DEGREE PROJECT IN MECHANICAL ENGINEERING,
FIRST CYCLE, 15 CREDITS

STOCKHOLM, SWEDEN 2021

Design and control of a 3D
printed, 6DoF robot arm

MICHAL GABRIEL SAWCZUK

&

By,
FKTHY

VETENSKAP
3% OCH KONST 0%

s

Design and control of a 3D printed, 6DoF robot
arm

MICHAL GABRIEL SAWCZUK

Bachlor's Thesis at ITM
Supervisor: Nihad Subasic
Examiner: Nihad Subasic

TRITA-ITM-EX 2021:52

Abstract

The purpose of this thesis was to design, construct and
control a robotic arm with six degrees of freedom. The
arm should be able to do simple tasks such as pick and
place with good accuracy and without using external sen-
sors. This thesis investigates the precision and the strength
of the constructed robot arm.

The arm was constructed using 3D printed parts and
commonly available hardware such as threaded rods, bear-
ings, screws and nuts. FEach axis uses a combination of
pulleys and belts in order to achieve desired torque. A dif-
ferential transmission was implemented in four of the axes
in order to combine the power of the motors and reduce
weight in the upper parts of the arm.

The robot is driven by six stepper motors that are con-
trolled by a combination of RAMPS 1.4 shield and Arduino
Mega 2560 microcontroller. The user can manipulate each
axis by sending commands to the Arduino through an USB
cable. The commands are generated with the help of a
simple user interface written in Python.

Experiments have shown that the arm has an average
error increase of 0.0289-0.1356 mm for each movement, de-
pending on the chosen speed. The maximum amount of
weight that the arm can hold in the worst case scenario is
0.84 kg.

Keywords: Mechatronics, 6DOF Robot Arm, Robotics,
Robot, Arduino

Referat

Syftet med denna avhandling var att designa, konstruera
och kontrollera en robotarm med sex frihetsgrader. Armen
ska kunna utfora enkla uppgifter som pick-and-place med
god noggrannhet och utan anvéindning av externa sensorer.
Denna avhandling undersoker precisionen och styrkan hos
den konstruerade robotarmen.

Armen konstruerades med 3D-printade delar och l4ttill-
ganglig hardvara som gingstanger, lager, skruvar och mutt-
rar. Varje axel anvinder en kombination av kuggremskivor
och kuggremmar for att uppna 6nskat moment. En diffe-
rentialvixel anvéindes i fyra av axlarna for att kombinera
motorernas moment och minska vikten i armens Gvre delar.

Roboten drivs av sex stegmotorer som styrs av en kom-
bination av RAMPS 1.4-shield och Arduino Mega 2560
mikrokontroller. Anvéndaren kan styra varje axel genom
att skicka kommandon till Arduinon via en USB-kabel.
Kommandona genereras med hjélp av ett enkelt anvéindar-
grinssnitt skrivet i Python.

Experiment har visat att armen har en genomsnittlig
felokning pa 0,0289-0,1356 mm for varje rorelse, beroende
pé vald hastighet. Den hogsta vikt som armen i vérsta fall
kan halla &r 0,84 kg.

Nyckelord: Mekatronik, Robotarm, Robotik, Robot, Ar-
duino, Sex frihetsgrader

Acknowledgements

I would like to thank my supervisor Nihad Subasic for his lectures, knowledge and
feedback, and Staffan Qvarnstrom for taking care of my component orders. I would
also like to thank all the other students that took their time to give me feedback
and answer my questions.

Contents

1 Introduction 3
1.1 Background 3
1.2 Purpose 3
1.3 Scope 3
1.4 Method 4

1.4.1 Design and construction 4
1.4.2 Electronics and control 5
143 Testing 6

2 Theory 7

2.1 Construction 7
2.1.1 Design for FDM printing 7
2.1.2 Transmission e 8
2.1.3 Simulation 9

2.2 Actuators 9
2.2.1 Stepper motors 9
2.2.2 Servo motors 10

2.3 Control e 11
2.3.1 Computation and control 11
2.3.2 Stepper motor drivers 11

2.4 Testing 12
2.4.1 Accuracy, precision and trueness 12
2.4.2 Errors e e 12

3 Prototype 13
3.1 Construction 13
3.2 Actuators 19
3.3 Control 20

4 Results 25
4.1 Precision tests 25
4.2 Strength tests 26

5 Discussion 27

5.1 Precision testsresults
5.2 Strength test resultso
5.3 Future work
5.4 Conclusions e

Bibliography

Appendices

A Data sheets of the stepper motor drivers.
B Exploded views of the robot arm

C Acumen

D Data sheets of the actuators

E Python code of the user interface

F Arduino code

G Change in error (Precision tests).

31

32

33

37

43

45

51

63

69

List of Figures

1.1
1.2

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

5.1

Al
A2

B.1
B.2
B.3
B4

D1
D.2
D.3
D.4
D.5

CAD model and drawings of the robot arm (Created in Fusion 360)
Photo of the final electronics enclosure (Edited in Google Drawings)

Simplified Differential (Created in Fusion 360)
How the data is transmitted using serial communication [1]
Accuracy, trueness and precision (Created in Google Drawings)

Iterations of the Axis 1 (Created in Fusion 360)
CAD drawing of the first axis (Created in FUSION 360)
Cross section view of the first axis (Created in FUSION 360)
Iterations of the Axis 2 (Created in Fusion 360)
CAD drawing of the second axis (Created in FUSION 360)
Iterations of the Axis 3 and 4 (Created in Fusion 360)
CAD drawing of the Axis 3 and 4 (Created in FUSION 360)
Cross section view of the Axis 3 and 4 (Created in FUSION 360)
CAD drawing of the fifth and sixth axes (Created in FUSION 360) . . .

Circuit diagram of the robot arm electronics (Created in EAGLE)

Screenshot of the user interface

Change in error (Created in MATLAB)

Data sheet of the A4988 stepper motor driver[2].
Data sheet of the TB6600 stepper motor driver[3].

Exploded view of the first axis (Created in FUSION 360)
Exploded view of the second axis (Created in FUSION 360)

Exploded view of the third and fourth axes (Created in FUSION 360)
Exploded view of the fifth and sixth axes (Created in FUSION 360)

Data sheet for the stepper motor used in the first axis.
Data sheet for the stepper motor used in the second axis.
Data sheet for the stepper motor used in the third and fourth axis. . . .
Data sheet for the stepper motor used in the fifth and sixth axis.
Data sheet for the servo motor used in the gripper.

11
12

13
14
15
16
16
17
18
18
19
21
22

28

34
35

38
39
40
41

List of Tables

3.1 Allowed values of the different command-parts sent to the Arduino. . . 23
4.1 The different stepper motor speeds used for precision tests. 25
4.2 Accumulated error, Speed A mm].o L 26
4.3 Accumulated error, Speed B [mm].o 26
4.4 Measured holding torque of each drive train. 26
5.1 Average change in error [mm]. L. 27
G.1 Rate of change low speed. oL 70

G.2 Rate of change high speed. 70

List of Abbrevations

3D
CAD
DC
DOF
FDM
PLA

Three Dimensional
Computer Aided Design
Direct Current

Degrees of Freedom

Fused Deposition Modeling

Polylactic Acid

Chapter 1

Introduction

1.1 Background

Robotic arms are machines that are programmed to do a variety of tasks ranging
from welding and machine tending to transporting astronauts during spacewalks.
The demand for automation is rising. At the same time, the possibilities of creating
robot arms used for less demanding applications are growing. Countless Open-
source robot arm projects can be found on the internet and the number of cheap,
commercially available robot arms is growing every year. This project is about
creating a prototype of a cheap and reliable robot arm using widely available manu-
facturing methods such as 3D printing and cheap actuators such as stepper motors.

1.2 Purpose

The purpose of this bachelor’s thesis is to design, build and control an articulated
robot arm with six degrees of freedom. The arm should be accurate and strong
enough to able to do different tasks such as pick and place without using external
sensors. This report will investigate the following research questions:

e How precise is the robot arm?
e How does the speed of the arm affect the precision?

e How much weight can the robot arm lift?

1.3 Scope

The time frame for the bachelor’s degree project in mechatronics at KTH Royal
Institute of Technology is a period of around four months. To meet the established
time-constraints, the arm will not contain any extra features such as limit switches
or motor encoders.

CHAPTER 1. INTRODUCTION

1.4 Method

1.4.1 Design and construction

The first step of designing a robot arm was a design study of the existing arms.
Afterward a 3D model of the robot arm was created using Autodesk Fusion 360.
The finished construction is shown in Figure 1.1. The model was 3D printed using a
modified Creality Ender 3 and an Anet ET5 3D printer using PLA. The 3D printed
parts were connected using screws, threaded rods and nuts.

Stepper motors were used to move the axes of the robot arm. To increase
the torque, timing belts in combination with 3D printed geared pulleys were used.
The amount of weight in the upper parts of the arm was reduced by implementing
differential transmission for axis pairs 3,4 and 5,6 (see Figure 1.1). Deep-groove
ball bearings were used in every axis to minimize the friction and a thrust(axial)
bearing was used in the first axis to support the weight of the arm. A servo motor
was used in the gripper of the arm. The gripper itself was bought as a separate
component.

Figure 1.1. CAD model and drawings of the robot arm.

1.4. METHOD

1.4.2 Electronics and control

In order to control the arm, RAMPS 1.4 shield with Arduino Mega 2560 microcon-
troller was chosen (see section 2.3.1). Six stepper motor drivers that control the
motors are connected to the RAMPS and cooled down by a computer fan. The
components are powered by a power supply. The servo motor could not be powered
directly from the RAMPS, therefore a power converter was used to adjust the volt-
age. A light emitting diode in combination with a buzzer are used as an indicator.
All these components were enclosed in an acrylic cage shown in Figure 1.2. Three
different plugs and two power switches are located on the enclosure walls. The USB
plug is used to control the Arduino from a computer, the IEC connector (three
pins) connects a mains cable with the power supply and the last one connects to
the robot arm.

The arm is controlled by sending commands though an USB cable to the Arduino
which in turn translates the commands to different stepper positions. A simple user
interface was programmed to simplify that procedure.

Figure 1.2. Photo of the final electronics enclosure.

CHAPTER 1. INTRODUCTION

1.4.3 Testing

Different tests were performed to answer the research questions defined in section
1.2. The first question about the precision was answered by performing physical
experiments. An indicator dial was placed in front of the robot arm and the arm
was then repeatably moved to that position. If the arm is precise, value of the
indicator dial will stay approximately the same. Two different speeds were used
in order to determine how the speed affects the precision. The question about the
strength of the arm was answered by loading each axis until it yields.

Chapter 2

Theory

2.1 Construction

2.1.1 Design for FDM printing

Fused deposition modeling (FDM) is one of the most common 3D printing processes.
Solid material is melted and extruded through a nozzle onto a build plate. The print
head traces out the 3D model layer by layer until the object is created [4]. Different
types of material can be used, the most common one is PLA (Polylactic acid). It is
easy to print, low cost, stiff and has good strength. The main disadvantage of PLA
is the low service temperature of about 57 °C [5].

As a result of the layer by layer printing, it can be hard to determine the exact
mechanical properties of a 3D printed part. Furthermore a model can be printed
with different settings such as layer height or printing speed. It can also be printed
in different orientations and using different nozzles. All these factors are influencing
the mechanical properties of a printed part.

As mentioned earlier, the FDM parts are printed layer by layer. Therefore it
can be expected that these parts have transversely isotropic! properties. According
to experiments done by T. Yao, Z. Deng, K. Zhang and S. Li, the tensile strength is
52.29% to 47.46% lower (depending on the layer thickness) when exposed to stress
perpendicular to the printing plane [6].

To reduce the weight of a 3D printed part, a property called infill can be used
and modified. Infill is the material that exists within a model. It can be printed in
different patterns and densities effecting in different mechanical properties. Accord-
ing to research done by C. Lubombo and M. Huneault, a square infill structure gives
the best mechanical performance for uniaxial tensile loading. In terms of flexural
loading(bending), the hexagonal infill works best. The infill is contained within
walls. A higher amount of walls gives a part with better mechanical properties [7].

According to research done by Harshit K. Dave, layer height and printing speed

!Transversely isotropic materials have the same properties in all directions within a plane but
different properties in the direction perpendicular to the plane

7

CHAPTER 2. THEORY

does not have a significant effect on the mechanical properties of the 3D printed
part. However it is important to note that the layer height and printing speed is
limited to the nozzle size and the 3D printer used [8].

2.1.2 Transmission

Transmission is the essential part of many mechanical systems. It is a device that
provides torque and speed transitions between different parts of the machine by
using components such as gears, belts and chains [9].

One of the main notions in transmission design is the transmission ratio, it is
the ratio of the speed of the input shaft to the speed of the output shaft. It can be
calculated as

Gr=Ti_A_h (2.1)
ng 22 ds
where n is the speed of the shaft, z is the number of teeth and d is the diameter of
the gear[10].

This project uses a combination of belts and 3D printed gears to reduce the speed
and increase the torque of the output shafts. Furthermore, a simplified version of a
differential is used to transmit the power in Axis 3,4 and 5,6. A differential is most
often used in automotive mechanics to distribute the power to both wheels, but
allowing them to run at different speeds [11]. In this project it is used to distribute
the power to both Axes (3,4 or 5,6, see Figure 1.1) using the same motors. The
differential gear used in this project is shown in Figure 2.1. When the side(black)
gears rotate in different directions, the top(blue) gear rotates around its own axis
(y-axis in the Figure). When they rotate in different directions, the top gear rotates
around the side gear’s axes instead (x axis in the Figure).

Figure 2.1. Simplified Differential.

2.2. ACTUATORS

2.1.3 Simulation

Before the construction process, it is advantageous to simulate the different forces
in order to gain an understanding of the robot dynamics and kinematics. It can be
done in many different ways, but in this project, a simulation tool called Acumen
was used. Acumen is used for simulating mathematical models and visualizing them
in 3D [12].

2.2 Actuators

Actuators are responsible for movement of a machine and are therefore one of the
most important components in a robotic arm. Without actuators, the robot cannot
move through space. Is important that the actuator is strong, fast and accurate
enough for the application. There are many different types of actuators such as
stepper motors, brushless motors and servomotors.

