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Multilevel splitting

General setting: Let (X t)t≥0 be a Markovian dynamics, and τB and
τA two associated stopping times.

Objective: efficiently compute quantities of the form
E[F ((X t)0≤t≤τA∧τB )1τB<τA ] in the rare event setting:

P(τB < τA) ≪ 1.

Two examples:

• Reactive trajectories: A and B are two metastable states, τA
and τB are the first hitting time of A and B .

• Killed process: τA is a killing time, τB is the first hitting time
of a domain B .
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Motivation 1: Simulations of biological systems
Unbinding of a ligand from a protein

Elementary time-step for the molecular dynamics = 10−15
s

Dissociation time ≃ 0.02 s

Challenge: bridge the gap between timescales
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Motivation 2: Radiation protection
Monte Carlo particle transport

Concrete tunnel with a neutron source

How to compute the neutron flux at the detector ?

Challenge: the flux is very small
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Multilevel splitting: the reactive trajectory setting

We would like to sample trajectories between two given metastable
states A and B . The main assumption is that we are given a
smooth one dimensional function ξ : Rd → R which "indexes" the
transition from A to B in the following sense:

A ⊂ {x ∈ R
d , ξ(x) < zmin} and B ⊂ {x ∈ R

d , ξ(x) > zmax},

where zmin < zmax, and Σzmin
(resp. Σzmax

) is “close” to ∂A (resp.
∂B).

Example: ξ(x) = ‖x − xA‖ where xA is a reference configuration in A.

We are interested in the event {τA < τB}, starting from an initial
condition with support in {x ∈ R

d , ξ(x) < zmin}, where

τA = inf{t > 0, X t ∈ A}, τB = inf{t > 0, X t ∈ B}.
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Multilevel splitting

Objective: Simulate efficiently trajectories which reach B before A

and estimate P(τB < τA). This then gives dynamical information:
reactive trajectories from A to B , transition times from A to B , ...

We present a multilevel splitting approach [Kahn, Harris, 1951] [Rosenbluth,

1955] to discard failed trajectories and branch trajectories
approaching the rare set. We focus on an adaptive variant [Cérou,

Guyader, 2007] [Cérou, Guyader, TL, Pommier, 2010]: the Adaptive Multilevel
Splitting (AMS) algorithm.

Remark: The algorithm can be seen as a kind of adaptive Forward Flux

Sampling [Allen, Valeriani, Ten Wolde, 2009]. It is also related to the Interface

Sampling Method [Bolhuis, van Erp, Moroni 2003] and the Milestoning method

[Elber, Faradjian 2004]. See the review paper [Bolhuis, Dellago, 2009]
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Reactive trajectory

A reactive trajectory between two metastable sets A and B is a
piece of equilibrium trajectory that leaves A and goes to B without
going back to A in the meantime [Hummer,2004] [Metzner, Schütte, Vanden-Eijnden,

2006].

A B

Difficulty: A trajectory leaving A is more likely to go back to A

than to reach B .
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Splitting algorithm: basic idea

The idea of splitting algorithms (FFS, RESTART, ...) is to write the
rare event

{τB < τA}
as a sequence of nested events: for zmin = z1 < . . . < zQ = zmax,

{τz1 < τA} ⊃ {τz2 < τA} ⊃ . . . ⊃ {τzmax
< τA} ⊃ {τB < τA}

where τz = inf{t > 0, ξ(X t) > z} and to simulate the successive
conditional events: for q = 1, . . . ,Q − 1,

{τzq+1 < τA} knowing that {τzq < τA}.

It is then easy to build an unbiased estimator of

P(τB < τA) = P(τz1 < τA)P(τz2 < τA|τz1 < τA) . . . P(τB < τA|τzmax
< τA)
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Splitting algorithm: adaptive level computation
Problem: How to choose the intermediate levels (zq)q≥1 ?

