
IN DEGREE PROJECT TECHNOLOGY,
FIRST CYCLE, 15 CREDITS

, STOCKHOLM SWEDEN 2021

Sign Language Translation

PIERRE SINANDER

TOMAS ISSA

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT

Sign Language Translation

Pierre Sinander
Tomas Issa

Bachelor’s Thesis at ITM
Supervisor: Nihad Subasic
Examiner: Nihad Subasic

TRITA-ITM-EX 2021:38

Abstract

The purpose of the thesis was to create a data glove that can translate
ASL by reading the finger- and hand movements. Furthermore, the
applicability of conductive fabric as stretch sensors was explored. To
read the hand gestures stretch sensors constructed from conductive
fabric were attached to each finger of the glove to distinguish how
much they were bent. The hand movements were registered using a
3-axis accelerometer which was mounted on the glove. The sensor
values were read by an Arduino Nano 33 IoT mounted to the wrist of
the glove which processed the readings and translated them into the
corresponding sign. The microcontroller would then wirelessly
transmit the result to another device through Bluetooth Low Energy.

The glove was able to correctly translate all the signs of the ASL
alphabet with an average accuracy of 93%. It was found that signs
with small differences in hand gestures such as S and T were harder
to distinguish between which would result in an accuracy of 70% for
these specific signs.

Keywords – Mechatronics, data glove, American Sign Language, stretch

sensors, conductive fabric.

 Sammanfattning

Syftet med uppsatsen var att skapa en datahandske som kan översätta
ASL genom att läsa av finger- och handrörelser. Vidare undersöktes
om ledande tyg kan användas som sträcksensorer. För att läsa av
handgesterna fästes ledande tyg på varje finger på handsken för att
urskilja hur mycket de böjdes. Handrörelserna registrerades med en
3-axlig accelerometer som var monterad på handsken. Sensorvärdena
lästes av en Arduino Nano 33 IoT monterad på handleden som
översatte till de motsvarande tecknen. Mikrokontrollern överförde
sedan resultatet trådlöst till en annan enhet via Bluetooth Low
Energy.

Handsken kunde korrekt översätta alla tecken på ASL-alfabetet med
en genomsnittlig exakthet på 93%. Det visade sig att tecken med små
skillnader i handgester som S och T var svårare att skilja mellan
vilket resulterade i en noggrannhet på 70% för dessa specifika
tecken.

Nyckelord – Mekatronik, datahandske, teckenspråk, sträcksensorer,
elektriskt ledande tyg.

Acknowledgements

We would like to thank Pedro Duque and PLUX Wireless Biosignals for providing us
with a sample of their conductive textile. Their contribution played a major part in the
success of our thesis and for that we will always be grateful. We would also like to thank
our examinator Nihad Subasic for his support and feedback during this project as well as
Staffan Qvarnström for providing us with the electrical components.

