
INOM EXAMENSARBETE MASKINTEKNIK,
GRUNDNIVÅ, 15 HP

,  STOCKHOLM SVERIGE 2021

Construction of a Selective 
Compliance Articulated Robot Arm 

Konstruktion av en utvalt 
eftergivlig robotarm

And evaluation of its accuracy 
Och utvärdering av dess precision

ANTON LABBÉ

BENJAMIN STRÖM

KTH
SKOLAN FÖR INDUSTRIELL TEKNIK OCH MANAGEMENT





Construction of a Selective Compliance
Articulated Robot Arm

And evaluating its accuracy

ANTON LABBÉ & BENJAMIN STRÖM

Bachelor Thesis at ITM
Supervisor: Nihad Subasic
Examiner: Nihad Subasic

TRITA-ITM-EX 2021:41



Abstract
The concept of a robotic manipulator is widely used through-
out many industries. In this project, a manipulator of the
type SCARA, selective compliance articulated robot arm, is
constructed. The aim was to examine how such a robot
could be constructed using 3D-printing and how accurate
it would be. Other than 3D-printing, parts in the form of
guiding rods, lead screw, bearings, pulleys and timing belts
were used. Together with a microcontroller, the robot op-
erates using three stepper motors. In the end it resulted in
a SCARA with reasonable accuracy considering the meth-
ods used, more specifically the largest average error was 3.6
cm in the X direction and 2.3 cm in the Y direction. The
largest drawback of the final construction was the negative
balance between tightening the belts and friction in the in-
ner joint. Tightening the belts meant larger friction and
thereby undesired movement properties. Doing the oppo-
site meant that the belts could start slipping and enabled
backlash.

Keywords: Mechatronics, 3D-printing, Robotics, Robot,
Arduino, Inverse kinematics



Referat
Konstruktion av en Selective Compliance

Articulated Robot Arm

Konceptet av en robotarm används brett inom m̊anga in-
dustrier. Detta projekt syftar till att konstruera en robot av
typen SCARA, selective compliance articulated robot arm.
Målet var att undersöka hur en s̊adan robot kan 3D-printas
och dess precision. Förutom 3D-printade delar användes
även guidestänger, kullager, kamremmar och remskivor. Ro-
botens rörelser styrs tillsammans med en mikrokontroller
och tre stegmotorer. Med tillvägag̊angssätten i åtanke re-
sulterade projektet in en SCARA med rimlig precision. Mer
specifikt var medelfelet 3.6 cm i X-led och 2.3 cm i Y-led.
Den största nackdelen med den slutgiltiga konstruktionen
var den negativa jämvikten mellan att spänna kamremmar-
na och friktionen i den inre armleden. Att spänna kamrem-
marna innebar en ökning i friktion och därmed oönskade
rörelseegenskaper. Att göra tvärtom innebar att bältena
löpte större risk att glida ur och möjliggjorde dödg̊ang.

Nyckelord: Mekatronik, 3D-printing, Robotik, Robot,
Arduino, Invers kinematik



Acknowledgements

We would like to thank Nihad Subasic for his lectures and help throughout the
project. We would also like to thank Amir Avdic for his general guidance and Jan
Stamer for helping us machine our parts. Lastly we would also like to thank our
peers for giving us feedback on our work, especially Samuel Stenow for the helpful
thoughts he gave us regarding software and Rayan Alnakar for helping out with
3D-printing.

Anton Labbé & Benjamin Ström
Stockholm, May 2021



Nomenclature

List of acronyms and abbreviations
• CAD - Computer Aided Design

• CNC - Computer Numerical Control

• DC - Direct Current

• DOF - Degrees Of Freedom

• GUI - Graphical User Interface

• LCD - Liquid Crystal Display

• MOSFET - Metal Oxide Semiconductor Field Effect Transistor

• PLA - Polylactic Acid

• PM - Permanent Magnet

• PTC - Postive Temperature Coefficient device

• SCARA - Selective Compliance Articulated Robot Arm

• SD - Secure Digital

• STL - STereoLithography



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theoretical background 3
2.1 Control theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Arduino Mega 2560 . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Arduino shield . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.3 Stepper motor . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.4 Stepper motor driver . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.5 Bearings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 3D-printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Robot kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Execution 8
3.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Computer aided design - CAD . . . . . . . . . . . . . . . . . 9
3.1.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.3 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.1 Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Mid-plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 Arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.4 Arm mount . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.5 Top-plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.6 Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.7 Guiding rods . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.8 Bearings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12



4 Results 14
4.1 Non-printed parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 3D-printing a robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.1 Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2 Top-plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.3 Mid-plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.4 Arms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 How accurate is the arm? . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.1 Important aspects . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Discussion 19
5.1 Hollow axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Improving the accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 20

Bibliography 21

Appendices 22

A KH54KM2-801 Datasheet 23

B Usongshine Nema 17 (17HS4401) Datasheet 26

C Arduino Code 30

D Acumen model of Z-axis movement 37

E Acumen model of arms 39



List of Figures

2.1 Open and closed loop system block diagrams [Created with Notability] . 3
2.2 Arduino mega 2560 [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 A two-phase PM stepper motor circuit schematic diagram [8] . . . . . . 5
2.4 DRV8825 pinout[9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Rendered image of the full SCARA robot [Created with KeyShot 8] . . 8
3.2 A model of the two link planar system [Created with Notability] . . . . 9
3.3 Code flowchart [made with draw.io] . . . . . . . . . . . . . . . . . . . . 10
3.4 Schematic diagram for electronics [Created with Fritzing] . . . . . . . . 12

4.1 The finalized baseplate [Created with KeyShot 8] . . . . . . . . . . . . . 15
4.2 Configuration of the smaller stepper motors. [created in KeyShot 8] . . 16
4.3 Magnification of inner and outer joint configuration. [Created with

KeyShot 8 & Adobe Photoshop] . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Distribution of coordinates achieved in practice [Created with Desmos] . 17



List of Tables

4.1 The difference between theoretical and practical coordinate achieved . . 17



Chapter 1

Introduction

1.1 Background
The project consisted of the construction of a non-scale serial manipulator in the
form of a selective articulated compliance robot arm (SCARA). A SCARA is a
robot of cylindrical type, meaning it performs tasks in its circular vicinity and is
generally applied for pick-and-place like machine operations. In combination with
the construction, the aspiration was also to measure the accuracy of the arm. The
results presented are applicable when considering any type of construction using
the same manufacturing methods and mechanisms. [1]

1.2 Purpose
The project looked to create a robotic arm following the SCARA principle. The
research questions that were answered are:

• How can a SCARA robot be constructed using 3D-printed parts?

• When building a SCARA, what are the most important aspects to take into
consideration?

• How accurate is the arm when placed in a coordinate system?