In an ideal setting, for a given number of intermediate levels, the
optimum in terms of variance is attained if

∀q ≥ 1, P(τzq < τA|τzq−1 < τA) = P(τz2 < τA|τz1 < τA).

This naturally leads to an adaptive version (AMS, nested sampling)

where the levels are determined by using empirical quantiles: Fix
k < n; at iteration q ≥ 1, given n trajectories (X ℓ

t∧τA
)t>0,ℓ=1,...,n in

the event {τzq−1 < τA}, choose zq so that

P(τzq < τA|τzq−1 < τA) ≃
(

1 − k

n

)

.

The level zq is the k-th order statistics of supt≥0 ξ(X
ℓ
t∧τA

):

sup
t≥0

ξ(X
(1)
t∧τA) < . . . < sup

t≥0

ξ(X
(k)
t∧τA) =: zq < . . . < sup

t≥0

ξ(X
(n)
t∧τA).
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AMS: estimator of the rare event probability (1/2)

Let Qiter be the number of iterations to reach the level zmax:

Qiter = min{q ≥ 0, zq > zmax}

(where z0 is the k-th order statistics of the n initial trajectories). Then,
one obtains the estimator:

(

1 − k

n

)Qiter

≃ P(τzmax
< τA).
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AMS: estimator of the rare event probability (2/2)

At iteration Qiter, one has an ensemble of n trajectories such that
τzmax

< τA. Thus

p̂corr :=
1

n

n
∑

ℓ=1

1{TB (X
ℓ,Qiter)<TA(X

ℓ,Qiter)} ≃ P(τB < τA|τzmax
< τA).

p̂corr is the number of trajectories reaching B before A at the last
iteration Qiter.

Therefore, an estimator of P(τB < τA) is

(

1 − k

n

)Qiter

p̂corr.
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AMS Algorithm

A B
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AMS Algorithm: the case of Markov chains

In practice, the dynamics are discrete in time and thus, it may
happen that more than k trajectories are such that

sup
t≥0

ξ(X ℓ
t∧τA

) ≤ sup
t≥0

ξ(X
(k)
t∧τA) =: zq

In this case, all the trajectories with maximum level smaller or equal
than zq should be discarded.

The actual estimator of P(τB < τA) thus reads:

p̂ =

(

1 − K1

n

)

. . .

(

1 − KQiter

n

)

p̂corr

instead of
(

1 − k
n

)Qiter

p̂corr, where Kq ≥ k is the effective number
of discarded trajectories at iteration q.
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AMS Algorithm: unbiasedness

Theorem [C.-E. Bréhier, M. Gazeau, L. Goudenège, TL, M. Rousset, 2016]: For any
choice of ξ, n and k ,

E(p̂) = P(τB < τA).

The proof is based on Doob’s stopping theorem applied to a
martingale built using filtrations indexed by the level sets of ξ.
Actually, this result is proved for general path observables and in a
much more general setting.

Practical counterparts:

• The algorithm is easy to parallelize.

• One can compare the results obtained with different reaction
coordinates ξ to gain confidence in the results.
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Computing transition times
To use the algorithm to compute transition times, we split a
transition path from A to B into: excursions from ∂A to Σzmin

and
then back to ∂A, and finally an excursion from ∂A to Σzmin

and
then to B . Assuming that A is metastable (p ≪ 1), it can be
shown that the equilibrium mean transition time can be
approximated by (see the second part of this talk):

(

1

p
− 1

)

∆Loop +∆React

where:

• p is the probability, starting from Σzmin
“at equilibrium”, to go

to B rather than A (approximated by p̂) ;

• ∆Loop is the mean time for an excursion from ∂A to Σzmin
and

then back to ∂A (approximated by brute force) ;

• ∆React is the mean time for an excursion from ∂A to Σzmin

and then to B (approximated by the AMS algorithm).
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Numerical results: a 2D example
Time-discretization of the overdamped Langevin dynamics:

dX t = −∇V (X t) dt +
√

2β−1dW t

with a deterministic initial condition X 0 = x0 and the 2D potential
[Park, Sener, Lu, Schulten, 2003] [Metzner, Schütte and Vanden-Eijnden, 2006]
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A 2D example
The interest of this “bi-channel” potential is that, depending on the
temperature, one or the other channel is prefered to go from A

(around H− = (−1, 0)) to B (around H+ = (1, 0)).

