

Overview of shared e-scooter services

Pre-study: *Micromobility Modelling - Preliminary study on knowledge needs and usage patterns*

Hugo Badia and Erik Jenelius

CTR day - October 19th, 2020

Micromobility - 4th Generation

- Electronically locking docks
- *Telecommunication systems*
- Smartcards

2005

- *Mobile phone access*
- Credit cards

Bike sharing systems promoted by public authorities

4th Generation

- Dockless security systems
- Electric power assistance
- New vehicle: e-scooter (cheaper, lighter, less regulated)

Shared e-scooter services promoted by private companies

2017

Service operation

	City/Company	Fixed fare	Time-dependent fare	Time (min) vs. PT	Time (min) vs. Bikesharing
	Washington, DC (\$) (Lazo, 201	9); PT: Metro	bus \$2 (WMATA); BS:	Capital bikeshare \$2/30	min (Capitalbikeshare)
Adjustment of prices	Bird	1	0.39	2.6	2.6
	Bolt	-	0.30	6.7	6.7
	lumn		0.25	9 N	0 N

Expensive service

eshare) Jump 0.25 8.0 8.0 Lime, Lyft, Razor 0.24 4.2 4.2 Skip 0.25 4.0 4.0 Spin 0.29 6.9 6.9

Trip characteristics

Temporal distribution and Trip purpose

■ Main peak hour in the **afternoon** – **evening**, more demand during **weekends**

Usage Frequency

- Low daily use, around 5%
- 3 out of every 5 users take scooters monthly or even less frequently

Displaced Transport Mode

- What transport mode would you have taken if an e-scooter was not available?
- Walking trips: 40%
- America cities: 40% car-based trips vs. 60% environmental mode-based trips
- European cities: 20% car-based trips vs. 80% environmental mode-based trips

Environmental Impact

Global warming impact (g CO2 eq/pax-km)

- Short lifetime (months)
- Low usage rate (km/scooter-day)

- Type of auxiliary vehicle
- Distance traveled between scooters
- Low usage rate (km/scooter-day)

Riding and Parking

- Generalized complains for parked scooters and scooters riding on sidewalks
- Most of riders use bike lanes, being traffic lanes the main alternative
- Riders demand more lanes for micromobility, lack of this type of infrastructure

- Properly parked: 81% Chicago,76% Tucson, 73% Portland
- Longer disruptions than cars
 (taxi, distribution, etc.), 5 minutes
 vs 2 hours
- Worst image than studies observe
- Esthetic/visual problem

Service regulation

- Off-street competition: maximum number of operators (from 1 to 8) and fleet size limited by operator or city (from 250 2000 e-scooters)
- **Permitting fees**: application and/or permission (per operation yearly and/or per vehicle)
- Requirements of efficiency, **expansion or reduction** of fleet size allowed. Between 2 and 3 trips per scooter and day
- Boundaries where companies operate and scooters can be parked (geofencing)

Future research

- Understanding this mobility services, their potentialities and market niche
 - Real data from e-scooter services and other transport modes
 - Comparison of e-scooter trips and trips by other modes
 - Survey for users
 - Survey for non-users
 - Swedish case
- Planning level, analysis of policies and regulations
 - Fleet sizing
 - Where e-scooters make the transport system more sustainable
 - Riding and Parking areas, management of urban space

Trip purpose data analysis

- MSc thesis Erik Lansner, soon to finish
- Trip data from Voi, about 3.5 million trips in Stockholm area
 - Start time and position, end time and position, hashed customer id, vehicle id
- Locations from Open Street Map, grouped into categories
- Identifies the locations near the end position of each trip

Heatmap including all activity in the Stockholm area

Thank you for your attention

hubr@kth.se