1.3 Method
The project was divided into three parts. First of all the general design of the robot
required decision, allowing for an overview of the size and construction method.
This step would constitute the outlines of the project and involved a CAD model,
the placing of critical components and an idea of how movements should be trans-
ferred. With that being done, the second step was programming the robot arm,
i.e. modelling its movements. Some adjustments would have to be made along the
way, for example changes in design or substitution of components. The last part

1



CHAPTER 1. INTRODUCTION

was testing, in which the robot was placed in a cartesian coordinate system and the
differences between the requested and the achieved coordinate value in the x and y
directions were evaluated.

1.4 Scope
As time and resources were limited due to being part of a course (MF133X), the
project mainly aimed to deliver a working prototype of a SCARA. The design, for
example, was simplified and the robot arm did not have a commercial appearance.
Since the arm was meant for showcasing one variant of a SCARA, and not for
lifting especially heavy or extremely delicate things, little to no solid mechanical
calculations were made.

2



Chapter 2

Theoretical background

2.1 Control theory
Control theory is about making systems behave the way you want them to. Systems
can be controlled in many ways, for example by controlling angles, speed, torque
etc [2]. These variables in turn can mainly be controlled in two ways, as either
open loop, or closed loop systems. In an open loop system the control signal is
not measuring the condition of the output, while in closed loop systems the control
signals are dependent on feedback from the output, see figure 2.1.

Figure 2.1: Open and closed loop system block diagrams [Created with Notability]

3



CHAPTER 2. THEORETICAL BACKGROUND

2.2 Components
The following sections describe different components that are relevant to the con-
struction of the developed SCARA.

2.2.1 Arduino Mega 2560
Arduino is an open source microcontroller platform that was developed by experts
within electrical engineering in order to make use of electronics and electrical com-
ponents easier for the less experienced consumer. It is widely used in both simpler
and more complex projects due to its versatility and affordable price. The modern
Arduino boards are available in different sizes, with the largest one being the Ar-
duino MEGA 2560 it consists of 54 digital input/output which is seen in figure 2.2.
[5]

Figure 2.2: Arduino mega 2560 [5]

2.2.2 Arduino shield
Shields are modular circuit boards that can be mounted on top of the Arduino to
extend its capabilities or to ease implementation of certain components with the
Arduino. The shield used is called RAMPS 1.4 and is part of the ”RepRap” project
which aims to simplify replication of 3D-printer technology at home. It has support
for up to 5 stepper motors, MOSFET switches for controlling heating elements and
other DC loads, power supply with PTC fuses and connections for limit switches,
servos, SD card readers, LCD and more. [6]

2.2.3 Stepper motor
A stepper motor generally consists of a rotor that is a gear shaped permanent mag-
net which is surrounded by the windings of a stator. The windings are alternately

4



CHAPTER 2. THEORETICAL BACKGROUND

powered to incrementally rotate the rotor on which the shaft is attached. This re-
sults in the ability to precisely control the angular position of the shaft[7], see figure
2.3.

Figure 2.3: A two-phase PM stepper motor circuit schematic diagram [8]

5



CHAPTER 2. THEORETICAL BACKGROUND

2.2.4 Stepper motor driver
Due to the fact that the powered phase must be alternated to rotate the shaft
(view figure 2.3), control electronics that allow for rapid changes in direction and
amplitude of the current in the windings are necessary. Such electronics are known
as drivers and are available in many different forms. In figure 2.4 the motor driver
DRV8825 is showcased.

Figure 2.4: DRV8825 pinout[9]

2.2.5 Bearings
Bearings are machine elements used keep components such as a fixed axis in place
while also relieving its load. An often desirable trait of a bearing is its low friction,
allowing the connected component to move with ease. Bearings are classified by
their allowed range of motion or in what direction the load is being applied. [11]

2.3 3D-printing
3D printing is a manufacturing process in which material is laid down layer by layer
to form a three-dimensional object. It is useful for high quality control and precision
manufacturing [3]. In this project 3D printing is used to create the chassis for the
SCARA with the use of Polylactic Acid (PLA) as material. Although this is not
the most durable material it is suitable for this type of project. Before printing,
settings such as layer thickness, infill and support material needs to be specified.
Infill determines how hollow the print will be, from a scale 0-100, where 100 is
completely solid. Support material ensures the printability and can for example
help prohibit part deformation. It is worth mentioning that the stepper motors run
the risk of heating up, and as PLA has a glass transition temperature at around
60◦ Celsius, the temperature of the stepper motors has to be monitored.[4]

6



CHAPTER 2. THEORETICAL BACKGROUND

2.4 Robot kinematics
A SCARA normally has four degrees of freedom (DOF), in other words four inde-
pendent parameters which describes its state [12]. More specifically a SCARA can
be modelled as a two link planar system able to move vertically. To track its posi-
tion the concept inverse kinematics will be used, which in turn utilizes coordinate
transformation from polar to cartesian. Inverse kinematics is used when calculat-
ing what angles the joints need to assume for the end-effector to reach the desired
position. [13] The modelling is further explained in section 3.1.

7



Chapter 3

Execution

This chapter will describe the working process, from start to finish. It includes
both the practical and theoretical work needed for the completion of the project.
An overview of the robot is seen in figure 3.1.

Figure 3.1: Rendered image of the full SCARA robot [Created with KeyShot 8]

8



CHAPTER 3. EXECUTION

3.1 Software

3.1.1 Computer aided design - CAD
The visual and partly functional concept was created in Siemens’ SolidEdge soft-
ware. This enabled a perspicuous view of the layout and size of the SCARA, for
example the placement of the stepper motors and gearing of the arms. After a
clear overview had been made, a more detailed version could be made, ready to be
3D-printed.

3.1.2 Simulation
Before any code was developed, the movement patterns of the arm were simulated
with the simulating tool Acumen, see code in Appendix D and E. Mainly because
there was no hardware available for software testing until the near end of the project.
Figure 3.2 was used to derive the inverse kinematic expressions for the arms joints.
In other words, what angle each joint would need to assume in order to reach a
certain position with the end effector. This resulted in the following equations:

Θ2 = arccos x2 + y2 − l21 + l22
2l1l2

(3.1)

Θ1 = arctan y

x
− arctan l2 sin Θ2

l1 + l2 cos Θ2
, (3.2)

where x and y are the coordinates of the end effector and l1 and l2 are the lengths
of the inner and outer arm. As seen in figure 3.2, Θ1 and Θ2 are the angles between
the x-axis and l1 and between l1 and l2, respectively. Combined with the movement
described in figure 3.2, the robot is able to move vertically along the z-axis, giving
it three DOF.