Contents

1 Introduction ... 1

1.1 Background .. 1

1.2 Purpose ... 1

1.3 Scope .. 1

1.4 Method ... 2

2 Theoretical Background ... 3

2.1 Sensors ... 3

2.1.1 Flex sensor .. 3

2.1.2 Stretch sensor .. 3

2.2 Microcontroller .. 4

2.3 MPU6050 ... 4

2.4 Lithium polymer battery .. 4

2.5 DC-DC Converter .. 4

3 Demonstrator .. 6

3.1 Hardware .. 6

3.1.1 Stretch sensor .. 7

3.1.2 Power Supply .. 10

3.1.3 Accelerometer ... 11

3.2 Software ... 11

3.2.1 Stretch Sensor ... 12

3.2.2 Accelerometer ... 14

3.2.3 Value Interpretation .. 15

4 Results .. 18

4.1 Final construction... 18

4.2 Sensor Evaluation .. 18

4.3 Application Testing .. 19

5 Discussion .. 21

5.1 Hardware .. 21

5.2 Software ... 21

5.3 Results .. 22

5.4 Conclusion ... 22

5.5 Future work .. 22

Bibliography ... 24

Appendices .. 1

Appendix A .. 1

Sign Language chart .. 1

Appendix B .. 1

MPU6050 datasheet ... 1

Appendix C .. 1

Nina-W10 series data sheet .. 1

Appendix D .. 1

SAM D21 Family data sheet .. 1

Appendix E .. 1

Arduino code .. 1

Appendix F .. 1

Arduino header file .. 1

Appendix G .. 1

Acumen simulation .. 1

List of Figures
Figure 3.1. Electrical circuit of the glove. Drawn in Circuit Diagram [15]. 7
Figure 3.2. Theoretical maximum voltage difference as a function of resistor value.
Plotted in MATLAB [13]. ... 8
Figure 3.3. Voltage difference plotted against current draw. Plotted in MATLAB........ 10
Figure 3.4. Flow chart of program logic. Drawn in Lucid Chart [17]. 11
Figure 3.5. Voltage difference over time measured by the microcontroller. Plotted in
MATLAB... 12
Figure 3.6. Difference between median and raw sensor readings. Plotted in MATLAB.13
Figure 3.7. Boundary value compared to median value. Plotted in MATLAB. 14
Figure 3.8. Number of accepted readings plotted against the error margin for every
stretch sensor. Plotted in MATLAB. ... 16

Figure 4.1. Image of final construction. .. 18
Figure 4.2. Test results from sensor evaluation. Plotted in MATLAB. 19
Figure 4.3. Test result from application testing. Plotted in MATLAB. 20

List of Tables
Table 3.1. List of components and quantity. Drawn in Microsoft Word. 6
Table 3.2. Component and the estimated current drawn as per the corresponding
datasheet. The datasheets can be found in appendices B to D. Drawn in Microsoft word. 9
Table 3.3. Comparison of sensor values between the letters S and T. Drawn in Microsoft
Word. ... 16

List of abbreviations

ASL American Sign Language
BLE Bluetooth Low Energy
CSD Communication Service of the Deaf
CPU Central Processing Unit
DC Direct Current
DOF Degrees of Freedom
IMU Inertial Measurement Unit
IoT Internet of Things
LiPo Lithium Polymer
ML Machine Learning
MPU Motion Processing Unit
RAM Random Access Memory
UCLA The University of California, Los Angeles

1

1 Introduction
This chapter aims to introduce the reader to the project, why the project was chosen,
which questions the project aims to answer and in what scope. Since the project discusses
the differences between different signs in depth it is recommended that the reader
familiarizes themselves with the ASL alphabet which can be found in appendix A.

1.1 Background

There is no doubt that lacking the ability to communicate with people on an everyday
basis can lead to critical situations socially but can also lead to employment issues. As
stated by the Communication Service for the Deaf (CSD), 72% of families do not sign
with their deaf children and 70% of deaf people do not work or are unemployed because
of their lack in communication. Approximately 1 million people in USA use American
Sign Language (ASL) as their main way of communication according to CSD [1].

The idea is therefore to create a glove that can translate ASL to speech, and in that way
try to increase the communication possibilities and skills for the people who uses ASL.
By working on this project, our hope is to raise awareness to the current problems and try
to contribute to a solution.

1.2 Purpose

The goal is to construct a glove that can translate ASL to speech by reading finger- and
hand movements. The aim is to help people who cannot use their voice to communicate
and include them even further in everyday conversations and in that way increase their
participation in society.

To succeed in constructing a glove that can translate ASL by reading the finger and hand
movements, the following questions at issue must be investigated.

• How can electrically conductive fabric be applied as stretch sensors?

• How can one efficiently read the finger and hand movements and translate ASL
to speech with high accuracy?

1.3 Scope

This project will focus on translating the American Sign Language alphabet and not the
entire language. By translating the alphabet, the project hopes to prove the applicability
of the glove for translating the entire language.