Three reaction coordinates: ξ1(x , y) = ‖(x , y) − H−‖,
ξ2(x , y) = C − ‖(x , y) − H+‖ or ξ3(x , y) = x .

We plot as a function of the number N of independent realizations
of AMS, the empirical average

pN =
1

N

N
∑

m=1

p̂m

together with the associated empirical confidence interval:
[pN − δN/2, pN + δN/2] where

δN = 2
1.96√
N

√

√

√

√

1

N

N
∑

m=1

(p̂m)2 − (pN)
2



Adaptive Multilevel Splitting Computing transition times

A 2D example: flux of reactive trajectories
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A 2D example: k = 1, n = 100, β = 8.67
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A 2D example: k = 1, n = 100, β = 9.33
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A 2D example: k = 1, n = 100, β = 10
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A 2D example

Observations:

• When N is sufficiently large, confidence intervals overlap.

• For too small values of N, “apparent bias” is observed [Glasserman,

Heidelberger, Shahabuddin, Zajic, 1998].

• Fluctuations depend a lot on ξ.

−→ To gain confidence in the results, check that the estimated
quantity is approximately the same for different ξ’s.



Adaptive Multilevel Splitting Computing transition times

“Apparent bias” phenomenon

The apparent bias is due to the fact that [Glasserman, Heidelberger,

Shahabuddin, Zajic, 1998]:

• Multiple pathways exist to go from A to B .

• Conditionally to reach Σz before A, the relative likelihood of
each of these pathways depends a lot on z .

On our example, for small n, we indeed observe that (for ξ3):

• Most of the time, all replicas at the end go through only one
of the two channels (two possible scenarios).

• One of this scenario is rare.

• The values of p̂ associated to each of these two scenarios are
very different.

This explains the large fluctuations.
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“Apparent bias” phenomenon

Another 2D test case:
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“Apparent bias” phenomenon
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Results on larger test cases

AMS is now implemented in the NAMD software (collaboration
with SANOFI, C. Mayne and I. Teo, PhD of L. Silva Lopes with J.
Hénin).

Three test cases:

• Alanine di-peptide (test case)

• benzamidine-trypsin dissociation rate

• β-cyclodextrin (in progress)
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Alanine di-peptide (1/6)

Two reaction coordinates:

• ξ1 is a continuous piecewise affine function of ϕ

• ξ2(ϕ,ψ) = min(dA(ϕ,ψ), 6.4) −min(dB(ϕ,ψ), 3.8)

Computational setting: no solvent, force field: CHARMM27. AMS with

n = 500 to 1000 replicas and k = 1.
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Alanine di-peptide (2/6)

Free energy landscape and zones A (yellow) and B (black).
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Alanine di-peptide (3/6)

Probability estimations using different initial conditions: D=DNS,
1=ξ1, 2=ξ2.
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Alanine di-peptide (4/6)

Flux of reactive trajectories, starting from two different initial
conditions.
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Alanine di-peptide (5/6)

Transition time obtained for two values of zmin: D=DNS, 1=ξ1,
2=ξ2. Reference value obtained by DNS over a 97 DNS simulations
of 2µs.
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Alanine di-peptide (6/6)

Estimate of the committor function using AMS.
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Benzamidine-trypsin (1/2)
We recently used AMS to estimate the off rate of benzamidine
from trypsin [I. Teo, C. Mayne, K. Schulten and TL, 2016].
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Benzamidine-trypsin (2/2)

We obtain a dissociation rate koff = (260 ± 240)s−1 within the
same order of magnitude as the experimentally measured rate
(600 ± 300)s−1.