Figure 3.2: A model of the two link planar system [Created with Notability]

9



CHAPTER 3. EXECUTION

3.1.3 Code
The code is based upon the principle of inputting a coordinate (X,Y) and then
performing the required actions to reach said coordinate. Because of the fact that
a stepper motor can not simply start rotating at a requested speed, an object ori-
ented library featuring retardation and acceleration was used, namely AccelStepper
library[14]. It also featured simple ways of controlling several stepper motors at
once. With the basics of how to run one or more stepper motors cleared up, the
flowchart for the robots code is seen in figure 3.3. The full code is presented in
Appendix C.

Figure 3.3: Code flowchart [made with draw.io]

3.2 Components
The main components are described. All parts were 3D-printed except for the
stepper motors, guiding rods, lead screw, pulleys and timing belts. The 3D-printers
used were from the brand Ultimaker together with their software Ultimaker Cura
which utilized SolidEdge files, in STL format.

3.2.1 Base
The base was initially the foundation of the robot, housing the big stepper motor.
It was also the mounting place for the guiding rods along with a protrusion fitted
with a bearing for the lead screw to rotate in. As the project progressed, the big
stepper motor was mounted on the top plate instead.

10



CHAPTER 3. EXECUTION

3.2.2 Mid-plate
This was the only part that needed to be divided into two halves to be able to 3D-
print. The mid-plate, together with the arm mounting plate, were the mounting
place for three crucial parts; the lead screw and the two smaller stepper motors.
This component also enabled the arms to move vertically as it was connected to the
lead screw.

3.2.3 Arm
This was the most mechanically complex subsystem of the robot to design. From
the beginning, one of the main ideas was to centralize the two small stepper motors
close to the Z-axis and not have them mounted on the arm. The reason being to
minimize the weight of the arm and thus to reduce their static, tilting torque. To
solve this, the outgoing axis’ driven by the small stepper motors had to be rotating
coaxially, which was solved by developing a ”hollow axis”.

3.2.4 Arm mount
This part was connected directly to the mid-plate and together they served as a
mounting point for the arm. They also created housing for the components operat-
ing the arm. In detail those components were both of the smaller stepper motors,
with attached pulleys and corresponding timing belts, radial and axial bearings and
the hollow axis.

3.2.5 Top-plate
The top-plate was initially the part with the least functionality, with the sole pur-
pose of holding the guiding rods together, along with the lead screw. As iterations
of the robot were made, it became apparent that mounting the big stepper motor
on the top-plate was a better solution than having it mounted on the base.

3.2.6 Electronics
The robot housed two types of stepper motors, one bigger from Japan Servo Co ltd.,
named KH56KM2 with the purpose of controlling the vertical movement (datasheet
in Appendix A) and two smaller ones from Usongshine, called 17HS4401 (Nema 17)
which were used for rotating the arm (datasheet in Appendix B). All three stepper
motors have 200 steps per rotation meaning they move in 1.8 degree increments but
since the driver DRV8825 is used, microstepping up to 1/32 is possible, which would
result in 6400 steps per revolution. The stepper motors were used in each joint of
the robot as well as for the vertical movements of the arm. Since the motor moves in
steps, with no feedback on what position it is currently at, a stepper motor by itself
is an open loop system. Therefore microswitches were used to determine the home
position of the arm. The operations were computed by the Arduino mega 2560 with

11



CHAPTER 3. EXECUTION

a Ramps 1.4 shield mounted on top. The devices were connected according to figure
3.4.

Figure 3.4: Schematic diagram for electronics [Created with Fritzing]

3.2.7 Guiding rods
The main function of the guiding rods was to distribute the load and serve as a rail
for the mid-plate to move along. They were initially made from aluminium for cost
and availability reasons. As development progressed, the choice of material changed
to stainless steel due to aluminium being too soft for the linear bearings. Also the
stainless steel’s polished surface allowed for lower friction.

3.2.8 Bearings
Three types of bearings were used in the project. The guiding rods used four linear
bearings, making sure the vertical movement was smooth. The arms used both
radial ball bearings and axial ball bearings for two reasons. Firstly because it made
the arm rotate as smoothly as possible and thus reducing the torque needed from
the smaller stepper motors and the second reason being accuracy when rotating.

3.3 Accuracy
To evaluate the robots precision, an accuracy test was performed. The robot was
placed in a large coordinate system, scaled the same length as the robots fully ex-
tended arm (35 cm in each direction). The inner joint was placed in origo and
the arm was equipped with a pencil as end effector. The test was performed as

12



CHAPTER 3. EXECUTION

a sequence of movements, where each movement was aimed at a theoretical coor-
dinate. Each movement ended with the arm lowering itself vertically and a dot
being made on the paper where the robot placed the theoretical coordinate. The
sequence was repeated six times. The accuracy was evaluated as the difference
in the x and y directions between the theoretical coordinate and the coordinates
achieved in practice.

13



Chapter 4

Results

4.1 Non-printed parts
Unlike the printed parts, the guiding rods, lead screw, pulleys and timing belt
needed to be of higher tolerance. When trying to print the pulley it resulted in the
gear teeth not being deep enough which led to the timing belt not being able to grip
it. In combination with tolerance, 3D-printing is also constrained by the strength
and durability of the printed materials, in this case PLA. Due to this, parts that
stabilized the robot, i.e. the guiding rods and the lead screw, demanded a more
durable material like metal. Lastly, the timing belts could not be printed either as
they needed to be flexible, an attribute PLA does not possess.

4.2 3D-printing a robot
As briefly mentioned in the execution the majority of the components were 3D-
printed, mainly due to the availability of 3D-printers but also because of the cus-
tomization 3D-printing entails. This allowed for new parts to easily be changed and
re-produced if any error occurred or if a new sub-part needed to be incorporated.
While customizability was high, 3D-printing also had some drawbacks or quirks.
For example, a printed hole always had to be designed a few tenths of a millimeter
larger to fit the real object supposed to pass through said hole.

4.2.1 Base
Initially the base housed the big stepper motor, but as testing begun, it became
clear that the robots vertical movement was unstable with quite significant vibra-
tions. The base contributed to this by having weak mounting holes for the guiding
rods. Also, when trying to enlarge the holes manually using a drill press, the hole
structure would melt due to the heat caused by friction. In attempt to eliminate
the vibrations, the robot was flipped upside down. Having the big stepper motor
push down on the construction while also allowing the Z-axis to align itself through

14



CHAPTER 4. RESULTS

gravity improved the performance and the motor was consequently moved to sit on
the top plate instead. At the same time, the base was re-designed and given more
robust mounting holes where the guiding rods could be screwed in place. Also, the
lead screw for the Z-axis was given space in the bottom to be fitted with a bearing,
enabling less friction and further simplifying alignment throughout the axis. See
figure 4.1

Figure 4.1: The finalized baseplate [Created with KeyShot 8]

4.2.2 Top-plate
As seen earlier, the developments to the top-plate were relatively sparse. The main
issue was similar to the one of the base, where the mounting holes for the guiding
rods lacked stability. Other than that, the top-plate was fitted with holes for screw-
ing the big stepper motor in place, as its position changed from being housed in the
base to being housed on top of the top-plate.