2.2.1 Stepper motors

Stepper motors are brushless DC motors that move in fixed increments called steps.
Inside a stepper motor there are coils that act as electromagnets when powered.
The coils are organized intro different groups called phases. The rotor aligns with
the field generated by powering one of the phases, by powering the phases on and
off in a sequence, the rotor rotates.

Stepper motors are used for many precision motion applications. The advantages
of using stepper motors is the precise positioning, speed control and high torque
at lower speeds. The disadvantages of the stepper motors is the low efficiency and
low torque at higher speeds. It is important to note that even though the stepper
motors are precise, they are not in a closed loop, any steps lost will not be recorded.
For that reason it is important that the motor is sized to its application. To prevent
accumulation of lost steps, limit switches can be used. Limit switches are switches
that are often used in CNC machines and 3D printers to give the machine a reference
(home) position. These switches are also good for safety reasons because they limit
the allowed angle of rotation [13].

There are a broad selection of different stepper motors. The three main types
are:

o Permanent magnet stepper motors (PM)
 Variable reluctance stepper motors (VR)
o Hybrid synchronous stepper motors (HY)

The first type (PM) tend to have a higher torque, but poor precision. The second
type (VR) is the opposite, the precision is high and the torque is low. The last type
(HY) combines the best of both worlds with good precision and high torque. The
disadvantage of the HY stepper motors is the higher price and weight.

CHAPTER 2. THEORY

Stepper motors can also be divided by the type of winding arrangement of the
coils. The two main types are the bipolar and unipolar stepper motors. With
the bipolar arrangement, the magnetic pole is reversed by reversing the current in
the coil. The unipolar arrangement doesn’t need a reverse current to change the
magnetic pole. It is generally better to use bipolar stepper motors because of the
higher efficiency and torque. Even though the bipolar stepper motors require more
complicated drivers, it is not a problem anymore because of the availability of these
drivers [14].

Because of the advantages, only bipolar hybrid synchronous stepper motors are
used in this project.

Coils in a stepper motor can be energized in different ways that gives different
drive methods. The most common ones are the:

o Full-step mode (one phase)
o Full-step (two phases)

Half-step mode

e Microstep mode

When using one phase full-step mode, the phases are energized one after another.
As the name suggests, the rotor turns one step at a time. In the two phase full-step
mode two phases are energized at the same time. The rotor is still turning one
step at a time but the torque increases by 30-40 %. Unfortunately, energizing two
phases at the same time requires double the current. Half-step mode is achieved by
combining one- and two phase full-step modes. By alternating between energizing
two phases and one phase, the rotor can be aligned between two windings. For that
reason, the step angle is reduced by half. The disadvantage of this mode is the
reduced torque. Microstepping allows a stepper motor to make even smaller steps
by using stepped sine waves. The motor can now turn smoothly but the torque is
decreased even more [14].

2.2.2 Servo motors

Servo motors are motors that allows a precise control of the position, speed and
acceleration of the output shaft. A common "hobby servo” consists of a DC motor, a
gear train, a potentiometer and a circuit board to decode the signals. It is controlled
using PWM (Pulse Width Modulation) signals from the microcontroller. A PWM
signal can either be high or low. The percentage of the high’s is called duty cycle,
for instance, a signal that is high for 0.8ms and low for 0.2ms has a duty cycle of
80%. Different duty cycles generate different servo positions [15].

10

2.3. CONTROL

2.3 Control

2.3.1 Computation and control

In order to control the robot arm actuators, Arduino Mega 2560 with a RAMPS
1.4 is used. Arduino Mega 2560 is a microcontroller based on the ATmega2560. It
has 54 digital pins, 16 analog inputs and four hardware serial ports (UART) [16].
RAMPS 1.4 is a controller board that can be mounted on top of the Arduino Mega
2560. It is convenient because of the sockets that smaller stepper motor drivers can
be mounted into (see section "Stepper motor drivers”). As a result, it is often used
in homemade CNC machines and 3D printers[17].

The arm is controlled by sending commands from a computer to the Arduino
through a USB connection. It is done using serial communication. It means that
the data is streamed one bit at a time as shown in Figure 2.2. [1]

Figure 2.2. How the data is transmitted using serial communication.

2.3.2 Stepper motor drivers

In order to control the stepper motors, stepper motor drivers needs to be used.
There are many different drivers on the market and they need to be compatible
with the stepper motor to provide good performance. In this project, two different
stepper motor drivers are used, A4988 and TB6600. A4988 can handle current up
to 2A and allows microstep resolution of up to 1/16[2]. TB6600 is often used for
bigger stepper motors that require current up to 4A and has a maximum microstep
resolution of 1/32. For a standard 1.8 degree stepper motor, a microstep resolution
of 1/16 gives 3200 steps per revolution, and a resolution of 1/32 gives 6400 steps
per revolution [3]. Data sheets for the stepper motor drivers used are presented in
Appendix A.

Three different signals are used when controlling the stepper motor drivers, DIR,
STEP and EN. By sending a STEP signal, the motor moves one step (or microstep
depending on the chosen setting) in the direction given by DIR at the time of
sending the signal. EN pin is used to reduce the power used by the stepper motor
when stationary [14].

11

CHAPTER 2. THEORY

2.4 Testing

2.4.1 Accuracy, precision and trueness

There exists different definitions of accuracy, precision and trueness and this projects
uses the ISO 5725-1:1994 definition: “ISO 5725 uses two terms “trueness” and
"precision” to describe the accuracy of a measurement method. “Trueness” refers
to the closeness of agreement between the arithmetic mean of a large number of test
results and the true or accepted reference value. ”Precision” refers to the closeness
of agreement between test results.” [18].

A simpler way of describing these concepts is shown in Figure 2.3 by using a
pistol targets. All the shots on target A are in the middle and close to each other,
there is both trueness and precision, therefore the accuracy is also high. If all
the shots are in the middle, but not close together as the target B shows, there
is trueness but the shots are not precise. On the other hand in C, the shots are
precise but lack trueness. Lastly, when the shots are not close together and not in
the middle as in target D, there is no precision and no trueness.

Figure 2.3. Accuracy, trueness and precision.

2.4.2 Errors

Errors can be divided into two different types, systematic and random. Systematic
errors can be predicted because they always affect the measurement in the same
way. It also means that they often can be eliminated if the cause of the error is
found. Random errors are unpredictable and often are normally distributed [19].

12

Chapter 3

Prototype

3.1 Construction

The robot arm was designed using Fusion 360. The different axes were constructed
one at a time, starting with the first axis and ending with the sixth. This approach
enabled testing of each axis directly after it was assembled. Exploded views of each
axis are presented in Appendix B. Additionally, a simple simulation was created in
Acumen in order to simulate the different forces. The simulation is presented in
Appendix C.

Axis 1

The first Axis is located at the base of the robot arm. It is therefore necessary
to make it as stable and durable as possible so it doesn’t tip or break under the
weight of the arm. Two different designs were constructed as shown in figure 3.1.
The frame of the first iteration consisted of only two parts that were connected
together to form an enclosure. It had many issues such as low strength and very
long printing time. It was quickly abandoned and replaced with the second version.

Figure 3.1. Iterations of Axis 1.

13

CHAPTER 3. PROTOTYPE

A CAD drawing of the final version is presented in Figure 3.2. The final version
consists of two main groups of parts, the frame (blue pointers in the figure) and the
drive train (red pointers). A more throughout description of Axis 1 follows down
below.

Figure 3.2. CAD drawing of the first axis.

The frame of the first axis consists of several 3D printed plates printed horizon-
tally to maximize strength. These are secured to each other with six 8 mm threaded
rods and nuts in order to ensure rigidity of the construction. An additional advan-
tage of using plates and threaded rods is that it reduces the need for precise 3D
printed parts. By tightening the nuts at different heights, the different parts of the
frame can be adjusted as needed. That solution also reduces the material cost and
the printing time, making it cheaper and easier to tweak the design if needed. Six
legs pointing outwards are attached to the threaded rods to make the robot stable
on the surface it stands on. Rubber feet are attached on the bottom of the legs
to increase the friction between the robot arm and the surface and to dampen the
vibrations.

The drive train of the first axis consists of a NEMA 23 stepper motor mounted
on the top plate of the frame and an axis driven by that stepper motor. These
two are connected to each other via a 500 mm belt. The motor drives the belt
through a small geared pulley with a diameter of 12 mm. The belt drives a bigger
120 mm pulley that the driven axis is integrated into. The size difference of the
pulleys results in a gear ratio of 1/10. A simple belt tensioner consisting of two
bearings, nuts and a screw, is mounted on the top plate of the frame and can be
adjusted to ensure the optimal belt tension. In order to secure the driven axis to
the frame, a series of bearings is used as shown as a cross section view in Figure
3.3. The topmost bearing, located between the bigger pulley and the top plate is
a thrust bearing that takes the weight of the remaining robot arm parts. The two
other bearings are standard deep-groove ball bearings that support the axis and

14

3.1. CONSTRUCTION

increase the rigidity of the arm. Wires coming from the rest of the robot arm are
placed inside the driven axis, reducing the risk of wire entanglement.

Figure 3.3. Cross section view of the first axis.

Axis 2

The second axis is mounted on the driven pulley of the first axis. The most im-
portant aspect of this axis is that it needs to move the remaining parts of the arm
overcoming the gravity (unlike the first axis that moves the arm in the horizontal
plane where gravity doesn’t matter that much). A strong actuator or transmission
and a proper belt tension is therefore required. Two different iterations were con-
structed as presented in Figure 3.4. Initially, one stage reduction was used. It was
good enough for smaller loads but it could not manage the weight of the Axis 3
and 4 because of the belt slippage. A two stage reduction was implemented instead,
which gave much better results. The final version of the second axis is presented in
Figure 3.5.

The final construction of the second axis consists of a frame and a drive train.
The frame is made up of several 3D printed parts so the printing orientation can
be optimized for maximum strength. The parts are attached to each other using
screws and nuts. The frame can be further divided into two main parts, the static
one and the rotating one (relative to the pulley of the first axis). The static one is
where the drive train is mounted. It also houses two big bearings that the rotating
part is attached to. The rotating part consists of the main pulley (Pulley 4 in the
Figure 3.5) and a mirrored copy of that pulley on the other side. The pulleys have
integrated axes that are placed inside the bearings, and some support material to
add rigidity to the construction. The axes have a cavity where stepper motors used
in the third and fourth axes are mounted. The main pulleys are connected to each

15

CHAPTER 3. PROTOTYPE

Figure 3.4. Iterations of the Axis 2.

other using threaded rods and 3D printed support parts that also provide mounting
locations for the rest of the robot arm.

The drive train of the second axis consists of a NEMA 23 stepper motor attached
horizontally to the frame. It drives, through a 12 mm geared pulley (Pulley 1), a 200
mm belt which in turn drives a bigger 36 mm pulley (Pulley 2) giving a reduction
ratio of 1/3. The bigger pulley is mounted on a 8 mm steel axis that is secured
to the frame using two deep-groove ball bearings. On the other side of the axis, a
12 mm pulley (Pulley 3) is mounted. It drives, though a 640 mm belt, the earlier
mentioned 120 mm pulley (Pulley 4). The two stage reduction gives a gear ratio of
1/30 which is needed to lift the remaining parts of the robot arm. To transfer that
much torque, the belts needs to be properly tensioned. The smaller 200 mm belt is
tensioned by moving the stepper motor, and the longer belt is tensioned using an
idler mounted to the frame. It is constructed using a screw, nuts and bearings. By
placing it close to the Pulley 4, the contact area between the pulley and the belt is
increased, reducing the risk of slippage.

Figure 3.5. CAD drawing of the second axis.

16

3.1. CONSTRUCTION

Axis 3 and 4

The third and fourth axis is attached to the second axis. The main concern with
this part of the arm was the balance between weight and stiffness. Two different
iterations were constructed as shown in Figure 3.6. The only change is the material
removed to reduce the weight. The final version is presented in Figure 3.7 as a CAD
drawing. A description of the final version follows down below together with a cross
section view of the differential transmission in Figure 3.8.

Figure 3.6. Iterations of the Axis 3 and 4.

The third and fourth axes are both driven with the same NEMA 17 stepper
motors combined. This is accomplished by implementing a differential consisting
of three bevel gears. Two of these gears are connected with 10 mm axes to 96 mm
geared pulleys which in turn, through a 640 mm belt, are connected to the 9.6 mm
pulleys mounted on the NEMA 17 motors. That gives a reduction ratio of 1/10.
The steppers are attached inside of the axes of the Axis 2, as mentioned earlier.
It is advantageous to place the steppers so far down on the robot arm because the
force caused by the weight of the steppers can then be neglected (because the line
of action between the force and the second axis equals zero). The plate that the
rest of the arm (Axis 5 & 6) is attached to is connected through a 3D printed axis
to the third bevel gear. Idlers are implemented to ensure proper belt tension. They
are constructed in the same way as the idlers used on the other axes, using screws,
nuts and bearings.

The frame of the third and fourth axis is attached to the second axis using
screws and nuts. It consists of two main plates that the rest of the components are
mounted onto. These plates are designed in such a way that reduces the weight of
the axes and are 3D printed horizontally for optimal strength. Rigidity is increased
by connecting the plates with two threaded rods that are also used to adjust the
tightness of the bevel gears. It is important because 3D printed gears are not as
precise as machined gears therefore giving room for too much backlash (bevel gears
too loose) or too much friction (bevel gears too tight). The rotating part that houses
the third bevel has integrated, hollow axes placed inside bearings mounted into the
main plates. These axes are hollow to give room for the 10 mm axes that the bevel

17

CHAPTER 3. PROTOTYPE

gears and pulleys are connected with. Placing two small bearings inside the hollow
axes enables rotation of the 10 mm axes.

Figure 3.7. CAD drawing of the axis 3 and 4.

Figure 3.8. Cross section view of the axis 3 and 4.

18

3.2. ACTUATORS

Axis 5,6 and the end-effector

The last two axes are mounted onto the rotating plate of the third and fourth axis.
A CAD drawing of the axes is shown in Figure 3.9. This part of the robot arm
is constructed in the same way as Axis 3 and 4. The only difference is that it is
shorter and the stepper motors are mounted on the main plates. The main plates
are much thinner than the main plates of the previous axes. The gear ratio is now
1.2/10 because of the smaller pulley and the belt is tensioned from only one side.

