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Part 1

The Multifaceted  
Problem of  

Concrete Design  
and Production



FIG URE 1 . 2	 Comparative charts of the global consumption rates and the environmental impact of the main concrete constituent materials. (Sources: Allwood and Cullen 

2012; Hamond and Jones 2011; graphical representation: author).
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FIG URE 1 . 3	 Comparison of cement and aggregate consumption in a structural application of C30 concrete and UHPC. The column profiles shown on the left are designed to carry an 

axial load of 3000 kg. Buckling deformations have been omitted (Sources: Stengel 2014; Voort 2008; Graphical representation: author).
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FIG URE 1 . 3	 Comparison of cement and aggregate consumption in a structural application of C30 concrete and UHPC. The column profiles shown on the left are designed to carry an 

axial load of 3000 kg. Buckling deformations have been omitted (Sources: Stengel 2014; Voort 2008; Graphical representation: author).
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Project: Spencer Dock Bridge by AL_A (Future Systems) 
Source: nedcam.com





Precast Normal Strength Concrete

0 1

meters

2 3

0 1

meters

2 3



Project: Neuer Zollhoff by Frank Gehry 
Source: Thomas Mayer



Project: Neuer Zollhoff by Frank Gehry
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FIG URE 1 . 17	 An illustration of the adhesion of high-performance concrete to an expanded polystyrene mould (Hi-Con, 2017) (Source: Hi-Con A/S). 
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FIGURE 1 . 18	 A concrete prototype cast in water-soluble 3D-printed PVA formwork  

(Source: Digital Building Technologies, ETHZ. Photo: Matthias Leschok).

FIGURE 1 . 19	 TailorCrete project, a zero-waste wax formwork for concrete  

(Source: ROK Rippmann Oesterle Knauss GmbH).

3.	 Emerging Methods of  
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FIG URE 2 . 28	 Ice mould for the concrete panel 170721-ME-MUR1 produced 

via thermal melting (see Film 2) (Source: author).



FIG URE 2 . 35	 A scale reference for 180611-ME-JULx (Source: author).

FIG URE 2 . 36	 180611-ME-JULx during demoulding (Source: author).
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FIG URE 2 . 39	 The tile series 180423-DP-TILx cast in fine 

processed ice moulds (Source: author).



FIG URE 2 .43	 The front and top view of the prototype 180622-DP-TER1 produced using fine CNC-

processing (Source: author).

FIG URE 2 .44	 The prototype 180622-DP-TER1 during the demoulding process (Source: author).

FIG URE 2 .45	 The surface quality detail of the prototype 180622-DP-TER1 (Source: author).



FIG URE 2 .40	 The prototype 180805-DP-APE1 made using a two-party ice 

mould assembly (Source: author).
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FIG URE 2 .48	 The 191116-DP-TER2 prototype (Source: author).
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FIG URE 2 . 55	 The fixing detail and the back side of the 190912-DP-FAC2 prototype 

(Source: author).

FIG URE 2 . 56	 The ice mould assembly of the 190912-DP-FAC2 prototype 

	 (Source: author).
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