2

1.4 Method

The construction of the glove takes inspiration from a project conducted by students at
Cornell University which developed a glove that can translate ASL alphabet using flex
sensors on the fingers [2]. The flex sensors are replaced with conductive textile strips to
explore the applicability of conductive textiles as stretch sensors. If these sensors
outperform the flex sensors, the improvement will tackle both questions at issue since it
is more efficient and leads to a smoother design of the glove. An accelerometer is
mounted to the back of the glove to register the hand angle and movements which are
transmitted to a microcontroller. The microcontroller will read the values from the stretch
sensors and the accelerometer and translate them into the corresponding signs which then
are transmitted wirelessly over Bluetooth Low Energy to an external device.

3

2 Theoretical Background

The main problem presented when translating sign language is to accurately record the
users hand movements through a data glove. The data glove needs to both be accurate in
its readings of the hand movements as well as non-obstructive in everyday use. This
project will therefore focus on innovating upon previous designs and implementing better
solutions.

2.1 Sensors

To register the hand movements a variety of sensors will be mounted to the glove. This
chapter aims to clarify the purpose of each sensor as well as its implementation on the
glove.

2.1.1 Flex sensor

It is crucial to reliably be able to distinguish how much each finger is bent. This can be
achieved by mounting flex sensors to each finger. The flex sensors are constructed with
rubber which changes resistivity when stretched or compressed [18]. By measuring the
change in resistance, it is possible to determine how much the sensor and by extension
the finger is bent. Flex sensors applicability in sign language translating gloves has been
proved by students at Cornell who constructed a glove using commercially available flex
sensors [2]. The disadvantage with these sensors is their rigidity and stiffness which may
result in fatigue over prolonged periods of use.

2.1.2 Stretch sensor

An alternative to using flex sensors is stretch sensors. Stretch sensors have an increased
resistivity when stretched and by measuring the change in resistivity the elongation can
be determined. Therefore, by measuring the elongation of the stretch sensor, it is possible
to determine how much a finger is bent. The advantage of using stretch sensors over flex
sensors is their flexibility and stretchability, which makes them suitable to use over
prolonged periods of time.

Using stretchable sensors in sign language translation have been proved to work in a
study made by researchers at UCLA [3]. An accuracy of 98% when translating sign
language was achieved, whilst drastically reducing the size of the glove and therefore
demonstrated the applicability of conductive textiles as a stretch sensor. The project
conducted at UCLA did not apply a commercially available textile and thus a
replacement needs to be found. In a paper exploring the applicability of a conductive
textile from EeonTex [12] it was concluded that the fabric was suitable for applications
where human joint-movement needs to be monitored suggesting that a similar textile can
be used in this project.

4

It should be noted though that if the EeonTex textile is exposed to sweat its
characteristics and behaviour will change [11]. Considering that the sensors will be
mounted to the fingers this should not be an issue.

2.2 Microcontroller

A microcontroller is a form of a miniature computer. It consists of several devices such
as a CPU, some RAM and input and output devices. The CPU (central processing unit) in
the microcontroller is used to execute programs, the RAM (random-access memory) is
used to store variables and lastly the input and output devices are used to communicate
with people or other electronic devices [4].

There are many kinds of microcontrollers out in the market that are used to execute
programs or work with other electronic devices in different constructions. The
microcontroller which is used for the sign language glove is called Arduino Nano 33 IoT.
The Arduino Nano 33 IoT has 22 pins which makes it possible to send and receive
information to from different kinds of components, such as the sensors that are used on
the sign language glove [5]. The Arduino Nano 33 IoT was implemented due to its
smaller footprint as well its capability to connect wirelessly over Wi-Fi or Bluetooth Low
Energy (BLE).

2.3 MPU6050

The MPU6050 is a 6 DOF MPU consisting of a gyroscope and accelerometer, which
makes it possible to measures acceleration and change in angular velocity in 3 axes [6].
The information from the accelerometer alone is enough to determine the exact
orientation of the glove, which is crucial when translating ASL, since hand orientation is
a big part of the language.