The last part is the end effector and it can be chosen arbitrarily. In this case, a
simple aluminium gripper driven by a servo motor was chosen.

Figure 3.9. A CAD drawing of the fifth and sixth axes.

3.2 Actuators

Robot arm constructed in this project uses six stepper motors in total and a sevo
motor for the gripper. Datasheets for the actuators are presented in Appendix D.

The first axis uses a 57THS76-3004B08-A2323 NEMA 23 stepper motor. It has a
holding torque of 1.5 Nm. With a gear ratio of 1/10, the output shaft has therefore
an ideal holding torque of 15 Nm. It is driven by a TB6600 stepper motor driver
using a microstep setting of 1/16. The stepper motor has a standard step angle of
1.8°giving 3200 steps per revolution.

For the second axis, a 23H2A8425 NEMA 23 stepper motor is used. It has a
holding torque of 1.8 Nm and step angle of 1.8°. With a gear ratio of 1/30, the
output shaft has an ideal holding torque of 54 Nm. It is driven with a TB6600
driver with a microstep resolution of 1/16, it can therefore turn 3200 steps per one
revolution.

The third and fourth axis uses two 42BYGHMS809 NEMA 17 stepper motors. It
has a holding torque of 0.48 Nm and a step angle of 0.9°. With a reduction ratio of
1/10, every pulley has an ideal holding torque of 4.8 Nm. The power is combined
as mentioned earlier, giving a total holding torque of 9.6 Nm.

19

CHAPTER 3. PROTOTYPE

The last two axes uses two smaller NEMA 17 stepper motors that produce 0.2
Nm of holding torque. A smaller size of NEMA 17 was chosen to reduce the force
caused by their weight. With a gear ratio of 1.2/10, it gives a ideal holding torque
of around 1.67 Nm. The torque is doubled using a differential, giving a total ideal
holding torque of 3.33 Nm.

The NEMA 17 stepper motors are driven by A4988 stepper drivers with a mi-
crostep setting of 1/16. With a step angle of 0.9°and 1.8°, it gives 3200 and 6400
steps per one revolution.

To control the gripper, a MG996R metal gear servo is used. It has a stalling
torque of 10 kg and a rotating range of 120°which is enough for the gripper used.

3.3 Control

Electronics

The robot arm is controlled using a RAMPS 1.4 shield mounted on top of an Arduino
Mega 2560. Four A4899 stepper motor drivers are mounted onto the RAMPS
to control the NEMA 17 stepper motors. TB6600 stepper drivers controlling the
NEMA 23 steppers are connected using the digital pins. Power is supplied to the
RAMPS using a 12 V, 10 A power supply, which is just enough to drive all the
motors. The RAMPS cannot supply enough current from the regular pins to drive
the servo motor. Power output ports on the RAMPS are used instead. However,
the voltage from the ports is too high for the servo motors. To solve that problem,
a LM2596 power converter was connected between the port and the motor. A LED
lamp and a buzzer were added to act as indicators of different states of the arm.
The schematic of the electronics is shown in Figure 3.6. Note that the RAMPS
shield is not shown on the schematic.

Software

Arduino is connected with an USB-cable to a computer. User can control the robot
arm by sending commands through serial communication. A simple user interface
was created to simplify that procedure. The serial commands are then translated
in the arduino which in turn forwards the commands to the stepper drivers.

User interface The user interface was created using a Python package called
PySimpleGUI. It is a package that simplifies user interface creation[20]. A screen-
shot of the interface is shown in Figure 3.11. The topmost bar consists of buttons
used for different actions. The "Connect” button establishes the serial connection
to the Arduino. The "Send command” button sends the data that is visible in the
lower part of the window (?Command” frame). The ”Save command” and ”Load
command” buttons saves/loads that data, and the ”Settings” button opens a set-
tings menu. The command is created using the ”Axis” and ”Gripper” frames. Every
axis has its own frame that contains a slider, five buttons and information about

20

3.3. CONTROL

NEMA23

8 Bipolar stepper
> ALEN [gy 8 | Al-B2 AL A B2 1-B2
NS B A1-B1
ALDR | or @ A [ALA2
DR+ © ar [ALAL
ALSTER | pui @ cnp }S AL P ™ 1-B1
Arduino Mega 2560 PUL+ vee
CiY g NEMA23
A5-STEP X -
T — ol g A Bipolar stepper
AGEN | s > A2EN | gy B |——A2-B2 AL B2 -B2
2 o2 LED G IR = T —y 2 7}
— as D3 LED_R A2DIR | pr. @ A |——A2-A2
— as D4 BUZZ DIR+ © A+ ——A2-AL o
AG-STER_26] ¢ b5 A2STEP | py. 0 gnp iz A2 Bl -B1
ASDIR A7l 7 e LED B Ay =i [
A8 a8 D7 —
A
sl 3
Al A 10 [~ 2
A2 a2 D11 SERV
Al 0w A
L e 013 [8
[¢ 8 A4988 ¥
O D14 [R14 > NEMA17
> — RES pis [R5 MD AS-EN EN vMOT a
VIN pig (D16 AL-EN [Mt MoND ——5lz Bipolar stepper
o 17 [PI__A1-STEP M2 | om 18210 1 M m 1-82
— 33v p1g (218 | — MS3 2A A
— AREF p1o (219 —_ RESET 1A AL
a —1 eno D20 {B20 steep 18 —A1B1
2| ono oz [P2L ASSIER | s1ep vop o 1 PP 1-81
o — GND 22 AZDIR | pR GND 5
22
Gl 3| 23 AL-DIR 8
53 P23 ono D2 3
s onbedl N0 oo D2 ASEN s
vell s D25 [P A2-E
7 D6 [D25_ A3-STEP
D27 [DZT__A2-STEP
Da1 28 A3.DI
Da1 028 A
D42 g p2o [PZ2A2-DIR o g
D43 30 8 A4988 ¥
o s NEMA17
o 4-DIR Ms2 | op 8210 -B2
o T wss oa [—a2a2
Da 4-STEP RESET 1o —A2-AL
059 T sieee 18 4281
D5y S-EN A4SIEP | grep voD o A2 BL -B1
052 AMDR] or oo z
D53 o
9
g
s
°
2 A
3 9 B
A4988 ¥
g
& > NEMAL7
g o e vexD 2 Bipolar stepper
—| 1 wow |2
Ms2 28 5-82!0 \5-) \5-B2
T Jwss oa [—a5A
—_ RESET 1A [——A5-AL
sleep 18 [——A5-B1
AS-STER | srep vob [=} = A2 B1 5-81
ASDIR 1 bR oD z
Q
g
ur J—vout s
fg [4 GNDOUT
A
M2596T o]
8 A4988 ¥
s NEMA17
hoE Vo1 mead 2 Bipolar stepper
MSL MGND 4{2
BUZZER { ez e 68210 6= 6-82
T Jwss oa [—a62
F/DB18 RESET 1A | AG-AlL
Bl ALk T sieer 18 2681
ASSIEP | Siep vop 6 681

$ o

AG-DIR 2

swiTcH oR oW o 16
[M 8
g

RGB LED

n2 Bl

Figure 3.10. Circuit diagram of the robot arm electronics.

the axis. The arrow button creates a "Move” command that moves the axis to the
angle selected through the slider. The "H” button moves the axis to a preselected,
“home” position. The other three switches are used to set the value of the "home”,
and the limit positions. The undermost frame, ”Arduino print” shows the data sent
from the Arduino to the computer. Lastly, the "Model” frame shows a simplified
model of the arm that shows the current axis when hovering the mouse pointer over
corresponding axis frame. The Python code for the user interface can be found in

Appendix E.

The command sent by the interface has to be constructed in a certain way so

21

CHAPTER 3. PROTOTYPE

Figure 3.11. Screenshot of the user interface.

the Arduino can interpret it. A valid command should look like this
<TARGET, TASK,VALUE!TARGET,TASK,VALUE ... !>

Where ”<”, ”>” denote respectively a start, end of the data transfer. Between every
command an exclamation mark ”!” is placed. Each command is further divided into
three different parts, target of the command (TARGET), the task to be performed
by the target (TASK) and an eventual value of that task (VALUE). Each part is
divided using a comma ”,”. The allowed values of the different parts are presented
in Table 3.1.

Arduino The arduino code was written and uploaded with Arduino IDE and can
be found in Appendix F. It consists of two main parts. The first part reads and
translates the data received by serial connection. The second part uses that data
to control the robot arm using stepper motor drivers. AccelStepper library was
used to control the stepper motors [21]. It is better than the standard stepper
library because it supports acceleration and usage of several stepper motors at
the same time. However, it is important to note that acceleration control is not
available when using several stepper motors concurrently. User can switch between

22

3.3. CONTROL

Table 3.1. Allowed values of the different command-parts sent to the Arduino.

Part Allowed value Explanation
TARGET Al Axis 1
A2 Axis 2
A3 Axis 3
A4 Axis 4
A5 Axis 5
A6 Axis 6
GR Gripper
TASK MV Move to VALUE
HM Move to home
HO Set new home position
71 Set new zero position (1)
72 Set new zero position (2)

the ”Acceleration control” mode, and the "Move all” mode using a physical button.
Standard servo library was used to control the servo motor in the gripper.

23

Chapter 4

Results

Three different tests were performed in order to answer the research questions.
The first two tests concerned the precision of each individual axis and the whole
robot arm using two different stepper motor speeds. The third test measured the
maximum torque that each drive train produced.

4.1 Precision tests

In order to measure the error, an indicator dial with an accuracy of 0.0lmm was
used. It was mounted together with the robot arm onto a wooden board to make
sure they doesn’t move relative to each other during testing. The wooden board
was clamped in place to further increase stability. Then, each axis was repeatedly
moved to a chosen position ten times and the indicator dial values were recorded
each time. After the value for each axis was recorded, the test was repeated for the
whole arm (all axes), for two different positions.

The different speeds that were used are presented in Table 4.1 and the measure-
ments are presented in Tables 4.2 and 4.3.

Table 4.1. The different stepper motor speeds used for precision tests.

Axis | Speed A [Steps/s] | Speed B [Steps/s]
1 2000 4000
2 2000 4000

3,4 1000 2000

9,6 1000 2000

25

CHAPTER 4. RESULTS

Table 4.2. Accumulated error, Speed A [mm].

Test | Axis 1 | Axis 2 | Axis 3 | Axis 4 | Axis 5 | Axis 6 | All 1 | All 2
1 0 0 0 0 0 0 0 0
2 0.05 0.02 0.08 -0.01 -0.02 0.05 0.06 | -0.75
3 0.08 0.05 0.1 0 0.09 0.21 0.1 | -0.57
4 0.1 0.11 0.1 0 0.2 0.35 0.12 -0.5
5 0.07 0.16 0.12 0.02 0.45 0.57 0.13 | -0.35
6 0.16 0.21 0.14 0.02 0.6 0.92 0.27 | -0.16
7 0.38 0.23 0.15 0.03 0.98 1.22 0.07 | -0.15
8 0.43 0.24 0.17 0.04 1.3 1.37 0.13 | 0.26
9 0.42 0.25 0.17 0.05 1.61 1.75 0.05 | 0.33
10 0.48 0.27 0.17 0.05 2.03 2.17 | -0.02 | 0.54

Table 4.3. Accumulated error, Speed B [mm].

Test | Axis 1 | Axis 2 | Axis 3 | Axis 4 | Axis 5 | Axis 6 | All 1 | All 2
1 0 0 0 0 0 0 0 0
2 -0.07 0.03 0.01 0.12 0.31 0.09 0.4 | 0.18
3 0.07 0.08 0.01 0.28 0.9 0.39 0.52 | 0.38
4 0.09 0.1 0.01 0.52 1.63 1.01 0.62 | 0.53
5 0.11 0.15 0.02 0.72 2.74 1.75 0.69 | 0.58
6 0.23 0.2 0.04 1.02 4.09 2.91 0.62 0.8
7 0.39 0.24 0.02 1.24 5.39 3.98 0.94 | 0.99
8 0.77 0.26 0.03 1.42 6.74 4.81 0.96 | 1.14
9 0.97 0.3 0.03 1.77 7.18 6.85 1.04 | 1.18
10 1.21 0.32 0.03 2.12 8.41 8.31 1.12 | 1.32

4.2 Strength tests
In order to measure the strength, each drive train was locked and loaded until it
yielded. The measured holding torque and the point of failure for each drive train

is presented in Table 4.4.

Table 4.4. Measured holding torque of each drive train.

Axis | torque[Nm] Point of failure
1 10.6 Belt slippage
2 5.7 Belt slippage
3,4 3.2 Belt slippage
5,6 2.0 Stepper motor yielded

26

Chapter b

Discussion

5.1 Precision tests results

The precision tests have shown that the error is fairly low for both speeds, but it
increases each time the axes are moved. Error change between each test was calcu-
lated and plotted in Figure 5.1 and presented in tables in Appendix G. The solid
lines represent Speed A (slower) and the dashed lines represent Speed B (faster). It
seems that most of the error is systematic, it changes by approximately the same
amount between different tests, though one exception is found. The error change
for Axis 5 and 6, when using speed B seem to be completely random. The reason
for that could be attributed to the poor design. The construction is not stiff enough
and the bevel gears tend to bind with each other. The most unexpected result is
that the errors from each individual axis doesn’t lead to a bigger error when testing
all axes at once. It is unknown why that happens. It could be that the errors from
the individual axes cancel each other.

When comparing the speeds, it becomes clear that the slower speed (Speed A)
gives less error. However, for unknown reasons, Axis 3 gave less error when Speed
B was used. For Axis 2, the speed change didn’t make much of a difference, the
total accumulated error was only 0.05mm higher when using Speed B.

Because of the systematic nature of the errors, it is not possible to quantify the
precision of the robot arm. Instead, the average increase in error when moving all
axes once is calculated and presented in Table 5.1. Note that only two different
positions were tested (All 1 and All 2) and that the arm was not loaded during the
tests. The results are therefore not a good measure of the robot arm precision.

Table 5.1. Average change in error [mm)].