The overall simulation time taken, summed over all 1000 replicas,
was 2.1µs (2.3µs after including direct MD and steered MD
simulations), which is four orders of magnitude shorter than the
estimated dissociation time of one event.

The main practical difficulty seems to be the determination of a
’good’ domain A.

Computational setting: 68 789 atoms, with 21 800 water molecules, 62

sodium ions, and 68 chloride ions. Water: TIP3P model. CHARMM36

force field, with parameters for benzamidine obtained from the CGenFF

force field. NPT conditions, at 298 K and 1 atm Langevin thermostat

and barostat settings, using 2 fs time steps. AMS with n = 1000 replicas

and k = 1.
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Another example: Radiation protection (1/2)
Monte Carlo particle transport

Concrete tunnel with a neutron source

How to compute the neutron flux at the detector ?

Challenge: the flux is very small
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Another example: Radiation protection (2/2)
Example 2: In collaboration with CEA (Eric Dumonteil, Cheikh
Diop and Henri Louvin), AMS is now implemented in the Tripoli
code.
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Concluding remarks on AMS (1/2)

Practical recommendations:

• A careful implementation of the splitting step leads to
unbiased estimators for non-normalized quantities.

• Perform many independent realizations of AMS.

• Use ξ as a numerical parameter.

The algorithm is very versatile:

• Non-intrusivity: the MD integrator is a black box.

• Can be adapted to generate trajectories of any stopped
Markov process.

• Can be applied to both entropic and energetic barriers, to
non-equilibrium systems, non-homogeneous Markov process,
random fields, ...

• Algorithmic variants: other resampling procedure, additional
selection, ...
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Concluding remarks on AMS (2/2)

Works in progress:

• Tests on complicated biological systems (collab. with J. Hénin and L. Silva

Lopes)

• Adaptive computation of ξ.

• Analysis of the efficiency as a function of ξ. For optimal choice
of ξ, the cost of AMS is (for n large)

(

(log p)2 − log p
)

much better than the cost of naive Monte Carlo: 1−p
p

. How does this degrade
when ξ departs from the optimal case ?
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Computing transition times with AMS

B

A
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Transition time
Let us consider an ergodic stochastic continuous in time process
(Xt)t≥0 in R

d , and two disjoint subsets A ⊂ R
d and B ⊂ R

d . The
objective is to compute the mean transition time at equilibrium
from A to B , denoted by ∆A→B .

B

A

Remark: we are also interested in any statistical property of the
equilibrium reactive paths from A to B .
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Metastability
Examples: Molecular dynamics (A and B are defined in positions space)

• Langevin dynamics (M mass matrix, γ > 0, β = (kBT )−1)
{

dQt = M−1Pt dt,

dPt = −∇V (Qt) dt − γM−1Pt dt +
√

2γβ−1dWt ,

ergodic wrt µ(dq)⊗ Z−1
p exp

(

−β ptM−1p
2

)

dp with

dµ = Z−1 exp(−βV (q)) dq,

where Z =
∫

exp(−βV ).

• over-damped Langevin dynamics

dXt = −∇V (Xt) dt +
√

2β−1dWt ,

which is also ergodic wrt µ.