2.4 Lithium polymer battery

Lithium Polymer batteries are rechargeable batteries. The main advantages of a LiPo
battery are their weight and energy density compared to other battery variants.
Furthermore, LiPo batteries are common and commercially available in many sizes
making them easy to integrate into the project. LiPo batteries often have a voltage of
3.7V meaning that a DC-DC boost converter is needed to be able to power the
microcontroller [7].

2.5 DC-DC Converter

A dc-dc converter is an electronic device that converts voltage from a source to either
higher or lower voltage, depending on what is needed. The dc-dc converter consists of
inductors, transformers, and capacitors, and by using high-frequency switching, the
device can store the input voltage momentarily and then release it to get the desired
voltage output [8].

5

The boost converter used in this project is called PowerBoost 500. It is a dc-dc converter
which can be used on batteries from 1.8V and higher to boost it to 5.2V. The voltage
output is set to 5.2V, where the extra 0.2V is for the internal resistance in the cables and
devices used. Even though the Arduino Nano 33 IoT has a maximum capacity of 5V, the
5.2V is safe to use [9].

6

3 Demonstrator

Chapter three aims to introduce the hardware and software implementations of each
component.

3.1 Hardware
Stretch sensors will be fitted to each finger and an accelerometer will be mounted to the
back of the hand. The processing of data will be done by an Arduino Nano 33 IoT
powered by a battery and a DC-DC converter. The used components are listed in table
3.1.

Component Model Quantity
Microcontroller Arduino Nano 33 IoT 1
Resistor 52.3Ω 0.25W Resistor 5
Conductive Fabric strip PLUX Conductive Lycra Fabric 5
Battery LiPo Battery 3.7V 400mAh 1
DC-DC converter PowerBoost 500 Basic 1
Accelerometer MPU6050 1

Table 3.1. List of components and quantity. Drawn in Microsoft Word.

The stretch sensors are connected to the analog pins of the microcontroller and powered
by the 5V output pin. To communicate through the I2C protocol the accelerometer is
connected to pin A4 and A5 and powered by the 3.3V pin. The LiPo battery is connected
to a DC-DC converter which boosts the voltage from 3.7V to 5.2V which is input to the
microcontroller through mini-USB. The electrical circuit can be seen in figure 3.1.

7

Figure 3.1. Electrical circuit of the glove. Drawn in Circuit Diagram [15].

3.1.1 Stretch sensor

When stretched the electrical fabric changes resistance. Since the microcontroller cannot
read the resistance over the sensor it will instead measure the resulting change in voltage.
To accomplish this the microcontroller and sensor will be wired according to figure 3.1.

The total voltage U is the sum of the voltage over the sensor and the resistor. The voltage
can be derived from the following formula.

 U RI= (3.1)

Since the resistor and the sensor are paired in series the current flowing through each
respective component is the same. The current can be determined by dividing both sides
of equation (3.1) with the resistance R.

U

I
R

= (3.2)

The total resistance of the circuit is equal to the sum of the resistance in both the sensor
and resistor according to

 ReSensor sistorR R R= + (3.3)

8

and by combining (3.1) through (3.3) the voltage over the sensor can be obtained from

 Re

Re

(1)sistor
Sensor

Sensor sistor

R
U U

R R
= −

−
 (3.4)

It is evident from (3.4) that the voltage over the sensor is dependent on the resistor value.
Therefore, it is advantageous to choose a resistance such that the voltage difference over
the sensor is as large as possible. By measuring the maximum and minimum resistance of
the stretch sensor the difference in voltage can be derived from (3.4) according to

 Re tan
Re max Re t

1 1
()sis ce

min sistor sis or

U UR
R R R R

 = −
+ +

 (3.5)

The sensor resistance was obtained from a multimeter and to determine the optimal
resistor value the equation is visualised in a plot with resistor values ranging from 0-
180Ω.

Figure 3.2. Theoretical maximum voltage difference as a function of resistor value.
Plotted in MATLAB [13].