Speed | Average change in error
A 0.0289 mm
B 0.1356 mm

27

CHAPTER 5. DISCUSSION

—Axis 1 Speed A

— — —Axis 1 Speed B
Axis 2 Speed A
Axis 2 Speed B

— Axis 3 Speed A

— — —Axis 3 Speed B
Axis 4 Speed A
Axis 4 Speed B

—Axis 5 Speed A

— — —Axis 5 Speed B

—— Auxis 8 Speed A ST =

— — —Axis 6 Speed B ¥

All1 Speed A e

— — —All1SpeedB Vd

All 2 Speed A bd

b [z = —Au2SpeedB |/

Change in error [mm)]
o
o
T
i
AN

1 2 3 4 5
Test

Figure 5.1. Change in error.

5.2 Strength test results

The strength tests have shown that the drive trains are disappointingly inefficient:

o Axis 1 reached 70.7% of the theoretic holding torque (10.6/15 Nm) before the

belt skipped.

o+ Axis 2 reached only 10.6% of the theoretic holding torque (5.7/54 Nm) before

the belt skipped.

o Axis 3 and 4 reached 34.3% of the theoretic holding torque (3.2/9.6 Nm)

before the belt skipped.

o Axis 5 and 6 reached 60% of the theoretic holding torque (2/3.33 Nm) before

the stepper motor yielded.

28

5.3. FUTURE WORK

This means that the maximum weight that the arm can hold is 0.84 kg in the worst
case scenario with all axes extended outwards. Note that the dynamic torque is
even lower, and was not measured in this project. The belts currently used are often
used in hobby CNC machines and 3D printers, they are not designed to transfer
that much torque. By redesigning the belt tensioners and changing the belts, a
much stronger robot arm could be made without replacing the stepper motors.

5.3 Future work

The current construction have shown that a strong and accurate, 3D printed robot
arm should be feasible. In order to improve the current design, following issues
needs to be fixed:

e The belts should be replaced and the belt tensioners redesigned in order to
reach the stepper motors full potential and make the arm much stronger.

e The frame of Axis 5 and 6 should be made stiffer in order to increase the
precision of these axes.

e The parts in contact with the NEMA17 stepper motors should be printed with
a more heat resistant material. The frame of Axis 5 and 6 is getting softer
after a few minutes of use.

e The systematic errors occurring in every axis should be reduced. It might be
enough to add compensation in the software.

e The current software doesn’t allow acceleration control when moving the step-
per motors simultaneously. It should be changed in order to make the arm
more practical.

e Forward and inverse kinematics should be calculated in order to make the
gripper’s exact position known.

5.4 Conclusions

The goal of designing, constructing and controlling an articulated robot arm with
six degrees of freedom was achieved. The arm is able to pick and place different
objects without using external sensors. The research questions are answered as
follows:

e How precise is the robot arm?
Because of the large amount of systematic errors, the question could not be
answered. Instead, an average increase in error after moving all axes (once)

was calculated to be 0.0289-0.1356 mm.

29

CHAPTER 5. DISCUSSION

e How does the speed of the arm affect the precision?
A slower speed leads to better precision for all axes except Axis 3. Testing all
axes at once resulted in the same conclusion.

e How much weight can the robot arm lift?
The maximum amount of weight that the arm can hold is 0.84 kg (in the worst
case scenario).

30

Bibliography

[10]

Sparkfun, “Serial Communication,” Available at https://learn.sparkfun.com/
tutorials/serial-communication/all (Accesssed on: 07/04/2021).

Components101, “A4988 Stepper Motor Driver Module,” Available at https://
components101.com/modules/a4988-stepper-motor-driver-module (Accesssed
on: 5/02/2021).

Soratec, “Analog Driver Model TB6600,” Available at https://www.
mcielectronics.cl/website_ZMCI /static/documents/TB6600_data_sheet.pdf (Ac-
cesssed on: 5/02/2021).

C. Cameron, 3D Printing, 1st ed. New York: Penguin Group (USA) Inc.,
2015.

MatWeb, “Querview of materials for Polylactic Acid (PLA) Biopolymer,”
Available at http://www.matweb.com/search/DataSheet.aspx?MatGUID=
ab96a4c0655c¢4018a8785ac4031b9278&ckck=1 (Accesssed on: 12/02/2021).

T. Yao, Z. Deng, K. Zhang, and S. Li, “A method to predict the ultimate tensile
strength of 3d printing polylactic acid (pla) materials with different printing
orientations,” Composites Part B: Engineering, vol. 163, pp. 393-402, 2019.

C. Lubombo and M. A. Huneault, “Effect of infill patterns on the mechani-
cal performance of lightweight 3d-printed cellular pla parts,” Materials Today
Communications, vol. 17, pp. 214-228, 2018.

H. Dave, S. Rajpurohit, N. Patadiya, S. Dave, K. Sharma, S. Thambad,
V. Srinivasn, and K. Sheth, “Compressive strength of pla based scaffolds: Ef-
fect of layer height, infill density and print speed,” International Journal of
Modern Manufacturing Technologies, vol. 11, 2019.

E. Britannica, “Transmission,” Available at https://www.britannica.com/
technology /transmission-engineering (Accesssed on: 05/04/2021).

W. K. G. W. P. Kosky, R. Balmer, FExploring Engineering, An Introduction to
Engineering and Design, 5th ed. United Kingdom: Academic Press, 2020.

31

https://learn.sparkfun.com/tutorials/serial-communication/all
https://learn.sparkfun.com/tutorials/serial-communication/all
https://components101.com/modules/a4988-stepper-motor-driver-module
https://components101.com/modules/a4988-stepper-motor-driver-module
https://www.mcielectronics.cl/website_MCI/static/documents/TB6600_data_sheet.pdf
https://www.mcielectronics.cl/website_MCI/static/documents/TB6600_data_sheet.pdf
http://www.matweb.com/search/DataSheet.aspx?MatGUID=ab96a4c0655c4018a8785ac4031b9278&ckck=1
http://www.matweb.com/search/DataSheet.aspx?MatGUID=ab96a4c0655c4018a8785ac4031b9278&ckck=1
https://www.britannica.com/technology/transmission-engineering
https://www.britannica.com/technology/transmission-engineering

[11]

[12]

[13]

[14]

BIBLIOGRAPHY

E. Britannica, “Differential gear,” Available at https://www.britannica.com/
technology /differential-gear (Accesssed on: 05/04/2021).

W. Taha, “Acumen,” Available at http://www.acumen-language.org/2016,/04/
about.html (Accesssed on: 21/05/2021).

B. Earl, “All About Stepper Motors,” Available at https://cdn-learn.
adafruit.com/downloads/pdf/all-about-stepper-motors.pdf ~ (Accesssed on:
04/02,/2021).

M. Scarpino, Motors for Makers: A Guide to Steppers, Servos, and Other
Electrical Machines. United States of America: Pearson Education, 2015.

Sparkfun, “SERVOS EXPLAINED,” Available at https://www.sparkfun.com/
servos (Accesssed on: 05/04/2021).

Arduino, “ARDUINO MEGA 2560 REV3,” Available at https://store.arduino.
cc/arduino-mega-2560-rev3 (Accesssed on: 6/02/2021).

RepRap, “RAMPS 1.4,” Available at https://reprap.org/wiki/RAMPS_1.4
(Accesssed on: 6/02/2021).

I. O. for Standardization, “ISO 5725-1:199/(en) Accuracy (trueness and preci-
sion) of measurement methods and results,” Available at https://www.iso.org/
obp/ui/#iso:std:is0:5725:-1:ed-1:v1:en (Accesssed on: 10/02/2021).

J. Taylor, Introduction To Error Analysis: The Study of Uncertainties in Phys-
ical Measurements. Sausalito: University Science Books, 1997.

PySimpleGUI, “PySimpleGUL” Available at https://pypi.org/project/
PySimpleGUI/#:~:text=PySimpleGUI%20is%20a%20Python%20package,
%22Elements%22%20in%20PySimpleGUI). (Accesssed on: 11/04/2021).

M. McCauley, “AccelStepper library for Arduino,” Available at https://www.
airspayce.com/mikem/arduino/AccelStepper/ (Accesssed on: 11/04/2021).

32

https://www.britannica.com/technology/differential-gear
https://www.britannica.com/technology/differential-gear
http://www.acumen-language.org/2016/04/about.html
http://www.acumen-language.org/2016/04/about.html
https://cdn-learn.adafruit.com/downloads/pdf/all-about-stepper-motors.pdf
https://cdn-learn.adafruit.com/downloads/pdf/all-about-stepper-motors.pdf
https://www.sparkfun.com/servos
https://www.sparkfun.com/servos
https://store.arduino.cc/arduino-mega-2560-rev3
https://store.arduino.cc/arduino-mega-2560-rev3
https://reprap.org/wiki/RAMPS_1.4
https://www.iso.org/obp/ui/#iso:std:iso:5725:-1:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:5725:-1:ed-1:v1:en
https://pypi.org/project/PySimpleGUI/#:~:text=PySimpleGUI%20is%20a%20Python%20package,%22Elements%22%20in%20PySimpleGUI).
https://pypi.org/project/PySimpleGUI/#:~:text=PySimpleGUI%20is%20a%20Python%20package,%22Elements%22%20in%20PySimpleGUI).
https://pypi.org/project/PySimpleGUI/#:~:text=PySimpleGUI%20is%20a%20Python%20package,%22Elements%22%20in%20PySimpleGUI).
https://www.airspayce.com/mikem/arduino/AccelStepper/
https://www.airspayce.com/mikem/arduino/AccelStepper/

Appendix A

Data sheets of the stepper motor
drivers.

33

APPENDIX A. DATA SHEETS OF THE STEPPER MOTOR DRIVERS.

v Allegro-

MicroSysterns, LLC

A4988

DMOS Microstepping Driver with Translator

And Overcurrent Protection

Features and Benefits

* Low Rpg(ony outputs

= Automatic current decay mode detection/selection

= Mixed and Slow current decay modes

= Synchronous rectification for low power dissipation
= Internal UVLO

= Crossover-current protection

= 3.3 and 5V compatible logic supply

= Thermal shutdown circuitry

= Short-to-ground protection

= Shorted load protection

= Five selectable step modes: full, 1/, 1/4, /g, and /44

Package:

28-contact QFN
with exposed thermal pad
Smm x 5 mm x 0.90 mm
(ET package)

@ Approximate size

Description

The A4988 is a complete microstepping motor driver with
built-in translator for easy operation. It is designed to operate
bipolar stepper motors in full-, half-, quarter-, eighth-, and
sixteenth-step modes, with an output drive capacity of up to
35 Vand £2 A. The A4988 includes a fixed off-time current
regulator which has the ability to operate in Slow or Mixed
decay modes.

The translator is the key to the easy implementation of the
A4988. Simply inputting one pulse on the STEP input drives
the motor one microstep. There are no phase sequence tables,
high frequency control lines, or complex interfaces to program.
The A4988 interface is an ideal fit for applications where a
complex microprocessor is unavailable or is overburdened.

During stepping operation, the chopping control in the A4988
automatically selects the current decay mode, Slow or Mixed.
In Mixed decay mode, the device is set initially to a fast decay
for a proportion of the fixed off-time, then to a slow decay for
the remainder of the off-time. Mixed decay current control
results inreduced audible motor noise, increased step accuracy,
and reduced power dissipation.

Continued on the next page...

Typical Application Diagram

VDD

0.1 uF 0.1pF

ih —i—

VREG
0.22 yF

I e VDD

T 35k

Microcontroller or
Controller Logic

SLEEP

STEP
MS1
MS2
MS3
DIR
ENABLE
RESET
VREF

TV Y Y YYVY !::|v

ROSC CPL CP2 VCP ygp1 .

VBB2 4{ 100 pF $

OUT1A

A4988 ouT1B f—

" Er

OUT2A 1

ouT2B

SENSE2 ?_

9]
z
O
)
z
O

I
i

4988-DS, Rev. 5

Figure A.1. Data sheet of tgz A4988 stepper motor driver.

TB6600 Stepper Motor Driver

Analog Driver
Model TB6600

Analog Technology, max. 40 VDC / 4.0 A (PEAK)

Product Description:
The TB6600 single axis drive is a low cost microstepping drive. It is suitable for driving 2-phase and 4-phase hybrid stepper
motors. Not for professional applications.

Features:
¢ Cost-effective
e Supply voltage up to +40 VDC, Output current up to 4.0 A (PEAK)
¢ Output current selectable in 8 steps via DIP-switch
¢ Automatic idle-current reduction (in standstill mode) to reduce motor heating
¢ Pulse input frequency up to 20 kHz
¢ Input suitable for 5 V signals
* Inputs are optically isolated
* 6 selectable microstep resolutions, up to 6400 steps/rev with standard 1.8°motors
e Suitable for 2-phase and 4-phase motors
e Supports PUL/DIR mode
¢ Over current and overheat protection

Electrical Specifications:

Parameters Min Typ. Max Unit
Output current 0.7 - 4.0 (3.5 RMS) A
Supply voltage +9 +36 +40 VDC
Logic signal current 8 10 15 mA

i 20 when duty cyle is 25 high / 75 low
Puls input frequency 0 - . kHz
13 when duty cycle is 50 / 50

Insulation resistance 500 MQ

Further Specifications:

Microsteps /1,8 © 200 6400
PUL / DIR yes

NEMA sizes 17 24
Motor type Mecheltron 42BYGH-XXXX 60BYGH-XXX

22.01.18

www.sorotec.de

35

Figure A.2. Data sheet of the TB6600 stepper motor driver.

Appendix B

Exploded views of the robot arm

37

APPENDIX B. EXPLODED VIEWS OF THE ROBOT ARM

Figure B.1. Exploded view of the first axis.

38

nd axis.

Exploded view of the seco

Figure B.2.

39

APPENDIX B. EXPLODED VIEWS OF THE ROBOT ARM

Figure B.3. Exploded view of the third and fourth axes.

40

Figure B.4. Exploded view of the fifth and sixth axes.