4.2.3 Mid-plate
As mentioned in 4.1.1, the robot suffered from vibrations in its first iteration and
this was mainly due to the mid-plate. More specifically the vibrations originated
from the guiding-rod holes being of very low tolerance. The low tolerance of the
holes caused the mid-plate to wobble its way up the guiding rods once the Z-axis was
powered. The inaccuracies were a property obtained by drilling the holes manually.
Just like in the case with the base plate, the PLA started melting when trying to
enlarge the holes. To prevent the vibrations by increasing the standard of the holes,
linear bearings were installed together with higher tolerance guiding rods, stainless
steel instead of aluminum. The linear bearings were also stabilized with a flange to
reinforce their desired vertical orientation. Together with the arm mount it housed
the two smaller stepper motors according to figure 4.2.

15



CHAPTER 4. RESULTS

Figure 4.2: Configuration of the smaller stepper motors. [created in KeyShot 8]

4.2.4 Arms
This subsystem demanded many iterations before resulting in a working solution.
In the final version, the two smaller stepper motors were fitted close to the rotating
axis’. As mentioned in 3.2.3, a coaxial solution named the ”Hollow Axis” solved the
issue of having the stepper motors centralized. It served two purposes; to move the
inner arm and to be a passage for the inner axis to move the outer arm, see figure
4.3. The hollow axis transfers its torque via a simple spline shaft, formed as a cross.
The stepper motors and axis’ were connected via GT2 pulleys and corresponding
timing belts. Two SKF Explorer 625 radial ball bearings were placed on the top
and bottom of both arms making it easier for the threaded axis’ to rotate. Another
6002RS radial ball bearing were fitted inside the arm mount centering and fixating
the hollow axis. Lastly, a pair of axial bearings were fitted to reduce the friction
between the arm mount, inner and outer arm.

Figure 4.3: Magnification of inner and outer joint configuration. [Created with
KeyShot 8 & Adobe Photoshop]

16



CHAPTER 4. RESULTS

4.3 How accurate is the arm?
Table 4.1 presents the data obtained from the accuracy test. The coordinates in
bold represents the theoretical coordinates. Other than the differences between the
theoretical and practical value, average distribution for each coordinate and for each
sequence was calculated, see Figure 4.4.

Coordinates
Difference
[cm]

(5,30) (15,15) (30,5) (-5,30) (-10,25) (-35,0) Average

1. (∆x, ∆y) (1.3, -2.1) (0.8, 0.7) (-1.3, 2.2) (5.0,-1.8) (-6.0, 0.9) (-0.5, -2.0) (-0.1, 0.4)
2. (∆x, ∆y) (1.6, -2.4) (-0.7, -1.3) (-4.5, 0) (2.3, -0.3) (1.1, 0.9) (-0.4, 3.3) (-0.1, 0)
3. (∆x, ∆y) (1.3, -1.2) (-0.6, -1.0) (-4.2, 0.7) (2.9, -0.2) (1.7, 1.0) (-0.3, 2.9) (0.1, 0.4 )
4. (∆x, ∆y) (2.0, -2.3) (-0.3, -1.5) (-3.9, -0.4) (2.0, 0.1) (0.9, 1.3) (-0.4, 4.1) (0.1, 0.2)
5. (∆x, ∆y) (1.0, -1.8) (-0.6, -0.5) (-3.7, 1) (3.3, 0) (2.2, 1.1) (-0.3, 2.2) (0.3, 0.3)
6. (∆x, ∆y) (1.2, -2.1) (-0.6, -2.2) (-4.1, 0.5) (0.6, 0.8) (2.0, 2.5) (-0.5, 3.5) (-0.2, 0.5 )
Average (1.4, -2.0) (-0.4, -1) (-3.6, 0.7) (2.7, 0.2) (0.3, 1.3) (-0.4, 2.3) -

Table 4.1: The difference between theoretical and practical coordinate achieved

Every theoretical coordinate and its corresponding practical coordinates are repre-
sented by the same colour. Filled circles represents the theoretical value while the
unfilled circles represents the practical coordinates achieved.

Figure 4.4: Distribution of coordinates achieved in practice [Created with Desmos]

4.3.1 Important aspects
Throughout the project, the different aspects of constructing a SCARA were con-
sidered. In retrospect the idea of centralizing the masses of the motors is something

17



CHAPTER 4. RESULTS

that should not have been prioritized. Although it works, a solution like this is
not needed if the motor for the Z-axis is overqualified as in the case of this report.
Aspects that came to light as being more important than originally thought were
the placement of the microswitches, as they determined the home position of the
whole robot and hence the starting position for all of its movements. In the case
of this project, the microswitches were placed on the robot solely for the purpose
of testing the accuracy and their placement was not considered a priority. In mak-
ing a commercially viable SCARA however, the microswitches would have to be
prioritized, as they can affect and limit the movements of the arm greatly.

18



Chapter 5

Discussion

In the end, the result was a functional SCARA, built completely from scratch and
with reasonable accuracy. However there are still flaws and improvements to be
discussed.

5.1 Hollow axis
One of the more central parts and a concept that more or less was kept from the
beginning. When realizing the concept and throughout implementation, testing of
the part revealed several flaws. To begin with the 3D-printers did not have the
accuracy to print a GT2 pulley incorporated in the axis itself as the groove/teeth
became too shallow. This was the same reason why the hollow axis transferred its
torque via the cross-shaped spline, and not a full multi teeth spline. Furthermore,
because of the fragile size of the component, processing it was deemed inconvenient.
Another issue was found when putting the robot together, or more specifically when
tightening the timing belts. If the belts were tightened too much the inner axis would
rub against the hollow axis, creating enough friction to rotate the hollow axis, and
thus the inner arm, unintentionally. To solve this a radial bearing could have been
fitted inside the hollow axis and around the inner axis and by that drastically
reduced the friction.

5.2 Arm
The first and perhaps easiest improvement would be changing all the radial bearings
to axial ones, as the bearings predominantly are supporting axial load. The two
reasons for not doing this from the beginning was supply and cost. The utilized
bearings were from school stock and therefore free and directly accessible. If the
robot was to be used for pick and place tasks, further changes or upgrades would
be strengthening the joints of the arm. Under load, the components affected by
the torque are mainly the joints, especially when fully extended. Another concept
which would demand joint reinforcement would be finding an alternative to the

19



CHAPTER 5. DISCUSSION

hollow axis. The natural way of doing this would be connecting the second smaller
stepper motor directly to the joint between the inner and outer arm. This would
make assembling the robot easier and also increase transmission efficiency of the
outer arm, at the cost of strengthening the joints. Mounting the smaller stepper
motors this way would also make positioning and programming easier as the outer
arm would follow the movements of the inner arm. Another easy fix would be
moving the arm slightly outwards from the center due to the inner axis hitting the
top-plate and base when the arm is at its lowest or highest point.