The maximum voltage difference is obtained from the graph in figure 3.2 to 0.68V with a
resistor value of 34Ω.

The previous calculations do not take the power draw of the sensor circuitry into
consideration. The Arduino Nano 33 IoT is limited to a maximum input current of

9

500mA through the USB port which must be distributed between the stretch sensors as
well as the microcontroller. To determine the maximum current that can be allowed to
pass through the sensors the power draw from the manufacturer's datasheet is compiled
for all the components in table 3.2.

Component Typical current draw [mA]
SAMD21 Cortex-M0+ 32bit low power ARM MCU 7
u-blox NINA-W102 130
MPU6050 3.9

Table 3.2. Component and the estimated current drawn as per the corresponding
datasheet. The datasheets can be found in appendices B to D. Drawn in Microsoft word.

By summing the current requirements of the respective components, the theoretical
maximum power draw is obtained to roughly 141 mA allowing a maximum current draw
of 359 mA for the stretch sensors. To ensure that the power limit is not exceeded an
overhead of 10% is added to the power draw of the stretch sensors resulting in a
maximum allowed current of 323mA.

To calculate the current through the sensor assembly the total resistance is calculated
from,

1

1 1n

itot iR R=

= (3.6)

where Ri is the resistance of each sensor and resistor pairing and n is the total amount of
sensors. Under the assumption that all sensors are identical the total resistance can be
derived from (3.6) according to

 min

5
m

tot

R R
R

+
= (3.7)

The current through the sensors can thus be determined by combining (3.2) with (3.7)

min

5

m

U
I

R R
=

+
 (3.8)

With a voltage of 5V and the ideal resistor value of 34Ω the current is calculated to
417mA which exceeds the aforementioned limit and therefore it needs to be reduced.
From (3.8) it is evident that there are two ways to obtain a decreased current through the
sensors, either the voltage can be lowered, or the resistor value can be increased. To
determine the ideal approach the current draw and voltage difference of both methods is
evaluated with equation (3.5) and (3.8). The equations are calculated with voltage values
ranging from 0V to 5V as well as resistor values ranging from 34Ω to 1MΩ, and the
resulting voltage difference is plotted against the corresponding current draw in figure
3.3.

10

Figure 3.3. Voltage difference plotted against current draw. Plotted in MATLAB.

From the graph in figure 3.3, it is clear that decreasing the current by increasing the
resistance results in a higher voltage difference compared to decreasing the voltage over
the sensors. Equation (3.8) is therefore derived to find the resistance value which limits
the current to 323mA according to

 min

5
m

U
R R

I
= − (3.9)

and the resistance is found to be 51Ω.

3.1.2 Power Supply

Powering the glove is done by a LiPo battery integrated into the wrist of the glove. The
placement of the battery presents a limitation of the physical size of the battery which is
measured to be around 40x30x5mm. Since the current draw of the electronics is estimated
to be around 500mA it is advantageous to choose a battery with the largest possible
capacity given the size constraints to prolong the battery life between charging. The
battery which was chosen has the dimensions 35x25x5mm and a voltage of 3.7V.
Furthermore, the capacity of the battery is 400mAh which allows the glove to be used for
an estimated 48 minutes before needing to be recharged.

11

To power the microcontroller with the LiPo battery the voltage needs to be boosted from
3.7V to meet the 5V requirement of the microcontroller which is done through a DC-DC
converter. The DC-DC converter was integrated in between the microcontroller and the
LiPo battery. The converter connects to the battery through a JST terminal and to the
Arduino through the mini-USB port.

3.1.3 Accelerometer

To implement the MPU6050 a model with a breakout board was chosen. The breakout
board facilitates the use of the accelerometer by allowing access with through hole
soldering. The MPU6050 can operate on a voltage ranging from 3-5V and has a power
draw of 3.9mA. The module can therefore be powered by the Arduino through the 3.3V
pin which can supply 7mA. Communication between the Arduino and MPU6050 is done
through the I2C protocol. On the microcontroller pin A4 and A5 correspond to SDA and
SCL respectively and are therefore connected to the MPU. The accelerometer is sewn
into place on the back of the hand to be able to measure the position and gestures.