41

Appendix C

Acumen

//Michal Gabriel Sawczuk 28/03/2021
//KTH MF133X

model Main(simulator) =

initially

a=20, a’”=20, a’’ = 0, arate = 0.5, //Axis 1 angle
b=20, b> =0, b>> = 0, brate = 0.7, //Axis 2 angle
la = 2, b = 1.5, //Lengths

amassa = 1, bmassa = 0.6, //Mass

Fga = 0, Fgb = 0, //Gravity

Faa = 0, Fab = 0, //Acceleration forces

Ma = 0, Mb = 0, //Torque

p = (0,0,0), //Center position axis 1 (link)

p2 = (0,0,0), //Center position axis 2

p3 = (0,0,0), //Center position axis 2 (link)

3D = ()

always

a’’ = arate, b’’ = brate, //acceleration

Fga = —9.81xamassa, Fgb = —9.81xbmassa,

Faa = —a’’%0.5% laxamassa, Fab = —b’’%0.5% lbxbmassa,
Mb = (Fgb#0.5%1b%cos(b) + Fab)xlb=x0.5,

Ma = (Fgax0.5%la*cos(a) + Faa)xla=*0.5+Mb,

p = (0.5%laxsin(a) ,0,0.5%xlaxcos(a)), //Kinematics
(2%sin(a),0,2%cos(a)),
(laxsin(a)+0.5%1bxsin(b) ,0,laxcos(a)+0.5%xlbxcos(b)),

k]
(V)
I

3D = (Cylinder center = (0,0,0) rotation = (0,a,0) size = (1,0.3) color = green
//Movement
Box center = p rotation = (0,a,0) size=(0.5,0.5,la)
Box center = p3 rotation = (0,b,0) size=(0.5,0.5,1b)
Cylinder center = p2 rotation = (0,b,0) size = (1,0.3) color = green

if (a>pi/4) then //reverse movement

arate+ = —0.5,
brate+ = —0.7
noelse ,

if (a<0) then
arate+ = 0.5,
brate+ = 0.7
noelse

43

Appendix D

Data sheets of the actuators

45

APPENDIX D. DATA SHEETS OF THE ACTUATORS

Figure D.1. Data sheet for the stepper motor used in the first axis.

46

®otionKing

HB Stepper Motor Catalog

MotionKing (China) Motor Industry Co., Ltd.

2 Phase Hybrid Stepper Motor

23H2A series-Size 57mm(1.8 degree)

Wiring Diagram:
BLK & A BLK 2 Aj
GRN £ A GRN £ A

B 40 B B B
a a & 4 &
RED WHT BLU RED BLU
UNI-POLAR(6 LEADS) BI-POLAR(4LEADS)
Electrical Specifications:
Series old Motor | Rated Ehase Phase Holding Detent Roto_r Lgad Mqtor
Model PIN Length | Current |Resistance |Inductance Torqug Torque Inertia Wire |Weight
(mm) (A) (ohm) (mH) (N.cm Min) |(N.cm Max)| (g.cm?) | (No.) [(¢))]
23H2A3610 [23HS0601| 41 1.0 5.2 55 40 2.5 150 6 470
23H2A3406 ([23HS0405| 41 0.62 12 24 55 25 150 4 470
23H2A3420 [23HS0408| 41 2.0 1.2 25 55 25 150 4 470
23H2A4406 [23HS4412| 45 0.62 12 26 80 2.8 190 4 520
23H2A4425 [23HS4425| 45 25 1.0 2.2 80 2.8 190 4 520
23H2A5406 ([23HS5406| 51 0.62 13 28 90 2.8 190 4 560
23H2A5410 [23HS5410| 51 1.0 5.8 17 90 2.8 190 4 560
23H2A5425 [23HS5425| 51 25 1.2 3.2 90 2.8 190 4 560
23H2A5608 [23HS5602| 51 0.8 6.8 9.2 70 3.0 230 6 560
23H2A6615 [23HS6602| 56 1.5 3.2 55 80 35 280 6 680
23H2A6425 [23HS6403| 56 25 1.2 4.8 110 35 280 4 680
23H2A6430 [23HS6430| 56 3.0 0.8 24 110 35 280 4 680
23H2A6442 (23HS6404| 56 4.2 0.4 1.2 110 35 280 4 680
23H2A6415 [23HS6415| 56 1.5 3.6 13.8 110 35 280 4 680
23H2A7410 [23HS7401| 64 1.0 7.5 20 150 5.0 380 4 850
23H2A7425 [23HS7425| 64 25 15 4.5 150 5.0 380 4 850
23H2A7430 (23HS7430| 64 3.0 0.8 2.3 150 5.0 380 4 850
23H2A7442 (23HS7404| 64 4.2 0.55 1.2 150 5.0 380 4 850
23H2A8615 [23HS8603| 76 1.5 4.5 7.8 140 6.0 440 6 1050
23H2A8425 [23HS8425| 76 25 18 6.5 180 6.0 440 4 1050
23H2A8430 (23HS8430| 76 3.0 1.0 3.5 180 6.0 440 4 1050
23H2A8442 (23HS8404| 76 4.2 0.6 1.8 180 6.0 440 4 1050
12 www.MotionKing.com MK1301, Rev.05

47

Figure D.2. Data sheet for the stepper motor used in the second axis.

APPENDIX D. DATA SHEETS OF THE ACTUATORS

®otionKing

HB Stepper Motor Catalog

MotionKing (China) Motor Industry Co., Ltd.

2 Phase Hybrid Stepper Motor

17HS series-Size 42mm(1.8 degree)

Wiring Diagram:
BLK Z A BLK E A

GRN 4k A GRN 4k A

<[B 16 l@ B B

a8 B 4 &
RED WHT BLU RED BLU
UNI-POLAR(6 LEADS) BI-POLAR(4LEADS)
Electrical Specifications:
Series Step Motor Rated Phase Phase Holding Detent Rotqr Lgad Mo_tor
Model Angle | Length | Current |Resistance |Inductance Torqug Torque Inertia | Wire |Weight
(deg) (mm) (A) (ohm) (mH) (N.cm Min) [(N.cm Max)| (g.cm?) | (No.) (9)
17HS2408 1.8 28 0.6 8 10 12 1.6 34 4 150
17HS3401 1.8 34 1.3 2.4 2.8 28 1.6 34 4 220
17HS3410 1.8 34 1.7 1.2 1.8 28 1.6 34 4 220
17HS3430 18 34 0.4 30 35 28 1.6 34 4 220
17HS3630 18 34 0.4 30 18 21 1.6 34 6 220
17HS3616 1.8 34 0.16 75 40 14 1.6 34 6 220
17HS4401 1.8 40 1.7 15 2.8 40 2.2 54 4 280
17HS4402 1.8 40 1.3 25 5.0 40 2.2 54 4 280
17HS4602 1.8 40 1.2 3.2 2.8 28 2.2 54 6 280
17HS4630 1.8 40 0.4 30 28 28 2.2 54 6 280
17HS8401 1.8 48 1.7 1.8 3.2 52 2.6 68 4 350
17HS8402 18 48 13 3.2 55 52 2.6 68 4 350
17HS8403 18 48 2.3 1.2 1.6 46 2.6 68 4 350
17HS8630 18 48 0.4 30 38 34 2.6 68 6 350
*Note: We can manufacture products according to customer's requirements.
Dimensions: unit=mm Motor Length:
42.3Mox
O oL Mox 31401
’7¢5—0.mz $ g,.’
& (o) EE 17'\Hﬂgg>i<x Lzzngth
S ol o mm
. \\j &) 17HS3XXX 34 mm
s 16HS4XXX | 40 mm
24405 DEEP 4.5MIN
AGW26 UL1007 16HS8XXX 48 mm
9 www.MotionKing.com MK1106, Rev.04

48

Figure D.3. Data sheet for the stepper motor used in the third and fourth axis.

NEMA17-03

Bipolar Stepper Motor

KEY FEATURES
Shaft diameter

@ 5 x 18 mm (single shaft)

Specification 42SHD0513-20
Connection 6-pol connector (JST), 4
pins used
Steps per revolution 200
Dimensions 42x42x27mm
Items delivered NEMA17-03 stepper motor
Holding Torque 0.2Nm
This stepper motor can be opti- Rated Voltage L
mally used for tasks in the areas of Rated Current 12A
Automation, CNC (f. e. engraving Step Angle 1.8°
lasgrs, 3D printers, mi.lling ma- Amount of Phases 2
chines, etc.), or robotic. The com-)
pact design and the low weight Phase Resistance 430
predestine this stepper motor for Phase Inductivity 5.6 mH
projects with low building space or Isolation resistance Min. 100MQ at 500 V DC
weight capacity. Isolation class B (130°)
Rotational inertia 38 g:cm?
Detent torque 0,012 Nm
Operating Temperature -10°C-50°C
Article No. NEMA17-03
EAN 4250236818764
Customs Tariff No. 8501109990

Published: 16.12.2019

www.joy-it.net
Pascalstr. 8 47506 Neukirchen-Viuyn

Figure D.4. Data sheet for the stepper motor used in the fifth and sixth axis.

APPENDIX D. DATA SHEETS OF THE ACTUATORS

M G996R High Torque
Metal Gear Dual Ball Bearing Servo

This High-Torque MG996R Digital Servo features metal gearing resulting in extra high 10kg
stalling torque in a tiny package. The MG996R is essentialy an upgraded version of the
famous M G995 servo, and features upgraded shock-proofing and a redesigned PCB and I1C
control system that make it much more accurate than its predecessor. The gearing and motor
have also been upgraded to improve dead bandwith and centering. The unit comes complete
with 30cm wire and 3 pin 'S' type female header connector that fits most receivers, including
Futaba, JR, GWS, Cirrus, Blue Bird, Blue Arrow, Corona, Berg, Spektrum and Hitec.

This high-torque standard servo can rotate approximately 120 degrees (60 in each direction).
You can use any servo code, hardware or library to control these servos, so it's great for
beginners who want to make stuff move without building a motor controller with feedback &
gear box, especialy since it will fit in small places. The MG996R Metal Gear Servo also
comes with a selection of arms and hardware to get you set up nice and fast!

Specifications
e Weight: 559
e Dimension: 40.7 x 19.7 x 42.9 mm approx.

e Stall torque: 9.4 kgf-cm (4.8 V), 11 kgf-cm (6 V)
» Operating speed: 0.17 5/60° (4.8 V), 0.14 960° (6 V)

Figure D.5. Data sheet for th% Servo motor used in the gripper.

Appendix E

Python code of the user interface

.
main.py:

I I i I Ly
AT FHFH A A7 liaiaiaiaiai T AT
A 6 axis robot arm controller
Michal Gabriel Sawczuk
KTH MF133X
04/2021
e Iy I L I
i 1T FHHHAAF AT AT FHF
import PySimpleGUI as sg
import serial
import re
import GUl_images as im
import GUI_settings as settings
from GUI_ax import Axis

L T L I Ly
A i T A e A A FHH AT
GLOBAL VARIABLES AND SETTINGS

I e i e Ly
iaiaiaii e FHHAA A A FHAFTF 1
Settings
port = settings.port # Serial port
baud = settings.baud # Baud rate
savedcommands = settings.savedcommands # saved positions
Special variables
special = False # Special command that can overwrite positions

connected = False # Serial

ardu_prev_saved = {1: 7?7, 2: 7?7 3. 7?7 4. 7?7 5. 7”7 §: "7 T

10: a:n’ 11: un, 12: ”n}

Create axes

AXIS_1 = Axis(”Al”, ”Al”, 0, 0, —180, 180, settings.AXIS_1l_ratio)

NAME, RL_POS, HO0_POS, 7ZLPOS7 Z2_POS, RATIO

AXIS_2 = Axis(”A2”, "A2”, 0, 0, 0, 135, settings.AXIS_2_ratio)
AXIS_.3 = Axis(”A3”, "A3”, 0, 0, —180, 180, settings.AXIS_3_ratio)
AXIS_ 4 = Axis(”A4”, "A4”, 0, 0, —90, 90, settings.AXIS_4_ratio)
AXIS_5 = Axis(7A5”7, 7A5”, 0, 0, —180, 180, settings.AXIS_5_ratio)
AXIS_6 = Axis(”A6”, ”"A6”, 0, 0, —90, 90, settings.AXIS_6_ratio)
AXIS_7 = Axis(”A7”, "GR”, 20, 20, 20, 100, settings.AXIS_7_ratio)
ALL_AXIS = [AXIS.1, AXIS.2, AXIS.3, AXIS.4, AXIS.5, AXIS.6, AXIS.7]
Themes

theme = settings.theme

sg.theme_add-new (’Theme’, theme)

51

that are not wvalid

8: , 9: ,

NAME, OOMMAND

Gripper

APPENDIX E. PYTHON CODE OF THE USER INTERFACE

theme2 = settings.theme2
sg.theme_add_new (’Theme2’, theme2)

TRTRTNTeN] LU g) TRTRIRIRINTEIN) INTRIRTRIRININ)
A1t Tt T 117 Tt

#
LAYOUT — MAIN WINDOW
#

e IR IRy, IR NI I IR NIRRT NI INTe] TRIRIRIRINTEIN)
7 7t T

L L) L
T 117 T it T 117

T 177

Theme
sg.theme (’Theme’)

Top bar
L_main_topbar = [sg.Text(’6 DOF ROBOT ARM CONTROLLER’ + 52 * ’ ’, font=("helvetica
>, 15, ’bold’)),
sg.Button (’X’, font=("helvetica’, 10), button_color=("grey40’,
#222A68°) , size=(2, 1), key='EXIT_MAIN’)]

Main buttons
L_main_buttonbar = [sg.Button(’CONNECI’, font=("helvetica’, 10, ’bold’), size=(15,
2), button_color=("white’, ’#654597’), key="—CONNECTDISCONNECT-"’),
sg.Button (’SEND COMMAND' , font=("helvetica’, 10, ’bold’), size
=(15, 2), button_color=("black’, "#FFB30F’), key='—
SEND_.COMMAND—") ,
sg.Button (’SAVE COMMAND' , font=("helvetica’, 10, ’bold’), size
=(15, 2), button_color=("black’, '#FFB30F’) , key='—
SAVE.COMMAND—") ,
sg.Button (’LOAD COMMAND' , font=("helvetica ’, 10, ’bold’), size
=(15, 2), button_color=("black’, '#FFB30F’), key='—
LOAD.COMMAND—") ,
sg.Button (’SETTINGS’, font=("helvetica’, 10, ’bold’), size
=(15, 2), button_color=("white’, '#E3170A’), key='—
SETTINGS—)]

Model, info
L_main_model = [sg.Frame(layout =[]
sg.Image(data=im.image_tom_base64, key="—IMAGE—’, background_color="white”,
pad=(14, 14)),
sg . Column ([
[sg.Text (’>Michal Gabriel Sawczuk’, pad=(30, 0))],
[sg.Text (’KTH 2021’, pad=(76, 0))]
1)1], title="MODEL’)]

