AQsensor – Air Quality sensing for estimation and control traffic emission

CTR Day 2020-10-19

Xiaoliang Ma

Transport Planning
KTH Royal Institute of Technology

liang@kth.se

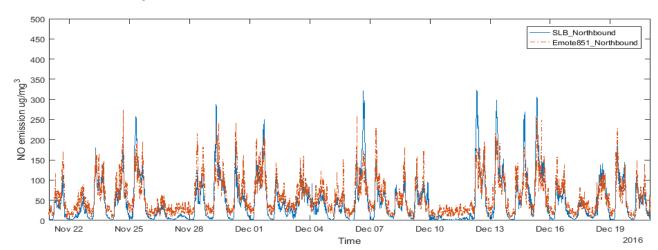
Outlines

- Introduction
- Project ideas
- Research approach and activities
- Further perspectives

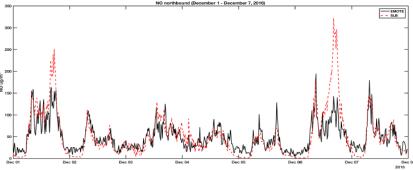
Introduction

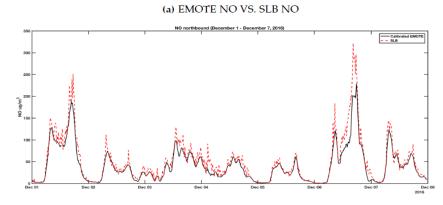
- Air pollution is one of the leading causes of mortality worldwide
 - Short-term exposure -> acute respiratory infection etc.
 - Long-term exposure -> lung cancer, heart disease etc.
- Air quality health index (AQHI) is a new tool to report public exposure to air pollutants
 - Obligatory to let the public know the AQ and health risks in EU
 - AQHI is going to be reported from 2021 in Stockholm
- Road traffic emission is dominant source in urban
 - Monitor and estimate traffic air pollutants
 - Design traffic management measures

Project Idea


- Traffic Emission
 - Complicated to estimate (vehicle model, type, engine, exhaust treatment etc.)
 - Impossible to measure directly
- Air Pollution Measurement
 - Precision stations (expensive complicated measurement equipment, big and intrusive)
 - Electrical Chemical Sensor (ECS) has been fast developed as one type of cheap sensors that can be used for Air Pollution Measurement (small, power-efficient, easily form an IoT network with wireless communication)
 - ECS can help intensify the measurement in space and can be potential used for traffic environment studies

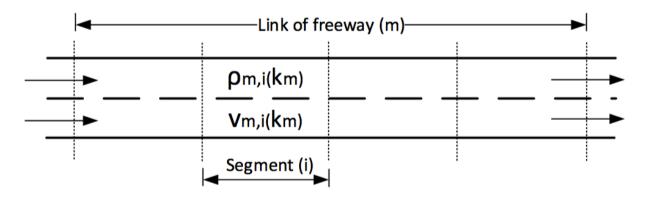
Pre-Study


- Sensors installation
 - KTH Campus (hardware and software)
 - E4 dispersion (2016)
 - E18 comparison (2017-2018)



Pre-study

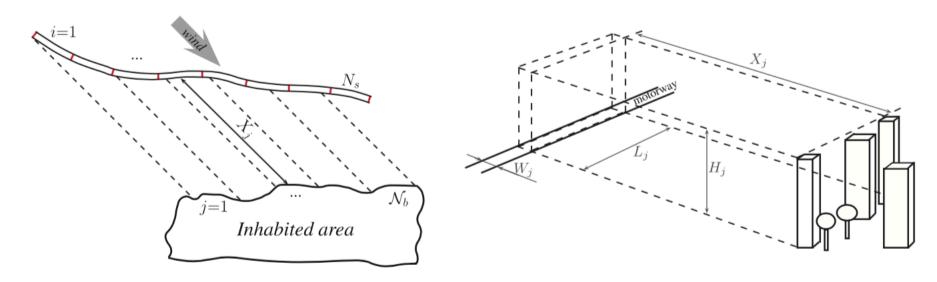
- ECS can capture the air pollutant profile but cannot precisely capture the amplitude in many cases
- Each individual ECS will have to be calibrated according to precision equipment
- We applied DL tools to calibrate the ECS sensors, and the suggested process requires some calibration effort (every six months)


(b) Calibrated NO VS. SLB NO

Objectives and approaches

- To improve air pollution estimation for road-side emissions using Air Quality data as feedback information;
- To integrate traffic flow model and AQ model as well as AQ measurement in the analysis of traffic-induced emissions at roadsides;
- To apply the integrated model for mitigating traffic emissions by traffic management and control measures

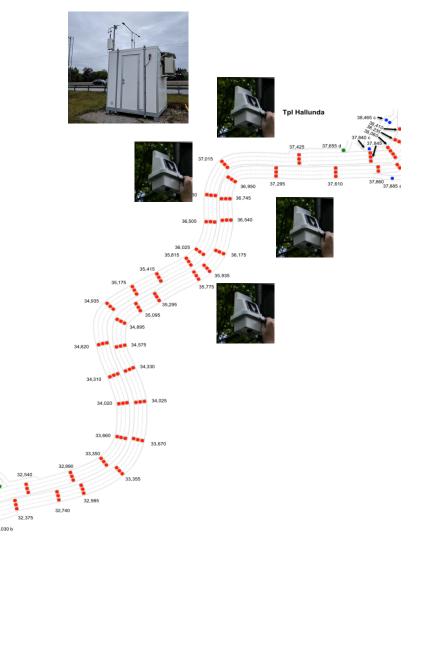
Methodology: Macroscopic Traffic Flow Model



Consider a homogeneous traffic flow in a road element; according to the conservation law,

$$\frac{dn(t)}{dt} = Q_a(x,t) - Q_a(x+\Delta x,t) \approx \frac{\partial \rho_a(x,t)}{\partial t} \Delta x$$

$$\left| \frac{\partial \rho_a}{\partial t} + \frac{\partial (\rho_a V)}{\partial x} = 0 \right| \text{ or } \left| \frac{\partial \rho_a}{\partial t} + \frac{\partial Q_a}{\partial x} = 0 \right|$$


Methodology: Air Pollution Model

- Emission is dispersed along channels
- Each channel is cuboid within which line-source emission from road segment will transport and disperse
- Air pollution dispersion will be described by conservation law in each channel:

$$\frac{ds_i^p(x_i,t)}{dt} = \phi_i^p(x_i,t) - \psi_i^p(x_i,t) - d_i^p(x_i,t)$$
inflow outflow dispersion

Case Study on E4S

Further Perspective

To deliver

- Integrated computational model for traffic-induced air pollution estimation at roadside (with case of E4S)
- Design principle for optimal speed limit control that considers air pollution as one objective

Further perspectives

- Parallelize the computational code for more efficiency (in collaboration with KTH PDC)
- Data-driven approach can be used or combined to support traffic and air pollution estimation process (collaboration with SLB)
- Promote the method for real application in collaboration with public organization