Challenge: A and B are typically metastable states, so that
observing transitions from A to B is a rare event.
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From continous time to discrete time

Σ

A

B

Let Σ be a co-dimension 1 submanifold in-between A and B . Then,
(Yn)n≥0 is the sequence of successive intersections of (Xt)t≥0 with
A = ∂A or B = ∂B , while hitting Σ in-between.
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From continous time to discrete time

More precisely:
Yn = Xτn

where
τΣn = inf{t > τn−1,Xt ∈ Σ}

τn = inf{t > τΣn , Xt ∈ A ∪ B}.
The Markov chain (Yn)n≥0 is with values in A∪ B, with kernel:

∀x ∈ A ∪ B, ∀C ⊂ A ∪ B,

K (x ,C ) =

∫

z∈Σ
P
x(XτΣ1

∈ dz)Pz(Xτ1 ∈ C ) dz .
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Reactive entrance distribution
Let us define the successive entrance times in A and B [Lu, Nolen, 2013]

[E, Vanden Eijnden, 2006]:

TA
k+1 = inf{n > TB

k , Yn ∈ A}

TB
k+1

= inf{n > TA
k+1

, Yn ∈ B}.
The reactive entrance distribution in A at equilibrium is defined by:

νE = lim
K→∞

ν̂E ,K

where

ν̂E ,K =
1

K

K
∑

k=1

δY
TA
k

.

Remark: νE is independant on the choice of Σ and is also the
reactive entrance distribution for the original continuous time
process.
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Back to the mean transition time

The mean transition time at equilibrium is (strong Markov property):

∆A→B = E
νE

(

TB−1
∑

n=0

∆(Yn)

)

where
TB = inf{n ≥ 0, Yn ∈ B}

and for all x ∈ A,
∆(x) = E

x(τ1).

Remark: Notice that

∆(x) = E
x(τ11Y1∈A) + E

x(τ11Y1∈B)

is the average time of loop from x back to A when Y1 ∈ A and the
average time of a reactive trajectory from x to B when Y1 ∈ B.
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Summary

Objective: Given a discrete-time Markov chain (Yn)n≥0 with values
in A ∪ B and a bounded measurable function f : A → R, estimate:

E
νE

(

TB−1
∑

n=0

f (Yn)

)

.

Two challenges: The sets A and B are metastable, so that (i) TB is
very large, and (ii) νE is difficult to sample.

Ideas: For (i), use rare event sampling method (forward flux sampling -FFS- or

adaptive multilevel splitting -AMS-). For (ii), use the fact that A is metastable:
the process (Yn)n≥0 reaches “equilibrium within A” (quasi stationary

distribution) before transitioning to B.
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Assumptions and notation

Assumptions: In the following, we assume that the Markov chain
(Yn)n≥0 satisfies the following hypothesis:

[A1] (Yn)n≥0 is weak-Feller meaning that (Kf ) ∈ C(A ∪ B,R)
whenever f ∈ C(A ∪ B,R).

[A2] (Yn)n≥0 is positive Harris recurrent, and π0 denotes its unique
stationary probability measure.

[A3] π0(A) > 0 and π0(B) > 0.

All these assumptions are satisfied for the discrete processes built
from the Langevin or overdamped Langevin dynamics.

Notation: In the following we use the block-decomposition of the

kernel K of the chain (Yn)n≥0 over A ∪ B: K =

[

KA KAB

KBA KB

]

.
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The Hill relation

[Kramers, 1940]
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The π-return process and the Hill relation

Let π be a probability measure on A. The π-return process
(Y π

n )n≥0 is the Markov chain with values in A and transition
kernel: ∀x ∈ A, ∀C ⊂ A,

Kπ(x ,C ) = P
x(Y1 ∈ C ,TB > 1) + P

x(Y1 ∈ B)π(C ).

In words, (Y π
n )n≥0 is the chain (Yn)n≥0 “reset to π” each time Yn

enters B.
Lemma. (Y π

n )n≥0 admits a unique stationary distribution, denoted
by R(π), where

R(π) =
π(IdA − KA)

−1

Eπ(TB)
.