Axis frames, column 1 (see GUl.ax.py

L_main_col-1 = [sg.Column (|
AXIS_1.createCommandWindow (7 AXIS 1
AXIS_2.createCommandWindow (" AXIS 27
AXIS_3.createCommandWindow (7 AXIS 37
AXIS_4.createCommandWindow (7 AXIS 47

Axis and model frames, column 2 (see GUl.ax.py)

L_main_col_2 = [sg.Column ([
AXIS_5.createCommandWindow (7 AXIS 57) ,
AXIS_6.createCommandWindow (”?AXIS 67) ,
AXIS_7.createCommandWindow (”GRIPPER”) ,
L_main_model])]

Preview of the current and the last command
L_main_preview = [sg.Frame(layout=[[sg.Text(’’, font=('courier’, 8), size=(94, 1),
key='"—COMMAND_PREVIEW—") | ,
[sg.Text(’’, font=('courier’, 8), size=(94, 1),
key="—COMMAND_PREVIEW_LAST—", text_color
=C#FFB30F’))]], title="COMMAND”)]

Arduino prints

L_main_arduino_frame = []
for i in range(12, 0, —1):
L_main_arduino_frame.append ([sg.Text(’’, font=("courier’, 8), size=(94, 1),
key="—ARDUINO_PREVIEW.’ + str (i) 4+ '—’, text_-color=C#FFB30F’))])

L_main_arduino = [sg.Frame(layout=L_main_arduino_frame , title="ARDUINO PRINT”) |

Main window layout
layout = |

52

L_main_topbar,
L_main_buttonbar ,
[* L.main_col_1,
*L_main_col_2],
L_main_preview ,
L_main_arduino]

Create main window
window = sg.Window(’6 DOF ROBOT ARM CONTROLLER’, layout, default_element_size=(40,
1), grab_anywhere=False, finalize=True, no_titlebar=True)

Bind frames to mouse

window . bind (’<FocusOut >’, '+FOCUS OUT+)
AXIS_1.bindFrame (window)
AXIS_2.bindFrame (window)
AXIS_3.bindFrame (window)
AXIS_4.bindFrame (window)
AXIS_5.bindFrame (window)
AXIS_6.bindFrame (window)
AXIS_7.bindFrame (window)

L)

#
LOAD WINDOW
#

ITNTRTRTRTT) NIRRT IR TN TTNTRINININ] TNTRTRTRINTNY]
L i i i L L i e R T i i it i it

TNIRIRIRINTEIN] I NI NI IR RN NIRRT NIRRT
Tt

m] L) TNIRIRTRINTEIN]
T it i i 17 T

L L L
T it T it T

def load_commands () :
sg.theme (’Theme2’)

Read file

file = open(savedcommands, 7r”

file_vec = file.read().splitlines ()

Topbar

L_load_topbar = [sg.Text(’LOAD COMMANDS , size=(50, 1), font=("helvetica’, 15,
"bold 7)) ,

sg.Button (’X’, font=("helvetica’, 10), button_color=(’grey40
», '#39A9DB’) , size=(2, 1), key='Exit_commands’)]

Part that shows file content
L_load_-file = []

for j, i in enumerate(file_vec):
if (j % 2) 1= 0:
L_load-file.append ([sg.Radio(str (i), ’command’, font=(’helvetica’, 10)
, enable_events=True, default=True, key=("—CMDR.” 4 str(j) + "—7))
D
else:
L_load_file.append ([sg.Text(str(i), font=("courier’, 8), enable_events
=True, key=("—CMD." + str(j) + 7="))])

Load Button
L_load_-button = [sg.Button(”Load”, key="-LOAD-’),
sg.Button(”Load Special”, button_color=("black’, '#AFFC41’) ,
key="—LOAD_SPECIAL—")]

Layout of the load window
layout = |
L_load_-topbar ,
*L_load_file ,
L_load_button]

Create window
window_commands = sg.Window ('LOAD COMMAND’ , layout, finalize=True, no_titlebar
=True, grab_anywhere=True)

Event loop
holder = 77
while True:
Read events
event_c, values_c = window_commands.read ()

53

APPENDIX E. PYTHON CODE OF THE USER INTERFACE

Close window if X
if event_c in (sg.WIN.CLOSED,
break

’Exit_commands’) :

Load command

if event_.c = '—LOAD—":
for i in range(l, len(L_load_file), 2):
if values_c["—CMDR.” + str (i) + 7—"] == True:
holder = file_vec[i + 1]
break
break
Load special command
if event_.c == '—LOAD_SPECIAL—":
for i in range(l, len(L_load_file), 2):
if values_c[”—CMDR.” + str (i) + ”"—"] == True:
holder = file_vec[i + 1]
holder = ”"SPEC” + holder
break
break
Close window and return loaded command
window_commands. close ()
if holder != 77:
return holder
else:
return
#
SETTING WINDOW
7
def settingWindow () :
sg.theme (’Theme2’)
Topbar
L_setting_-topbar = [sg.Text(’SETTINGS’, size=(26, 1), font=("helvetica’, 15, ~’
bold)),
sg.Button (’X’, font=("helvetica’, 10), button_color=(’
grey40’, '#39A9DB’), size=(2, 1), key="Exit_settings ’)
]
Ratios bar
L_setting_-ratios = []
for i in range(l, 7):
L_setting_-ratios.append ([sg.Text(”Ratio Axis 7 + str(i) + 7: 7, font=(’
courier ’, 10)),
sg.Text(round(globals () [?AXIS_” + str(i)].RATIO),
size=(5, 1), key="RATIO” + str(i)), #
UPDATE KEY
sg.InputText ("steps”, size=(8, 1), key="A” + str(
i) + ”_steps”),
sg.InputText ("angle”, size=(8, 1), key="A” + str(

i) + 7_angle”)

sg.Button (”Save”,

key="A" + str(i) 4+ ”_ratio”)])

L_setting-ratios.append ([sg.Text(”Ratio Gripper:”,
Text (round (globals () [?AXIS_7”] .RATIO) , size=(5,
InputText (”steps”, size=(8, 1), key="A7_steps”)

size=(8, 1), key="AT7_angle”), sg.Button(”Save”,
Layout
layout = [L_setting_-topbar, xL_setting_-ratios]

= fin

window_settings
True,

sg . Window (’SETTINGS’ ,
grab_anywhere=True)

layout ,

Event loop

while True:
Read events
event_s, values_s

window_settings.read ()

54

font=("courier’, 10)),
1), key="RATIO7”), sg.
, sg.InputText (”angle”,
key="A7_ratio”)])

sg .

alize=True, no_titlebar=

Update ratios
ratio_reg = re.findall (?((A[0—9])_ratio)”, event_s)
if ratio_reg:

steps = values_s[ratio_reg [0][1] + ”_steps”]
angle = values_s[ratio_reg [0][1] + ”_angle”]
ratio = round(int(steps) / int(angle))

try:

globals () [7AXIS.” + ratio_reg [0][1][1]].RATIO = ratio
window_settings ['RATIO’ + str(ratio_-reg[0][1][1])].update(ratio)
with open(” GUl_settings.py”, ”"r”) as file:
setting_list = file.readlines ()
settings_reg = [[k, i] for k, i in enumerate(setting_-list) if re.
search (7 (AXIS.” + ratio_reg [0][1][1] 4+ "_ratio = [0—9]*)”", i)
is not None]

setting_list [settings_reg [0][0]] = *AXIS.’ + str(ratio_reg
[0][1][1]) 4+ ’-ratio = > 4+ str(ratio) 4+ ”\n”
with open(”GUlI_settings.py”, ”"w”) as filew:

filew . writelines (setting_list)
except:
sg.popup-ok(”invalid ratios?”)
Close window if X
if event_s in (sg.WIN.CLOSED, ’'Exit_settings ’):
break

window_settings . close ()

TRTRIRTEIN) LY Y)) INIRIRIRIRININ)
Tt A

T T 717 ATt T 1t

#
FUNCTIONS
i
def connectDisconnect ():
Updates connect/disconnect button and connects/disconnects from the robot
arm
global serial_connection
if connected == False:
window [’ —CONNECT_DISCONNECT— '].update (...’ , button_color=(’white’,
#654597°))
try:
serial_connection = serial.Serial (port, baud)
window [—CONNECT_DISCONNECT— ’]. update ("DISCONNECT’ , button_color=(’
black ’, ’#AFFC41’))
return True
except:
sg.popup-ok (’Failed :c’
window [—CONNECT_DISCONNECT— ’]. update (’CONNECT’ , button_color=(’white
S #654597°))
return False
elif connected == True:
window [’ —CONNECT_DISCONNECT— "]. update ('"CONNECT’ , button_color=(’white’,
#654597°))
serial_connection.close ()
return False
def updateArduinoPrev(new_messege):
for i in range(12, 1, —1):
ardu_prev_saved [i] = ardu_prev_saved[i — 1]
ardu_prev_saved [1] = new_messege
for i in range(1l, 13):
window [’ —ARDUINO_PREVIEW.’ + str (i) 4+ ’'—’].update(ardu_prev_saved[i])
def updateCommandPreview () :

command_vec =
command_txt =
command_vec.append (AXIS_1.getCommand ())
command_vec.append (AXIS_2.getCommand ())
0))
0)

29

command_vec.append (AXIS_3.getCommand
command_vec.append (AXIS_4.getCommand

55

TRTRTRTRIRTRI
7

APPENDIX E. PYTHON CODE OF THE USER INTERFACE

command_vec.append (AXIS_5.getCommand ())
command_vec.append (AXIS_6.getCommand ())
command_vec.append (AXIS_7.getCommand ())

command_vec. insert (0, 7<)
command_vec. insert (len (command_vec), ”>7)
command_txt = ’’.join ([str(data) for data in command_vec])

window [* —COMMAND_PREVIEW— ’]. update (command_txt)
return command_txt

L)

T

#
#

TRTRIRIRININ] NIRRT IRy
Tt

NIRRT
1

L) TNy TRTRTRTRIRTRIIN
T 7T 7

L yuT
A T 1T T

#
MAIN EVENT LOOP #

il

L) NIRRTy
7

Tt T 117 Tt Tt

7

while True:

Read events and values
event , value = window.read ()

Close window if X
if event in (sg.WIN.CLOSED, ’'EXIT_-MAIN’):

break
Connect/Disconnect from robot arm if Connect button activated
if event == ’—CONNECT_DISCONNECT— ":

connected = connectDisconnect ()

Update arduino preview
if connected:
while serial_connection.in_waiting:
updateArduinoPrev (serial_connection.readline ().decode())

Open settings window
if event == '—SETTINGS—":
settingWindow ()

Update model picture
frame_event_reg = re.findall (”([A—Z][0—9]) (FRAME\+MOUSE OVER\+)”, event)
if frame_event_reg:
img = ”"image_axis” 4+ frame_event_reg[0][0][1] 4+ ”"_base64”
window [’ —IMAGE— "] . update (data=im. all_b64 [img])
else:
window [’ —IMAGE—"].update (data=im.image_tom_base64)

Read and update buttons, update TASK

button_event_reg = re.findall (7 ([A-Z][0—9](?!FRAME|SLIDER)) ([A—Z](?:[A-Z
11[0—9]))", event)

if button_event_reg:
TARGET.reg = "AXIS.” + button_event_reg[0][0][1]
globals () [TARGETreg] . TASK = button_event_-reg[0][1]
globals () [TARGETreg]. updateButtonColors (window)
updateCommandPreview ()

Read sliders and update VALUE

slider_event_reg = re.findall (" ([A-Z][0 —9]SLIDER)”, event)

if slider_event_reg:
TARGET reg = "AXIS_.” + slider_event_reg[0][1]
globals () [TARGETreg].VALUE = int (value[slider_event_reg [0]])
updateCommandPreview ()

Load position and update TASK,VALUE

if event == ’>—LOAD.COMMAND— ’:
loaded = load_commands ()
if loaded != None:
special = True if re.search(”(SPEC)”, loaded) != None else False
list_.reg = re.findall ("([A|G](7:[1 —=6]|R) *(?:[A=Z]*[0—9]%) *\ —%[0—9]x)
”?, loaded)

for i, k in enumerate(list_reg):
target-reg = re.findall (7([A—Z](?:[A=Z]|[0—=9]) (?=*[A—Z])) (?:*([A
—Z](7:[AZ]|[0—9])) *) (—*[0=9]+)”, k)
target = "AXIS_” + target_reg [0][0][1] if target_-reg [0][0] != "GR”
else 7AXIS_.7”

56

target_reg_list = list (target_reg[0])
target_reg_list [2] = str(round((int(target_reg_list[2])) / (
globals () [target | .RATIO)))

globals () [target | . TASK = target_reg_list [1]
globals () [target]. updateButtonColors (window)
globals () [target | . VALUE = int(target_reg_list [2])
window [’ —COMMAND_PREVIEW— ’]. update (loaded)
globals () [target]. updateSlider (window)

Save choosen position

if event == '—SAVE.COMMAND-—":
description = sg.popup-get_text (’Describe this command: ’)
file = open(savedcommands, ”a”)

file.write(’\n’ + description)
file .write (’\n’ + updateCommandPreview ())
file .close ()

Send position to arduino
if event == '—SEND.COMMAND—’ and connected :
valid = False

Check if command is valid
if special == False:
for AX in ALL_AXIS:
valid = AX.testCommand ()
if not wvalid:
sg.popup-ok (’Command not valid ’)
break
else:
valid = True

Send command and update values if wvalid
if valid:
serial_connection.write (updateCommandPreview () . encode ())
for AX in ALL_AXIS:
AX.updateCommand (window)
AX.updateSlider (window)
window [’ —COMMAND_PREVIEW LAST— '] . update (updateCommandPreview ())

Pop up if arm not connected
elif event == ’—SEND_.COMMAND—’ and not connected:
sg.popup-ok ('Robot arm not connected!’)

window . close ()

SSSSS

o7

APPENDIX E. PYTHON CODE OF THE USER INTERFACE

GUI images.py: (Note that the image files are needed to run the code)
import base64

Import model images from ./img folder
image_tom = ’./img/tom.png’

image_tom_64 = open(image_tom
image_axisl ’./img/axisl.png’