5.3 Improving the accuracy
Considering the methods used and the fact that the robot was not intended for
industrial production, its accuracy is reasonable. The accuracy could be improved
in many ways. Microstepping would for example lower the 1.8◦ per step by 1/32 of
that and hence make the movements more delicate. In the current version, the inner
arm has a tendency to move slightly due to the inner axis rubbing against the hollow
axis. Less dependent movement could be achieved if the hollow axis was allowed to
rotate with less friction, for example by fitting a radial bearing as described in 5.2.
The accuracy could also be improved by tightening the timing belts and by that
reducing slippage. However, as previously stated, in the final construction tightening
the belts came with the undesired property of increasing the friction between the
inner and hollow axis’. The current tension in the belt requires a few extra steps in
the demanded direction before transmission of rotation. This is known as backlash.
As seen in table 4.1 when moving from coordinate (15, 15) to coordinate (5,30), the
error in the x direction grows. The outer arm has then had the belt tightened in one
direction when moving to (15,15) and is then rotated outwards in trying to reach
(5,30) which is further away from the origin than (15,15). As just stated, this means
that the stepper motor will ”eat up” some of the steps required while the belt is
tensioned in the opposite direction. This is further seen in figure 4.4 at coordinate
(30,5), where the unfilled circles indicate that the outer arm did not move as far
as it should have. Supposing the problem regarding friction between the inner axis
and the hollow axis did not exist, the belts would have been tightened to a point
where the arm could reverse its rotational direction without needing to perform any
extra steps.

20



Bibliography

[1] R. Hagelberg, MG1002 Automatiseringsteknik, 16.1 ed. Stockholm: KTH In-
dustriell Produktion, pp. 391–392.

[2] Torkel Glad & Lennart Ljung. Reglerteknik - Grundläggande teori. swe. Lund:
Studentlitteratur AB, 2018. ISBN: 978-91-44-02275-8

[3] Joan Horvath & Rich Cameron. Mastering 3D Printing. eng. Springer Interna-
tional Publishing, 2020. ISBN: 978-1-4842-5842-2

[4] D. Garlotta, “A Literature Review of Poly(Lactic Acid),” Journal of
Polymers and the Environment, vol. 9, no. 2, pp. 63–84, 2001, doi:
10.1023/a:1020200822435.

[5] Arduino 2018. Arduino official website. Accessed 12 February 2021. URL:
https://www.arduino.cc/en

[6] Johnny Russel. RAMPS 1.4. Accessed 24 March 2021. URL: https://reprap.
org/wiki/RAMPS_1.4

[7] Marc Bodson, John N. Chiasson, Robert T. Novotnak & Ronald B. Rekowski.
High-Performance Nonlinear Feedback Control of a Permanent Magnet Stepper
Motor. eng.

[8] Stefanos Theodoropoulos, Dionisis Kandris, Maria Samarakou and Grigorios
Koulouras Fuzzy regulator design for wind turbine yaw control. Eng. Hindawi
Publishing Corporation, The Scientific World Journal 2018. Volume 2014, Ar-
ticle ID 516394, 9 pages.

[9] Texas Instruments 2014. DRV8825 Stepper Motor Controller IC. Accessed 9
March 2021. URL:https://www.ti.com/lit/ds/symlink/drv8825.pdf?ts=
1617921558126&ref_url=https%253A%252F%252Fwww.google.com%252F

[10] Sustek Michal et al. DC motors and servo-motors controlled by Raspberry Pi
2B. eng. In: MATEC Web of Conferences 125 (2017). Last access: 15/2-2021.
URL: https://doaj.org/article/6ed186431bbc43509e5b90491131fd01

21

https://www.arduino.cc/en
https://reprap.org/wiki/RAMPS_1.4
https://reprap.org/wiki/RAMPS_1.4
https://www.ti.com/lit/ds/symlink/drv8825.pdf?ts=1617921558126&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ds/symlink/drv8825.pdf?ts=1617921558126&ref_url=https%253A%252F%252Fwww.google.com%252F
https://doaj.org/article/6ed186431bbc43509e5b90491131fd01


BIBLIOGRAPHY

[11] Bernard J. Hamrock & William J. Anderson. 1983. Rolling-Element Bear-
ings. Nasa Reference Publication. 1105. URL:http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.693.8552&rep=rep1&type=pdf

[12] John J Craig. Introduction to Robotics: Mechanics Control. eng. Reading,
Mass.: Addison-Wesley, 1986. ISBN: 978-1-292-04004-2

[13] Taha, Walid M., Taha, Abd-Elhamid M. & Thunberg, Johan. Cyber-Physical
Systems: A Model-Based Approach. eng. Springer International Publishing,
2021. ISBN: 978-3-030-36071-9

[14] M. McCauley, “AccelStepper: AccelStepper library for Arduino”. Ac-
cessed 15 April 2021. URL: https://www.airspayce.com/mikem/arduino/
AccelStepper/classAccelStepper.html

22

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.693.8552&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.693.8552&rep=rep1&type=pdf
https://www.airspayce.com/mikem/arduino/AccelStepper/classAccelStepper.html
https://www.airspayce.com/mikem/arduino/AccelStepper/classAccelStepper.html


Appendix A

KH54KM2-801 Datasheet

23



2-Phase Hybrid Stepping Motor

HIGH TORQUE,  LOW VIBRATION AND LOW NOISE

1.8°

( STANDARD SPECIFICATIONS

M  O  D  E  L
KH56KM2

DRIVE METHOD BI-POLAR

INSULATION CLASS ––––––– JIS Class E  (120°C   248°F) (UL VALUE : CLASS B   130°C   266°F)

–––––––

INSULATION RESISTANCE ––––––– 500VDC   100MΩmin.

DIELECTRIC STRENGTH ––––––– 500VAC   50HZ   1min.