Remark: Such processes are typically used in MD when people
introduce a sink in B and a source in A to create a non-equilibrium
flux from A to B [Farkas, 1927] [Kramers, 1940], Weighted Ensemble [Zuckerman,

Aristoff], Milestoning [Elber, Vanden Eijnden], TIS [Bolhuis, Van Erp].
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The π-return process and the Hill relation
We are now in position to state the Hill relation [Hill, 1977] [Aristoff, 2018].
Proposition. For any bounded measurable function f : A → R,

E
π

(

TB−1
∑

n=0

f (Yn)

)

=
R(π)f

PR(π)(Y1 ∈ B) .

Remark: If R(π) is easy to sample, the RHS is typically easier to
compute, since it only involves one step of (Yn).

Application of the Hill relation to π = νE
Lemma. The probability measure R(νE ) is the stationary
distribution π0 restricted to A:

R(νE ) =
π01A
π0(A)

=: π0|A.

As a consequence,

E
νE

(

TB−1
∑

n=0

f (Yn)

)

=
π0|A(f )

P
π0|A(Y1 ∈ B) .
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The Hill relation to compute ∆A→B

Back to the mean transition time:

E
νE

(

TB−1
∑

n=0

∆(Yn)

)

= ∆Loop(π0|A)

(

1

PReact(π0|A)
− 1

)

+∆React(π0|A)

where

• ∆Loop(π0|A) = E
π0|A(τ1|Y1 ∈ A) is the mean time for a loop

from π0|A back to A (computed by brute force Monte Carlo)

• ∆React(π0|A) = E
π0|A(τ1|Y1 ∈ B) is the mean time of a

reactive trajectory from π0|A to B (computed by FFS/AMS)

• PReact(π0|A) = P
π0|A(Y1 ∈ B) is the probability to get a

reactive traj. starting from π0|A (computed by FFS/AMS)

The difficulty is that π0 and, a fortiori, π0|A are in general unknown
and difficult to sample.



Adaptive Multilevel Splitting Computing transition times

Summary

The formula

E
νE

(

TB−1
∑

n=0

f (Yn)

)

=
π0|A(f )

P
π0|A(Y1 ∈ B)

is not practical since π0|A is difficult to sample.

Hope: since A is metastable, maybe it is not needed to sample νE
or π0|A since, typically, the process will reach a local equilibrium
within A before going to B.
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A practical algorithm

A B
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The quasi-stationary distribution (QSD)
Lemma. Under the assumptions above, the process (Yn)n≥0 admits
a quasi-stationary distribution (QSD) νQ in A, namely a probability
measure νQ over A such that: ∀C ⊂ A,

νQ(C ) = P
νQ (Y1 ∈ C |TB > 1).

In the following, we assume that

[B] (Yn)n≥0 admits a unique quasi-stationary distribution νQ .

Properties of the QSD:

• For any intial condition x ∈ A, for any C ⊂ A,

lim
n→∞

P
x(Yn ∈ C |n < TB) = νQ(C ).

• The νQ-return process admits νQ as an invariant distribution:

R(νQ) = νQ .
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The Hill relation applied to π = νQ

As a consequence

E
νQ

(

TB−1
∑

n=0

f (Yn)

)

=
νQ(f )

PνQ (Y1 ∈ B) .

Remark: Starting from νQ , TB is geometrically distributed, with
parameter PνQ (Y1 ∈ B) = PReact(νQ).

Back to the mean transition time [Cérou, Guyader, TL, Pommier, 2011]:

E
νQ

(

TB−1
∑

n=0

∆(Yn)

)

= ∆Loop(νQ)

(

1

PReact(νQ)
− 1

)

+∆React(νQ)

What did we gain, compared to π = νE? The probability
distribution νQ can be sampled by brute force Monte Carlo.
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The algorithm to compute ∆A→B

In practice:

• Simulate the process (Xt)t≥0 (or (Qt ,Pt)t≥0 in a
neighborhood of A, registering the successive loops from A

to Σ. This gives samples distributed according to νQ , and
∆Loop(νQ).

• Use AMS to simulate reactive trajectories, starting from the
QSD νQ . This gives an estimate of PReact(νQ).