’rb+’)

image_axisl_64 = open(image_axisl, ’'rb+’)
image_axis2 = ’./img/axis2.png’
image_axis2_64 = open(image_axis2, ’'rb+4’)
image_axis3 = ’./img/axis3 .png’
image_axis3_.64 = open(image_axis3, ’'rb+’)
image_axis4d = ’./img/axis4.png’
image_axis4_64 = open(image_axis4, ’'rb+’)
image_axisb = ’./img/axis5.png’
image_axis5_64 = open(image_axisb, ’'rb+’)
image_axis6 = ’./img/axis6.png’
image_axis6_.64 = open(image_axis6, ’'rb+’)
image_axis7 = ’./img/gripper.png’
image_axis7_-64 = open(image_axis7, ’'rb+’)

Convert images to base64
image_tom_base64 base64.b64encode (image_tom_64.read ())

image_axisl_base64 = base64.b64encode(image_axisl_64.read())
image_axis2_base64 = base64.b64encode(image_axis2_64.read())
image_axis3_base64 = base64.b64encode(image_axis3_64.read())
image_axis4d_base64 = base64.b64encode(image_axis4_.64.read())
image_axisb_base64 = base64.b64encode(image_axis5_64.read())
image_axis6_base64 = base64.b64encode(image_axis6_-64.read())
image_axis7_base64 = base64.b64encode(image_axis7_-64.read())

all_b64 = {”image_axisl_base64”: image_axisl_base64

”image_axis2_base64 ”:
”image_axis3_base64 ”:
”image_axis4_base64 ”:
”image_axis5_base64 ”:
”image_axis6_base64 ”:
”image_axis7_base64 ”:

image_axis2_base64
image_axis3_base64
image_axis4_base64
image_axis5_base64
image_axis6_base64
image_axis7_base64}

)
)
)
)
)
}

58

GUI _ax.py:

import PySimpleGUI as sg

class Axis:
def __init__(self, NAME, CNAME, RL_POS, HO_POS, Z1.POS, Z2_POS, RATIO):

self .NAME = NAME

self .CNAME = CNAME

self .RL_POS RL_POS # Actual position

self .HO_-POS HO_-POS +# Home position

self.Z1.POS = Z1_.POS # Limit position (1)

self .Z2.POS = Z2_.POS # Limit position (2)

self .RATIO = RATIO # steps per angle

self .TASK = ”no”

self .VALUE = 0

self .KEYS = {
”Slider ”: (self .NAME + ’SLIDER’) ,
?Frame”: (self .NAME + ’FRAME’) ,
"Move button”: (self .NAME + 'MV’) ,
"Home button”: (self.NAME + 'HM’) ,
"Home 0 button”: (self.NAME + 'HO’) ,
”Zero 1 button”: (self .NAME + 'Z1’),
?Zero 2 button”: (self .NAME + ’Z2’) ,
"Position”: (self .NAME + ’'POS’) ,
"Home 0 position”: (self .NAME + 'HOPOS’) ,
”"Zero 1 position”: (self NAME 4+ ’Z1POS’) ,
”Zero 2 position”: (self .NAME + ’Z2POS’)

}

def getSteps(self, angle):
calculate the amount of steps required to reach the target angle
return round(self . RATIO x angle)

def getCommand(self):
steps = round(self .RATIO % self.VALUE)
return self .CNAME + ’x’ + self .TASK + '’ + str(steps) + !’

def getCommandReverse(self):
steps = round (1 / self .RATIO % self.VALUE)
return self .CNAME + ’x’ + self .TASK + ’%’ + str(steps) + !’

def createCommandWindow (self , title):
frame = |
sg.Frame(layout=[
[sg.Slider (range=(self.Z1_.POS, self.Z2_.POS), orientation="h’, size
=(34.5, 15), default_value=self .HO0.POS, enable_events=True,
key=self .KEYS[” Slider 7])],

[sg.Button(’ > ’, button_color=_C#E3170A’, ’#759FBC’), font=(’
helvetica’, 10, ’bold’), key=self .KEYS[”Move button”], size
=, 1)),

sg.Button(’ H ’, button_color=C#FFB30F’, '#759FBC’), font=(’
helvetica’, 10, ’bold’), key=self .KEYS[”Home button”], size
=(3, 1)),

sg. Text (7 7)

sg.Button (’ 7, button_color=("black’, ’#759FBC’), font=(’
helvetica’, 10), key=self .KEYS[”Home 0 button”], size=(3, 1))

L.

sg.Button(’ 0 >, button_color=("black’, '#T759FBC’), font=(’
helvetica’, 10), key=self .KEYS[”Zero 1 button”], size=(3, 1))

sg.Button(’ 0 >, button_color=("black’, ’'#759FBC’), font=(’

s

helvetica’, 10), key=self .KEYS[” Zero 2 button”], size=(3, 1))

sg.Text (")],

[sg.Text(Pos:),

sg.Text(self .RL.POS, text_color=C#FFB30F’), size=(3, 1), key=
self .KEYS[” Position ”]) ,

sg.Text (> H :7),

sg.Text(self .HO_POS, text_color=C#FFB30F’), size=(3, 1), key=
self . KEYS[”Home 0 position”]),

sg.Text(” 0),

sg.Text(self .Z1_.POS, text_color=C#FFB30F’), size=(3, 1), key=
self .KEYS[” Zero 1 position”]),

59

APPENDIX E. PYTHON CODE OF THE USER INTERFACE

sg.Text(’ 0),
sg.Text(self .Z2.POS, text_color=C#FFB30F’), size=(3, 1), key=
self .KEYS[” Zero 2 position”])]
], title=title , key=self .KEYS[”Frame”])
]

return frame

bindFrame (self , window):
window [self .KEYS[” Frame ”]].
window [self .KEYS[” Frame ”]] .

ind ("<Enter >’, "+MOUSE OVER+’)
ind (’<Leave >, '+MOUSE AWAY+-’)

joplien

updateButtonColors(self , window):
on = (’black’, ’#AFFC41’)

offl = ("#E3170A°, *#759FBC’)
off2 = ("#FFB30F’, ’#759FBC’)
off3 = (’black’, '#759FBC’)
if self . TASK = "MV’:
window [self .KEYS[”Move button ”]].update(button_color=on)
window [self .KEYS[”Home button ”]].update(button_color=0ff2)
window [self .KEYS[”Home 0 button ”]].update(button_color=o0ff3)
window [self .KEYS[” Zero 1 button ”]].update(button_color=o0ff3)
window [self .KEYS[” Zero 2 button ”]].update(button_color=0ff3)
elif self .TASK = 'HM’:
window [self .KEYS[”Move button ”]].update(button_color=0ff1l)
window [self .KEYS[”Home button ”]].update(button_color=on)
window [self .KEYS[”Home 0 button ”]].update(button_color=o0ff3)
window [self .KEYS[” Zero 1 button ”]].update(button_color=0ff3)
window [self .KEYS[” Zero 2 button ”]].update(button_color=0ff3)
elif self . TASK = 'HO’:
window [self .KEYS[”Move button ”]].update(button_color=0ff1)
window [self .KEYS[”Home button ”]].update(button_color=0ff2)
window [self .KEYS[”Home 0 button ”]].update(button_color=on)
window [self .KEYS[” Zero 1 button ”]].update(button_color=0ff3)
window [self .KEYS[” Zero 2 button ”]].update(button_color=off3)
elif self . TASK == ’'Z1’:
window [self .KEYS[”Move button ”]].update(button_color=o0ffl)
window [self .KEYS[”Home button ”]].update(button_color=o0ff2)
window [self .KEYS[”Home 0 button ”]].update(button_color=off3)
window [self .KEYS[” Zero 1 button ”]].update(button_color=on)
window [self .KEYS[” Zero 2 button ”]].update(button_color=o0ff3)
elif self .TASK = ’'Z2’:
window [self .KEYS[”Move button ”]].update(button_color=o0ffl)
window [self .KEYS[”Home button ”]].update(button_color=0ff2)
window [self .KEYS[”Home 0 button ”]].update(button_color=o0ff3)

window [self .KEYS[” Zero 1 button ”]].update(button_color=0ff3)
window [self .KEYS[” Zero 2 button ”]].update(button_color=on)

updateSlider (self , window):

window [self .KEYS[” Slider ”]]. update(self .VALUE)

testCommand (self):

if self . TASK == ”Z1” and (self.VALUE >= self.Z2.POS or self .VALUE >= self.
HO_POS) :
return False

elif self . TASK == 7Z2” and (self.VALUE <= self.Z1_.POS or self.VALUE <=

self .HO_-POS) :
return False
elif self.TASK in [”HO0”, "MV”, "HM”] and (self .VALUE < self.Z1.POS or self
.VALUE > self.Z2_POS):
return False
elif self.TASK not in ["HO0”, "MV”, "HM”, ”Z17, 7Z27]:
return False
else:
return True

updateCommand (self , window) :

if self . TASK == 7Z17:

self .Z1.POS = self .VALUE

window [self .KEYS[” Zero 1 position ”]].update(self.Z1_POS)
elif self . TASK == 7Z27:

self .Z2.POS = self .VALUE

window [self .KEYS[” Zero 2 position ”]].update(self.Z2_POS)
elif self . TASK == ”HO0”:

self .HO_POS = self .VALUE

60

window [self .KEYS[”Home 0 position ”]].update(self.H0_-POS)
elif self . TASK == "MV”:

self .RL.POS = self .VALUE

window [self .KEYS[” Position ”]]. update(self.RL.POS)
elif self . TASK =— "HM”:

self .RL_.POS = self.H0_-POS

self .VALUE = self.H0_POS

window [self .KEYS[” Position ”]]. update(self .RL_POS)

61

Appendix F

Arduino code

¥ K ¥ X ¥ ¥ ¥

/

#include
#include
#include
#include

//

/ /RAMPS
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
/ /RAMPS
#define
#define
#define
#define
#define
#define
/ /RAMPS
#define
#define
#define
#define
#define
#define
/ /RAMPS
#define
#define

[[—————

bool new

char DATA[91];
char TARGET[7

Michal Gabriel
MF133X KTH 2021—04—15

<AccelStep
<MultiStep
<Servo.h>

<Buzzer.h>

PINS
individual
PWR.3 10
BUZZ 4
SER_PIN 11
LEDR 3
LED.G 2
LEDB 6
MODE 15
A1_EN 16
A1_DIR 23
A1 STEP 17
A2_EN 25
A2_DIR 29
A2_STEP 27
EO/E1l pins
A3_DIR 28
A3_STEP 26
A3_EN 24
A4_DIR 34
A4 STEP 36
A4_EN 30
X/Y pins
A5_DIR Al
A5_STEP A0
A5_EN 38
A6_DIR A7
A6_STEP A6
A6_EN A2
power outpu
PWR.1 8
PWR2 9

‘VARIABL
Commands =

315

char TASK[7] [:l][; //

Arduino code that reads serial data received from the serial
monitor/external user interface and controls the robot actuators

Sawczuk

per .h>
per .h>

pins:

t

ES USED FOR THE SERIAL DATA TRANSFER
false; //new commands available/not available

//Data received is stored here

// Target of every command stored here
Task of each command stored here

63

char
bool
long
long
long
long

long
long
long
long
long
long
long
bool
int

APPENDIX F. ARDUINO CODE

VALUE[7][8]; //Value of each command stored here

newExtracted = false; //new extracted data available
stepperPositions [6] = {0,0,0,0,0,0}; //received stepper positions
chDIFF.3[4] = {O O 0,0}; // Differential positions holder

DIFF_3[4] = { 0}; //Differential positions holder

DI_3[4] = {0,0,0 0}; //Differential positions holder

servoPosition; //received servo position

stepperHomePositions [6] = {0,0,0,0,0,0};

servoHomePosition = 0;

stepperZerolPositions [6] = {—100000,—100000,—100000,—100000,—100000,—100000};
servoZerolPosition = 0;

stepperZero2Positions [6] = {100000,100000,100000,100000,100000,100000}
servoZero2Position = 0;

newPositions = false; //new positions ready to run available

mode; //acceleration on/off

//———— STEPPER,SERVO AND BUZZER INSTANCES
AccelStepper AX1(1,A1.STEP,A1.DIR);
AccelStepper AX2(1,A2.STEP,A2_DIR);
AccelStepper AX3(1,A3.STEP,A3_DIR);
AccelStepper AX4(1,A4.STEP,A4_DIR);
AccelStepper AX5(1,A5.STEP,A5_DIR) ;
AccelStepper AX6(1,A6_.STEP,A6_.DIR) ;
MultiStepper ALL; //all axes
MultiStepper DIFF; //differential
Servo SER; //gripper

Buzzer buzzer (BUZZ);

void

}

void

setup () {
Serial .begin(9600); //Start serial communication
Serial.println (” Arduino setup...”); //startup messenge (GUI)

pinMode (PWR.1,0UTPUT) ; digitalWrite (PWR_1,HIGH); //turn on TB6600 stepper
drivers

pinMode (PWR2,0UTPUT) ; digitalWrite (PWR2,HIGH); //turn on servo

pinMode (PWR.3,0UTPUT) ; digitalWrite (PWR3,HIGH); //turn on fan

pinMode (LED_R, OUTPUT); pinMode(LED_.G, OUTPUT); pinMode(LED_B, OUTPUT); //LEDs
RGBled (255,0,0) ;delay (1000) ;RGBled (0,255,0) ;delay (1000) ; RGBled (0,0,255); //
startup blink

pinMode (MODE, INPUT_PULLUP) ; //Mode switch

SER. attach (SER_PIN); SER.write(75);delay(1000); SER.write(10); //setup servo
connection

pinMode (A3_.EN, OUTPUT); digitalWrite (A3.EN, LOW); //turn on A4899 stepper
drivers

pinMode (A4_.EN, OUTPUT); digitalWrite (A4_EN, LOW) ;

pinMode (A5_EN, OUTPUT); digitalWrite (A5_.EN, LOW) ;

pinMode (A6_EN, OUTPUT); digitalWrite (A6_.EN, LOW) ;

AX1.setMaxSpeed (3000); AXl.setAcceleration (800); //setup speed and
accelerations

AX2.setMaxSpeed (3000) ; AX2.setAcceleration (800);

AX3.setMaxSpeed (1000); AX3.setAcceleration (800);