OPERATING TEMP. RANGE °C 0 to 50

ALLOWABLE TEMP. RISE deg. 70

18

( DIMENSIONS   unit = mm (inch)

54(2.13)

20.6±0.5

(0.81±0.02)

3
8
.1

d
ia

.±
0

.5
(1

.5
d
ia

.±
0

.0
0

2
)

5(0.2)

1.6±0.2

(0.063±0.008)

0
0

6
.3

5
d
ia

.-
0

.0
2

(0
.2

5
d
ia

.-
0

.0
0

0
8
)

UNI-POLLAR Bi-POLAR SINGLE SHAFT
Antriebstechnik GmbH
Starkenburgstr. 6 * 64546 Mörfelden 
Tel.:06105 24044 * Fax:06105 25593

info@color-technik.net
www.color-technik.net



Features
- Stronger torque generated in higher speed zone

- Lowered Vibration by increased stiffness of body construction

- Improved Efficiency

 

LOAD OF SHAFT:

30N THRUST LOAD

40N RADIAL LOAD 20mm FROM FRONTPLATE 

 

 

 

 

                                                                BI-POLAR

–––––  PULL-OUT

––––$ PULL-IN
( TORQUE CHARACTERISTICS vs. PULSE RATE

UNI-POLAR

19

0

200

400

600

800

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

PULSE RATE(pps)

T
O

R
Q

U
E

(m
N

 •
 m

)

DRIVER=Constant-current driver
Vcc=24(V)
CURRENT=3.0(A)/Phase
EXCITING MODE=2Phase

INERTIAL LOAD142gcm2 (0,78oz•in2)

0

(r/min)

1000 2000 3000

120

90

60

30

(oz • in)

KH56KM2-801

0

200

400

600

800

1000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

PULSE RATE(pps)

T
O

R
Q

U
E

(m
N

 •
 m

)

DRIVER=Constant-current driver
Vcc=24(V)
CURRENT=1.5(A)/Phase
EXCITING MODE=2Phase

INERTIAL LOAD142gcm2 (0,78oz • in2)

180

150

120

90

60

30

(oz • in)

0

(r/min)

1000 2000 3000

KH56KM2-851

0

200

400

600

800

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

PULSE RATE(pps)

T
O

R
Q

U
E

(m
N

 •
 m

)

DRIVER=Constant-current driver
Vcc=24(V)
CURRENT=2.0(A)/Phase
EXCITING MODE=2Phase

INERTIAL LOAD142gcm2 (0.78oz•in2)

120

90

60

30

(oz • in)

0

(r/min)

1000 2000 3000

0

200

400

600

800

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

PULSE RATE(pps)

T
O

R
Q

U
E

(m
N

 •
 m

)

DRIVER=Constant-current driver
Vcc=24(V)
CURRENT=1.0(A)/Phase
EXCITING MODE=2Phase

INERTIAL LOAD142gcm2 (0.78oz•in2)

120

90

60

30

(oz • in)

0

(r/min)

1000 2000 3000

KH56KM2-802,

KH56KM2-803

( CONNECTION CABLE TO MOTOR   unit = mm (inch)

( CONNECTION DIAGRAMS

øA øB

øA
– –

1

3

5

7

9

11

BLACK

RED

BLOWN

YELLOW

BLUE

ORENGE

øB

øA øB

– –

3

5

7

9

RED YELLOW

BLUE WHITE
øA øB

UNI-POLAR

BI-POLAR

EXCITATION SEQUENCE

EXCITATION SEQUENCE

STEP 1 2 3 4

BLACK – –

YELLOW – –

BLOWN – –

ORENGE – –

RED + + + +

BLUE + + + +

STEP 1 2 3 4

RED + + – –

YELLOW – + + –

BLUE – – + +

WHITE + – – +

UNI-POLAR BI-POLAR

LEAD:UL3266 AWG22

(11.8 0 )
+1.57

10 (0.39)

300 0
+40

LEAD:UL3266 AWG22

(11.8 0 )
+1.57

10 (0.39)

300 0
+40

JST XHP-11



Appendix B

Usongshine Nema 17 (17HS4401)
Datasheet

26



1 www.handsontec.com 
 

 

Handson Technology 

Data Specs 

 

 

17HS4401S 1.7A Torque:43N.cm Stepper Motor 
A stepper motor to satisfy all your 3D-Printer, robotics, Linear Motion projects needs! This 4-wire bipolar 
stepper has 1.8° per step for smooth motion and a nice holding torque. The motor was specified to have a 
max current of 1.7A/phase so that it could be driven easily with common motor shield for Arduino (or other 
motor driver) and a wall adapter or lead-acid battery. The motors are supplied with a 50cm long power cable 
with a 4-pin Harwin female connector already fitted - ready to plug and print! 

 

• Nema17 Bipolar. 

Brief  Data: 
 

• Number of Phase: 2. 
• Step Angle: 1.8°. 
• Phase Voltage: 2.6Vdc. 
• Phase Current: 1.7A. 
• Resistance/Phase:  1.5Ω ±10%. 
• Inductance: 2.8mH ±20% (1KHz). 
• Number of Wire: 4 (100cm Length). 

• Holding Torque: 43Ncm. 
• Shaft Diameter: Ø5mm. 
• Motor Length: 40mm. 
• Rotor Inertia: 54gcm2. 
• Temperature rise: 80°C Max. 
• Insulation Class: B. 
• Dielectric Strength: 500VAC/1-minute. 
• Mass: 280g. 

 
 

 

 

 

 



2 www.handsontec.com 
 

 

Mechanical Dimensions: 

 

 

 

 

 

 

Connection:  

 



3 www.handsontec.com 
 

 

 

Nema-17 Stepper Motor Body Length Comparison: 

 



Appendix C

Arduino Code

/* ---SCARA robot---
*
* Date: 09-05-2021
* Written by: Benjamin Strom och Anton Labbe
* Examiner: Nihad Subasic
* TRITAnr : 2021:41
* Coursecode: MF133X
*
* Software developed for a selective compliance assembly robot arm
* (SCARA) to be able to reach arbitrary coordinates and at the users
* order perform a "dotting" action in which the robot arm lowers itself
* and makes a dot in a placed coordinate system.
*
*/

// Include libraries
#include <AccelStepper.h>

//Define pins (The ones that are on the ramps)
#define X_step A0
#define X_dir A1
#define X_max 2
#define X_min 3
#define X_en 38
#define Y_step A6
#define Y_dir A7
#define Y_max 15
#define Y_min 19 //In reality 14 on the ramps
#define Y_en A2
#define Z_step 46
#define Z_dir 48
#define Z_max 14 //In reality 19 on the ramps
#define Z_min 18
#define Z_en A8

30



APPENDIX C. ARDUINO CODE

//define stepper motors
const int motorInterfaceType = 1; //using driver (DRV8825)
AccelStepper Xstep = AccelStepper(motorInterfaceType,X_step,X_dir);

//Inner arm stepper (connected to X on ramps board)
AccelStepper Ystep = AccelStepper(motorInterfaceType,Y_step,Y_dir);

//Outer arm stepper (connected to Y on ramps board)
AccelStepper Zstep = AccelStepper(motorInterfaceType,Z_step,Z_dir);

//Z-axis stepper (lead screw, connected to Z on ramps board)

