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A fundamental goal in the theory of deep learning is to explain why the optimization of the
loss function of a neural network does not seem to be affected by the presence of non-global
local minima. Many papers have addressed this issue by studying the static landscape of the
loss function [I, [ [7, T1]. More recently, researchers have begun to search for explanations
based on the dynamics of optimization [2, 9]. We believe however that the study of the static
properties of the loss function, i.e. the structure of its critical locus, is not settled. Even in the
case of linear networks, the existing literature paints a purely analytical picture of the loss, and
provides no explanation as to why such architectures exhibit no bad local minima. A complete
understanding of the critical locus should be a prerequisite for investigating the dynamics of
the optimization.

The goal of this project is to use methods from algebraic geometry to investigate the static
properties of the loss function of neural networks with different activation functions, such
as linear, polynomial or ReLU activations. In these cases, the neuromanifold (the space of
functions parameterized by a network with a fixed architecture) is a (semi-)algebraic set. For
instance, in the case of linear activation functions, the neuromanifold is a determinantal variety,
a classical object of study in algebraic geometry. Hence, in the above cases, the optimization
of the loss function is an optimization over a (semi-)algebraic set. The number and nature of
the critical points of such an optimization is governed by several concepts recently studied in
algebraic geometry: ED discriminants [6], bottlenecks [5], Voronoi varieties [3]. Still, a full
understanding of the critical locus of the loss function of neural networks using these algebraic
notions is widely open. Partial results have been obtained for linear [I0] and polynomial [§]
activations. A possible unified framework to enhance our current understanding could be
provided by introducing and analyzing signature discriminants as the algebraic locus where
the signature of the critical points changes.

A candidate should have the necessary background in Algebraic Geometry, introductory
ML theory and demonstrate computational skills (e.g., familiarity with Python or Macaulay?2).
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