3.2 Software

To accurately be able to determine which gesture is signed the microcontroller must
evaluate the sensor values. The logic behind the program which accomplishes this
follows the flowchart depicted in figure 3.4.

Figure 3.4. Flow chart of program logic. Drawn in Lucid Chart [17].

12

When powered on the Arduino tries to connect to another device through BLE. When a
connection has been established the Arduino reads the values from the sensors and
accelerometer before calculating the median of the last seven values. The medians are
then compared to the known signs that are stored and imported from the header file
HandGesturesPierre.h. If there is a match the Arduino compares the last six translated
signs. If the same sign has been translated six times consecutively it is likely that the sign
corresponds to the hand gesture and the translation is transmitted wirelessly over BLE to
the connected device. The code and header file can be found in appendix E and F.

3.2.1 Stretch Sensor

To properly evaluate the applicability of the stretch sensor it is important to establish the
characteristics of a desirable sensor reading. For this project it is crucial that the stretch
sensor produces a repeatable sensor reading and that the sensor is precise enough to be
able to differentiate between minute differences in finger placement.

By wiring up the stretch sensor to the microcontroller the change in voltage over the
sensor can be measured. The result of stretching the sensor can be seen in figure 3.5.

Figure 3.5. Voltage difference over time measured by the microcontroller. Plotted in
MATLAB.

The range on the y-axis is the direct output of the microcontroller’s readings. Since the
Arduino Nano 33 IoT operates on 3.3V with a resolution of 10 bit each step corresponds

13

to a change of approximately 3.2mV. It is evident from the graph in figure 3.5 that in its
current implementation the conductive fabric is not applicable as a stretch sensor. The
most prevalent issue at hand is the frequent spikes in readings which result in incorrect
predictions of hand gestures and thus inadequate accuracy.

To reduce the spikes in the sensor readings the Arduino library Running Median [10] is
implemented to store the last seven read values and calculate median. By calculating the
median, the spikes even out resulting in the median graph in figure 3.6.

Figure 3.6. Difference between median and raw sensor readings. Plotted in MATLAB.

One downside with the calculating the median is that it results in a time delay which can
be observed from the figure 3.6. The delay was measured to be around 80 milliseconds
which is negligible for the scope of this project. Another issue presented when using
conductive fabric as stretch sensors is that the sensor values stabilize over a prolonged
period. From the timeframe 3.5s to 4.5s in figure 3.6 it can be observed that the values
rise from 540 to 600 which corresponds to an increase of 11%. For the sensor values to
stabilize faster a boundary is therefore implemented. If the rate of change is slow it is an
indication that the finger has not moved, and the change can be attributed to the
stabilization of the conductive fabric. The sensor value will thus only be reported if it
differs more than 3 or roughly 10mV from the previous reading resulting in the bound
value graph in figure 3.7.

14

Figure 3.7. Boundary value compared to median value. Plotted in MATLAB.

The final implementation of the sensor evaluation presents a desirable behaviour where
the sensor values are stable.

3.2.2 Accelerometer

The accelerometer is implemented to be able to determine the angle of the glove which is
necessary for differentiating between different signs with the same finger placement.
Furthermore, the accelerometer is used to determine if the glove is stationary or in
motion which is crucial for the differentiation of the signs I and J for example. The
breakout board of the MPU6050 is equipped with a processor which converts the
readings from the accelerometer to m/s2 along the x,y and z-axis of the MPU which is
then transmitted to the microcontroller. Since the MPU6050 communicates through the
I2C-protocol the Arduino Wire library [16] is implemented to interpret the values from
the accelerometer. When tilting the hand forward the acceleration ranges from 3m/s2 to
9.82m/s2. By observing the current acceleration along the x-axis of the MPU the angle of
the hand can therefore be decided.

