaluate the traffic on the terminal
- Now:
 - Improve the planning of the traffic on the terminal
 - How to plan the allocation of buses to stops?

STOP ALLOCATION

What to improve?

- Congestion
- Robustness
- Walking distances

What should be allocated?

- Buses
- Lines

Allocation at what stage?

- Planning
- Real-time

A SIMPLE MODEL

Minimize:

The **walking distances** for all passengers on all buses from **entry** to boarding stop, from alighting stop to **exit** and between **transferring** buses

- Constraints:
 - Each bus uses exactly one stop
 - Two buses at the same stop can not have overlapping time windows