AX4.setMaxSpeed (1000) ; AX4.setAcceleration (800);

AX5.setMaxSpeed (5000) ; AX5.setAcceleration (800);

AX6.setMaxSpeed (5000) ; AX6.setAcceleration (800);

ALL. addStepper (AX1); ALL.addStepper (AX2); ALL.addStepper (AX3); ALL.addStepper (
AX4); ALL.addStepper (AX5); ALL.addStepper(AX6); //group steppers

DIFF . addStepper (AX3) ; DIFF . addStepper (AX4) ; DIFF . addStepper (AX5) ; DIFF . addStepper
(AX6) ;

Serial.println (”7...complete”); //startup messenge (GUI)
buzzer.begin (10); buzzer.sound (NOTE.B4, 100);buzzer.sound (NOTE_A4, 100);buzzer.
sound (NOTE_B4, 100); buzzer.end(300); //startup sound

loop ()
readSerial (); //read data from the serial port
translateToCommand (); //extract different parts of the data

64

commandToPosition (); //extract the position vector from the command
moveArm () ; //move the robot arm

void readSerial () {
/*
* Function that reads data from the serial port
*/
static bool dataTransfering = false; //true if data transfer
static byte i = 0; //index
char rc; //Received character

in progress

char startChar = ’<’; //Messege start
char endChar = ’>’; //Messege end
while (Serial.available() > 0 && newCommands == false) {
rc = Serial.read(); //Reads one char of the data
if (rc == startChar) { //Start data transfer if startChar found
dataTransfering = true;
else if (dataTransfering == true) {
if (rc != endChar) { //Transfer data as long as endChar not found
DATA[i] = rc; //Save data
i++;

else { //Stop data transfer if endChar found
DATA[i] = ’\0’; //End the string
buzzer.begin (10) ; buzzer.sound (NOTEB4, 50);buzzer.sound (NOTE_A5,
100); buzzer.end(10);
Serial.println (”Received data:”);
Serial.println (DATA) ;
newCommands = true; //New data available
i = 0; //Reset the index
dataTransfering = false; //Stop data transfer

}

void translateToCommand () {
/*

* Function that extracts the target, task and value from DATA

*/

int j = 0; //Command index
int k = 0; //Command part index
int 1 = 0; //Command part char index
if (newCommands == true){ //Start translation if new data available
for (int i = 0; i <= sizeof (DATA); i++){
if (DATA[i] == ’'\0’){ //If data end, break
break ;
else if (DATA[i] == ’!’){ //If command end, increase command index and
reset command part, command part char index
J++;
k = 0;
1 = 0;
else if (DATA[i] == ’'«’){ //If command part end, increase command part
index and reset command part char index
k++;
1 = 0;
else {
if (k = 0){ //extract target
TARGET[j][1] = DATA[i];
else if (k == 1){ //extract task

TASK[j][1] = DATA[i];

else if (k = 2){ //extract value
VALUE[j][1] = DATA[i];
if (DATA[i+1] == ’,’ || DATA[i+1] == !’){ //terminate string

65

APPENDIX F. ARDUINO CODE

if last char in value found
VALUE[j][141] = ’\0’;
}

l++4; //increase command part index

newExtracted = true;

Serial.println (”"That gives following values:”);

Serial.print ("TG[0]: ”);Serial.print (TARGET[0]) ; Serial.print(” | TS[0]: 7)
; Serial . print (TASK[0]) ; Serial.print(” | VL[0]: ”);Serial.print(VALUE
[01);

Serial.print(” ::: TG[1]: ”);Serial.print (TARGET[1]) ; Serial.print(” | TS
[1]: 7);Serial.print (TASK[1]); Serial.print(” | VL[1]: ”);Serial.
println (VALUE([1]) ;

Serial.print ("TG[2]: ”);Serial.print (TARGET[2]) ; Serial.print(” | TS[2]: ”)
; Serial . print (TASK[2]) ; Serial.print(” | VL[2]: ”);Serial.print(VALUE
(21);

Serial.print (” ::: TG[3]: 7);Serial.print (TARGET[3]) ; Serial.print(” | TS
[3]: 7);Serial.print (TASK[3]); Serial.print(” | VL[3]: ”);Serial.
println (VALUE([3]) ;

Serial.print ("TG[4]: 7);Serial.print (TARGET[4]) ; Serial.print(” | TS[4]: 7)
;Serial.print (TASK[4]) ; Serial.print(” | VL[4]: ”);Serial.print (VALUE
[41);

Serial.print(” ::: TG[5]: 7);Serial.print (TARGET[5]) ; Serial.print(” | TS
[5]: 7);Serial.print (TASK[5]) ; Serial.print(” | VL[5]: ”);Serial.
println (VALUE[5]) ;

Serial.print ("TG[6]: 7);Serial.print (TARGET[6]) ; Serial.print(” | TS[6]: 7)
; Serial . print (TASK[6]) ; Serial.print(” | VL[6]: ”);Serial.println (VALUE
[6]);

}
newCommands = false;
¥
void commandToPosition () {
/*

* Function that translates the data from translateToCommand() to stepper
motor and servo positions
*/

if (newExtracted == true){
for (int i = 0;i<7;i4++){
if (strcmp (TARGET[i],”A17)==0){ //Axis 1
stepperPositions [0] = commandMatch(0,0) ;

else if (strcmp(TARGET[i],”A2”)==0){ //Axis 2
stepperPositions [1] = commandMatch(1,0) ;

}
else if (strcmp(TARGET[i],”A3”)==0){ //Axis 3 (Note that stepper 3 and
4 work together)

chDIFF_3[0] = commandMatch(2,0) — DI_3[0];
chDIFF_3[1] = commandMatch(2,0) — DI_3[1];
DI_3[0] = commandMatch(2,0);

DI_3[1] = commandMatch(2,0);

DIFF_.3[0] = DIFF_.3[2]+chDIFF_3[0]; //Stage 1 stepper 3

DIFF_3[1] = DIFF_3[3]+chDIFF_3[1]; //Stage 1 stepper 4

stepperPositions [2] = commandMatch(2,0) ;

stepperPositions [3] = commandMatch(2,0) ;

else if (strcmp(TARGET[i],”A47)==0){ //Axis 4 (Note that stepper 3 and
4 work together)

chDIFF_3[2] = —commandMatch(3,0) — DI_3[2];
chDIFF_3[3] = commandMatch(3,0) — DI_3[3];
DI_3[2] = —commandMatch(3,0) ;

DI_3[3] commandMatch (3,0) ;

DIFF_3[2] = DIFF_3[0]+chDIFF_3[2]; //Stage 2 step 3
DIFF_3[3] = DIFF_.3[1]4+chDIFF_.3[3]; //Stage 2 step 4
stepperPositions [2] —commandMatch (3 ,0)+stepperPositions [2];
stepperPositions [3] commandMatch (3 ,0)+stepperPositions [3];

else if (strcmp(TARGET[i],”A5”)==0){ //Axis 5 (Note that stepper 5 and
6 work together)
stepperPositions [4] = commandMatch(4,0) ;
stepperPositions [5] = commandMatch(4,0) ;

66

else if (strcmp(TARGET[i],”A67)==0){ //Axis 6 (Note that stepper 5 and
6 work together)
stepperPositions [6] = stepperPositions [5];//commandMatch(5,0) ;
stepperPositions [4] = stepperPositions [4];//commandMatch(5,1);

}

else if (strcmp(TARGET[i],”GR”)==0){ //Gripper
servoPosition = commandMatch (6,0) ;

}

newExtracted

= false;
newPositions = true;

)

}

long commandMatch(int i, int other){
/*
#* Function that analyzes the task and returns a relevant position
*/
long valueholder;
sscanf (VALUE[i], "%ld”, &valueholder);

if (stremp (TASK[i],”MV”?)==0){ //Move robot arm
if (valueholder < stepperZero2Positions[i] || valueholder >
stepperZerolPositions[i]){
return valueholder;

else{
return stepperPositions|[i];

else if (strcmp (TASK[i],”HM”)==0){ //Move robot arm to home position
if (valueholder < stepperZero2Positions[i] || valueholder >
stepperZerolPositions[i]){
return stepperHomePositions[i];

else{
return stepperPositions|[i];
}

else if (strcmp(TASK[i],”H0”)==0){ //Set home position

if (valueholder < stepperZero2Positions[i] || valueholder >
stepperZerolPositions[i]){
stepperHomePositions[i] = valueholder;

return stepperPositions[i];

}

else if (stremp(TASK[i],”Z17)==0){ //Set first limit position
stepperZerolPositions[i] = valueholder;
return stepperPositions[i];

}

else if (strcmp(TASK[i],”Z27)==0){ //Set second limit position
stepperZero2Positions[i] = valueholder;
return stepperPositions[i];

else {
return stepperPositions|[i];

}

void moveArm () {
/*
* Function that sends the data to the stepper motor drivers and to the servo
motor
*/

mode = digitalRead (MODE) ;
switch (mode) {
//case 0: no acceleration control, move all axis at the same time

case O0:
RGBled (0,255,0); //change led to green
if (newPositions == true){

ALL.moveTo(stepperPositions);
ALL.runSpeedToPosition () ;
SER. write (servoPosition);
newPositions = false;

67

}

APPENDIX F. ARDUINO CODE

}
break;
//case 1: acceleration control, move one axis after another
case 1:
RGBled (0,0,255); //change led to blue
if (newPositions == true){
//Move Axis 1
AX1.moveTo(stepperPositions [0]) ;
while (AX1l.distanceToGo () != 0) {
AX1.run () ;

}

//Move Axis 2

AX2.moveTo(stepperPositions [1]) ;

while (AX2.distanceToGo () != 0) {
AX2.run () ;

//Move Axis 3

AX3.moveTo(DIFF_3[0]) ;

AX4.moveTo(DIFF_3[1]) ;

while (AX3.distanceToGo () != 0 && AX4.distanceToGo () != 0) {
AX3.run () ;
AX4.run () ;

}

//Move Axis 4

AX3.moveTo(DIFF_3[2]) ;

AX4.moveTo(DIFF_3[3]) ;

while (AX3.distanceToGo () != 0 && AX4.distanceToGo () != 0) {
AX3.run () ;
AX4.run () ;

//Move servo
SER. write (servoPosition);

newPositions = false;

}
break;

void RGBled(int red, int green, int blue){

/*

*/

Function that controls the LED

analogWrite (LED_R, red) ;
analogWrite (LED_.G, green) ;
analogWrite (LED_B, blue) ;

68

Appendix G

Change in error (Precision tests).

69

APPENDIX G. CHANGE IN ERROR (PRECISION TESTS).

Table G.1. Rate of change low speed.

Test Axis 1 | Axis 2 | Axis 3 | Axis 4 | Axis 5 | Axis 6 All 1 All 2

—_
1

2 0.05 0.02 0.08 -0.01 -0.02 0.05 0.06 | -0.75
3 0.03 0.03 0.02 0.01 0.11 0.16 0.04 0.18
4 0.02 0.06 0 0 0.11 0.14 0.02 0.07
Y -0.03 0.05 0.02 0.02 0.25 0.22 0.01 0.15
6 0.09 0.05 0.02 0 0.15 0.35 0.14 0.19
7 0.22 0.02 0.01 0.01 0.38 0.3 -0.2 0.01
8 0.05 0.01 0.02 0.01 0.32 0.15 0.06 0.41
9 -0.01 0.01 0 0.01 0.31 0.38 -0.08 0.07
10 0.06 0.02 0 0 0.42 0.42 -0.07 0.21

Average | 0.0533 | 0.03 | 0.0189 | 0.0056 | 0.2256 | 0.2411 | -0.0022 | 0.06

Table G.2. Rate of change high speed.

Test Axis 1 | Axis 2 | Axis 3 | Axis4 | Axis 5 | Axis 6 | All 1l All 2
1 - - - - - - - -
2 -0.07 0.03 0.01 0.12 0.31 0.09 0.4 0.18
3 0.14 0.05 0 0.16 0.59 0.3 0.12 0.2
4 0.02 0.02 0 0.24 0.73 0.62 0.1 0.15
5 0.02 0.05 0.01 0.2 1.11 0.74 0.07 0.05
6 0.12 0.05 0.02 0.3 1.35 1.16 -0.07 0.22
7 0.16 0.04 -0.02 0.22 1.3 1.07 0.32 0.19
8 0.38 0.02 0.01 0.18 1.35 0.83 0.02 0.15
9 0.2 0.04 0 0.35 0.44 2.04 0.08 0.04
10 0.24 0.02 0 0.35 1.23 1.46 0.08 0.14
Average | 0.1344 | 0.0356 | 0.0033 | 0.2356 | 0.9344 | 0.9233 | 0.1244 | 0.1467

70

TRITA -ITM-EX 2021:52

	e75927707359b08a99a7e9bee2bbbe49b20e4a24ef3babc40d775490fce953de.pdf
	Design and control of a 3D printed, 6DoF robot arm
	blank595x841.pdf
	951661eab179f9376af2f90a177dede83a81a57a9245a2fabd26a2e86253553a.pdf
	951661eab179f9376af2f90a177dede83a81a57a9245a2fabd26a2e86253553a.pdf
	951661eab179f9376af2f90a177dede83a81a57a9245a2fabd26a2e86253553a.pdf
	Introduction
	Background
	Purpose
	Scope
	Method
	Design and construction
	Electronics and control
	Testing

	Theory
	Construction
	Design for FDM printing
	Transmission
	Simulation

	Actuators
	Stepper motors
	Servo motors

	Control
	Computation and control
	Stepper motor drivers

	Testing
	Accuracy, precision and trueness
	Errors

	Prototype
	Construction
	Actuators
	Control

	Results
	Precision tests
	Strength tests

	Discussion
	Precision tests results
	Strength test results
	Future work
	Conclusions

	Bibliography
	Appendices
	Data sheets of the stepper motor drivers.
	Exploded views of the robot arm
	Acumen

	blank595x841.pdf
	951661eab179f9376af2f90a177dede83a81a57a9245a2fabd26a2e86253553a.pdf
	Data sheets of the actuators
	Python code of the user interface
	Arduino code
	Change in error (Precision tests).

	blank595x841.pdf
	e75927707359b08a99a7e9bee2bbbe49b20e4a24ef3babc40d775490fce953de.pdf
	Design and control of a 3D printed, 6DoF robot arm