//define variables
const int Xmaxdist = 100; //maximum X movement
const int Ymaxdist = 100; //maximum Y movement
const int Zmaxdist = 7400; //maximum Z-axis movement (7300 steps MAX)
const int L1 = 18;
const int L2 = 17;

bool newData,runcont,runcoord, runZ = false; //flags for future loops
//bool newData, Xruncont, Yruncont, Zruncont = false;
char command; //command from serial monitor (character, h = HOME, c =

coordinate, d = disable motors(while not running), z = perform dotting
action with Z-axis)

int X, Y, theta1, theta2, stepstomoveinner, stepstomoveouter; //variabler
fr koordinatinmatning, vinklar och steg att rra armarna

void setup() {
Serial.begin(9600);

//declare pinmodes of microswitch pins
pinMode(X_min, INPUT_PULLUP); //set pinmode for microswitch to input (in

this case with pullup to distinguish better between high/low)
pinMode(Y_min, INPUT_PULLUP); //set pinmode for microswitch to input
pinMode(Z_min, INPUT_PULLUP); //set pinmode for microswitch to input

//attach microswitches as interrupt pins
attachInterrupt(digitalPinToInterrupt(X_min),stopX,FALLING);
attachInterrupt(digitalPinToInterrupt(Y_min),stopY,FALLING); // FALLING

or LOW otherwise
attachInterrupt(digitalPinToInterrupt(Z_min),stopZ,FALLING);

Xstep.setMaxSpeed(200); //set speed
Xstep.setAcceleration(50); // set acceleration
Xstep.setEnablePin(X_en); // set enable pin for inner arm stepper(X)
Xstep.setPinsInverted(false, false, true); //Inverting the enable

pin(needed)
Xstep.disableOutputs(); //disabling motor outputs until given other

instruction

Ystep.setMaxSpeed(200); // set speed

31



APPENDIX C. ARDUINO CODE

Ystep.setAcceleration(50); // set acceleration
Ystep.setEnablePin(Y_en); //set enable pin for outer arm stepper(Y)
Ystep.setPinsInverted(false, false, true); //Inverting the enable

pin(needed)
Ystep.disableOutputs(); //disabling motor outputs until given other

instruction

Zstep.setMaxSpeed(2000); //set speed
Zstep.setAcceleration(500); //set acceleration
Zstep.setEnablePin(Z_en); //set enable pin for Z -axis stepper
Zstep.setPinsInverted(false, false, true); //Inverting the enable pin

(needed)
Zstep.disableOutputs(); //disabling motor outputs until given other

instruction
}

void loop(){
checkSerial(); //Checks the serial monitor for inputs
runContinuously(); //function used for homing action
runToCoordinate(); //function used to run to a specific coordinate

}

void checkSerial(){ //checks Serial for user input and sets flags
accordingly

if(Serial.available() > 0){
command = Serial.read(); //Read command
newData = true; //Flag for new received data

}
if(newData==true){

switch(command){
case ’h’: //homing

runcont = true; //flag to step into runContinuously()
//Xruncont = true;
//Yruncont = true;
//Zruncont = true;
Serial.println("HOMING");
Xstep.setMaxSpeed(20);
Ystep.setMaxSpeed(20);
Zstep.setMaxSpeed(200); //set homing speed
Xstep.setAcceleration(5);
Ystep.setAcceleration(5);
Zstep.setAcceleration(50); //Set homing acceleration
Xstep.move(400);
Ystep.move(400);
Zstep.move(10000); //set max distance to move (Should be larger

than the maximum possible distance to run)
break;

case ’c’: //runs to coordinate

32



APPENDIX C. ARDUINO CODE

runcont = false;
Serial.println("INPUT COORDINATE: X,Y");
Serial.println("TESTSEQUENCE:

(5,30);(15,15);(30,5);(-5,30);(-10,25);(-35,0)");

X = Serial.parseInt(); //Parses int from Serial monitor, program is
meant for any input separating two ints (for example c 15 15 or
c 15,15)

Y = Serial.parseInt(); //both do the same thing, run to the
coordinate (15,15)

coordToSteps(X,Y); //Call function to calculate amount of steps

Serial.print("You input coordinate: (");
Serial.print(X);
Serial.print(",");
Serial.print(Y);
Serial.println(")");
Xstep.setMaxSpeed(20);
Ystep.setMaxSpeed(20);
Xstep.setAcceleration(5);
Ystep.setAcceleration(5);
Xstep.moveTo(stepstomoveinner);
Ystep.moveTo(stepstomoveouter); //step count to move to with inner

(Should be larger than the maximum possible distance to run)
runcoord = true; //flag to step into runToCoordinate()
break;

case ’z’: //performs a lowering and raising of Z axis
Serial.println("Performing dotting action...");
Zstep.setMaxSpeed(1000); //set speed
Zstep.setAcceleration(200); //Set acceleration
Zstep.enableOutputs();
Zstep.runToNewPosition(-6700);
Zstep.runToNewPosition(0);
Zstep.disableOutputs();
break;

case ’d’: //disables motors
runcont = false;
//Xruncont = false;
//Yruncont = false;
//Zruncont = false;
Xstep.disableOutputs();
Ystep.disableOutputs();
Zstep.disableOutputs();
break;

}
}

33



APPENDIX C. ARDUINO CODE

newData=false;
}

void runContinuously(){ //function that runs the motors continuously
withing the maximum allowed amount of steps

if(runcont == true){
if(abs(Xstep.currentPosition()) < Xmaxdist ||
abs(Ystep.currentPosition()) < Ymaxdist ||
abs(Zstep.currentPosition()) < Zmaxdist){

Xstep.enableOutputs();
Ystep.enableOutputs();
Zstep.enableOutputs();
Xstep.run();
Ystep.run();
Zstep.run();

}

else{
runcont = false;
Xstep.disableOutputs();
Ystep.disableOutputs();
Zstep.disableOutputs();
Xstep.setCurrentPosition(0);
Ystep.setCurrentPosition(0);
Zstep.setCurrentPosition(0);

}
}
else{

return;
}

}

void runToCoordinate(){ //function that runs the stepper motors to input
coordinate

if(runcoord == true){
if(abs(Xstep.distanceToGo()) > 0 && abs(Ystep.distanceToGo()) > 0){ //

if the steppers haven’t ran the full way
Xstep.enableOutputs();
Ystep.enableOutputs();
Xstep.run();
Ystep.run();

}
else if(abs(Xstep.distanceToGo()) > 0 && abs(Ystep.distanceToGo()) ==

0){ //if X hasn’t ran the full way
Xstep.enableOutputs();
Xstep.run();
Ystep.stop();

}

34



APPENDIX C. ARDUINO CODE

else if(abs(Ystep.distanceToGo()) > 0 && abs(Xstep.distanceToGo()) ==
0){ //if Y hasn’t ran the full way