Remark: Typically, one has PReact(νQ) ≪ 1 and

∆React(νQ) ≪ ∆Loop(νQ)
PReact(νQ)

so that

E
νQ

(

TB−1
∑

n=0

∆(Yn)

)

≃ ∆Loop(νQ)

PReact(νQ)
.

This is the formula used in FFS to compute transition times [Allen,

Valeriani, ten Wolde, 2009].



Adaptive Multilevel Splitting Computing transition times

Error analysis

∣

∣

∣

∣

∣

∣

E
νE

(

∑TB−1

n=0
f (Yn)

)

− E
νQ

(

∑TB−1

n=0
f (Yn)

)

EνE

(

∑TB−1

n=0
f (Yn)

)

∣

∣

∣

∣

∣

∣

≪ 1?
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Error analysis

In practice, we thus compute E
νQ

(

∑TB−1

n=0
f (Yn)

)

instead of the

truth E
νE

(

∑TB−1

n=0
f (Yn)

)

.

Objective: Quantify the relative error

ERR =

∣

∣

∣

∣

∣

∣

E
νE

(

∑TB−1

n=0
f (Yn)

)

− E
νQ

(

∑TB−1

n=0
f (Yn)

)

EνE

(

∑TB−1

n=0
f (Yn)

)

∣

∣

∣

∣

∣

∣

.

as a function of how large is the transition time wrt the
convergence time to the QSD.
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Transition time

The time to observe a transition to B is measured by

1

p+

where p+ = supx∈A P
x(Y1 ∈ B).

Remark: One obviously has, for any x ∈ A,

1

p+
≤ E

x(TB).



Adaptive Multilevel Splitting Computing transition times

Convergence time to the QSD

The convergence time to the QSD is measured by:

TE
Q = ‖νEHQ(x , ·)‖TV

where

HQ(x , ·) =
∞
∑

n=0

((K νQ )n(x , ·) − νQ) .

Why can TH be seen as a convergence time to the QSD?
One has

TE
Q ≤

∞
∑

n=0

‖LνE (Yn|TB > n)− νQ‖.
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Example: the geometrically ergodic case

In the context of the over-damped Langevin dynamics, one can
show that: ∃α > 0,∃ρ ∈ (0, 1),∀n ≥ 0,

‖LνE (Yn|TB > n)− νQ‖TV ≤ αρn.

In this case,
TE
Q ≤ α

1 − ρ
.



Adaptive Multilevel Splitting Computing transition times

Error analysis

Proposition. Assume that p+TE
Q < 1. Then,

ERR ≤
p+TE

Q

1 − p+TE
Q

(

1 +
‖f ‖∞

|π0|A(f )|

)

.

This shows that the error is small if the transition time is large
compared to the convergence time to the QSD, i.e.

1

p+
≫ TE

Q .

Remark: We have checked on examples that the upper bound is
sharp in various ways. In particular, one cannot replace p+ by
PReact(νQ) neither by PReact(νE ) in the RHS.
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Conclusion (1/2)

We now have a good understanding of the formula which is used by
many algorithms (FFS, AMS and the “source and sink methods”:
TIS, WE, milestoning) to compute the mean transition time:

• These methods are exact if the process is initialized in the
initial state with the correct distribution: the reactive entrance
distribution

• The reactive entrance distribution can be replaced by the QSD
if A is metastable.
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Conclusion (2/2)

Current research directions:

• We analyzed the bias, and not the variance or the efficiency of
the whole procedure. This should be possible, at least in
simple prototypical cases, and maybe give some hints on good
choices for some numerical parameters (position of Σ).

• In practice, it is observed that the initial conditions that indeed
yield a transition to B are concentrated on some parts of the
boundary ∂A. We are currently working on good sampling
methods for these initial conditions [collab. Laura Lopes].

The practical problem is not to replace νE by νQ , but to sample νQ
correctly.
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