Ystep.enableOutputs();
Ystep.run();
Xstep.stop();

}
else{

runcoord = false; //when finished running, turn off the function
Xstep.disableOutputs(); //and the motors
Ystep.disableOutputs();

}
}
else{

return;
}

}

void coordToSteps(float X, float Y){ // function to calculate amount of
steps to move to a coordinate for each stepper motor

float theta1, theta2, angletomoveinner, angletomoveouter;

if(X < 0){
theta2 = acos((pow(X,2)+pow(Y,2)-pow(L1,2)-pow(L2,2))/(2*L1*L2));

//expression derived from model of arm with trigonometry
theta1 = (atan(Y/abs(X))-atan(L2*sin(theta2)/(L1+L2*cos(theta2))));

//arm angled "above" length to coordinate

theta2 = theta2 * (180/PI); //todegrees
theta1 = theta1 * (180/PI);

angletomoveinner = -1*theta1; //translate the angles to our home position
angletomoveouter = -1*(90+theta1+theta2);

stepstomoveinner = round(angletomoveinner / 1.8); //one step is 1.8
degrees

stepstomoveouter = round(angletomoveouter / 1.8);
}
else{
theta2 = -1*acos((pow(X,2)+pow(Y,2)-pow(L1,2)-pow(L2,2))/(2*L1*L2));
theta1 = (atan(Y/X)-atan(L2*sin(theta2)/(L1+L2*cos(theta2)))); //arm

angled "above" length to coordinate

theta2 = theta2 * (180/PI);
theta1 = theta1 * (180/PI);

angletomoveinner = -1*(180-theta1);
angletomoveouter = -1*(290-(theta1+theta2));

stepstomoveinner = round(angletomoveinner / 1.8);

35



APPENDIX C. ARDUINO CODE

stepstomoveouter = round(angletomoveouter / 1.8);
}

}

void stopX(){ //function used in the X microswitch interrupt
Xstep.setCurrentPosition(0);
Xstep.stop();
Xstep.disableOutputs();

}

void stopY(){ //function used in the Y microswitch interrupt
Ystep.setCurrentPosition(0);
Ystep.stop();
Ystep.disableOutputs();

}

void stopZ(){ //function used in the Z microswitch interrupt
Zstep.setCurrentPosition(0);
Zstep.stop();
Zstep.disableOutputs();

}

36



Appendix D

Acumen model of Z-axis movement

/* ACUMEN SIMULATION FOR SCARA ROBOT
COURSE MF133X BACHELORS DEGREE IN MECHATRONICS
MADE BY: Benjamin Strom och Anton Labbe */

model Main(simulator) =
initially //Creates models and variables
/*
Note: places to put the blocks
base:
initial pos = (0,0,0)
size = (2,2,1)

top:
initial pos = (0,0,5)
size = (2,2,1)

mount:
initial pos = (0,1/2,3)
size = (1,1,1/2)

Arm1:
initial pos = (0,7/4,5/2)
size = (1,5/2,1/2)

Arm2:
initial pos = (0,15/4,2)
size = (1,5/2,1/2)
*/

//Creates models
base = create block((0,0,0),(2,2,1)),
axis = create axis((0,0,2.5)),
top = create block((0,0,5),(2,2,1)),
mon = create block((0,0,0),(1,1,1/2)),

37



APPENDIX D. ACUMEN MODEL OF Z-AXIS MOVEMENT

armA = create block((0,0,0),(1,5/2,1/2)),
armB = create block((0,0,0),(1,5/2,1/2)),

//Create state-variables
z_mon = 0, z_mon’ = 0,
z=0

always // What will happen with the state variables
z_mon’ = 1,
z = 1.5*sin(z_mon), // Creates a sine function for up/down oscillating

Z-axis movement
mon.pos = (0,1/2,z+2.7),
armA.pos = (0,7/4,z+2.2),
armB.pos = (0,15/4,z+1.7)

model block(pos,size) = //Model for blocks
initially
_3D = (), _3DView = ()

always
_3D = (Box //Base
center = pos
size = size //(x,y,z)
color = blue
transparency = 1)

model axis(pos) = //Model for z-axis
initially
_3D = (), _3DView = ()

always
_3D = (Cylinder //Z-axis is a cylinder
center = pos
size = (4,0.2) //size(height,radius)
color = black
rotation = (pi/2,0,0)
transparency = 1)

38



Appendix E

Acumen model of arms

/* ACUMEN SIMULATION FOR SCARA ROBOT
COURSE MF133X BACHELORS DEGREE IN MECHATRONICS
MADE BY: Benjamin Strom och Anton Labbe */

model Main(simulator) =
initially //Create state variables
theta1 = 0, theta1’ = 0,
theta2 = 0,
l1 = 4, l2 = 4,
x1 = 0, y1 = 0,
x2 = 0, y2 = 0,
_3D = ()

always //Does a full rotation
if theta1 < 2*pi
then theta1’ = 1
else theta1’ = 0,
theta2 = 2*theta1,
x1 = (0.5*l1+0.5)*cos(theta1),
y1 = (0.5*l1+0.5)*sin(theta1),
x2 = (l1+0.1)*cos(theta1)+(0.5*l2-0.4)*cos(theta2),
y2 = (l1+0.1)*sin(theta1)+(0.5*l2-0.4)*sin(theta2),

_3D = (Box //Creates arm components
center = (x1,y1,0)
size = (l1,0.5,0.5)
color = (1,0,0)
rotation = (0,0,theta1)
Box
center = (x2,y2,-0.5)
size = (l2,0.5,0.5)
color = (1,0,0)
rotation = (0,0,theta2)

39



APPENDIX E. ACUMEN MODEL OF ARMS

)

40





TRITA EX-ITM 2021:41

www.kth.se


	Introduction
	Background
	Purpose
	Method
	Scope

	Theoretical background
	Control theory
	Components
	Arduino Mega 2560
	Arduino shield
	Stepper motor
	Stepper motor driver
	Bearings

	3D-printing
	Robot kinematics

	Execution
	Software
	Computer aided design - CAD
	Simulation
	Code

	Components
	Base
	Mid-plate
	Arm
	Arm mount
	Top-plate
	Electronics
	Guiding rods
	Bearings

	Accuracy

	Results
	Non-printed parts
	3D-printing a robot
	Base
	Top-plate
	Mid-plate
	Arms

	How accurate is the arm?
	Important aspects


	Discussion
	Hollow axis
	Arm
	Improving the accuracy

	Bibliography
	Appendices
	KH54KM2-801 Datasheet
	Usongshine Nema 17 (17HS4401) Datasheet
	Arduino Code
	Acumen model of Z-axis movement
	Acumen model of arms