15

To determine if the hand is in motion the norm of the acceleration is calculated according
to equation (3.10)

 2 2 2
x y za a a a= + + (3.10)

where ax, ay and az denote the acceleration component in each axis as given by the MPU.
When stationary the only force acting on the accelerometer is the gravitational force
which results in an acceleration of 9.82m/s2. Any deviation from an acceleration of
9.82m/s2 therefore indicates that the hand has gone into motion. The absolute difference
between the acceleration and gravitational force is therefore calculated according to
(3.11)

 2 2 29.82diff x y za a a a= − + + . (3.11)

3.2.3 Value Interpretation

For the microcontroller to evaluate the likelihood of the current gesture each sensor value
is interpreted individually. For each known gesture there is a set composed of five sensor
values for each individual finger. When the sensor readings are recorded the values are
evaluated against the known gestures to determine the corresponding set. It is expected
that there will be some degree of variance between the sensor readings since the user will
not be able to replicate identical signs and an error margin is thus implemented. To
evaluate the variance in sensor readings and the necessary error margin the letter A was
signed 100 times repeatedly and the corresponding sensor values were recorded. The
average from the readings of each respective finger was calculated from which the error
was calculated according to (3.12)

 1
Reading

Error
Average

= − . (3.12)

16

To determine a suitable error margin number of readings from each stretch sensor which would be
accepted as the sign A is plotted against the error margin in figure 3.8.

Figure 3.8. Number of accepted readings plotted against the error margin for every stretch sensor.

Plotted in MATLAB.

From figure 3.8 it can be observed that at an error margin on 10.7%, all the gestured signs would have
been accepted. One issue with choosing such a large error margin is that the interval for acceptable
readings between different will overlap. For example, observe the signs S and T. Calculating the
average sensor value over 10 readings for each sign results in the following result presented in table
3.3.

 Thumb Index finger Middle finger Ring finger Little finger
S 689.9 651.4 701.0 572.4 665.8
T 697.7 704.1 683.8 603.2 714.5
Difference [%] 1.1 7.5 2.5 5.1 6.8

Table 3.3. Comparison of sensor values between the letters S and T. Drawn in Microsoft Word.

To prevent mistranslation the sign best corresponding to the sensor readings therefore needs to be
calculated. The error for each respective finger is summed and the translation is determined by the
sign with the least total difference. The approach is inefficient since it does require iterating through
all the known signs but considering the scope of this project only encompasses the ASL alphabet
which contains 26 different signs it is not deemed a problem.

To incorporate the accelerometer in the translation process the acceleration along the MPU’s x-axis,
ax and the difference between the acceleration and gravitational force, adiff are observed. For

17

translating the alphabet there are two positions of the hand that need to be differentiated between,
when the hand is straight and when it is tilted forward. At these positions, the accelerometer reads
9.82m/s2 and 3m/s2 respectively. An arbitrary solution is therefore implemented where the position of
the hand is deemed as straight when the acceleration ax is larger than 6m/s2. If the hand is stationary or
in motion is determined by adiff which is implemented in a similar way to ax. The state in which the
hand is deemed to be is calculated by a threshold of 1m/s2. If the acceleration surpasses the threshold
it can be concluded that the hand has begun moving.

18

4 Results

The project set out to answer two questions, how can electrically conductive fabric be applied as a
stretch sensor and how can one efficiently read the finger and hand movements and translate ASL to
speech. To evaluate and answer these questions a glove was fitted with conductive stretch sensors and
two tests were conducted.

4.1 Final construction

The final construction of the glove is fitted with five strips of conductive fabric on each finger which
act as stretch sensors. The sensors are powered by the Arduino Nano 33 IoT which is mounted to the
wrist of the glove. Furthermore, the back of the hand is fitted with an MPU6050 which is connected
and powered by the Arduino. To power the assembly a LiPo battery is sewn into the wrist and
connected to a PowerBoost 500 through a JST terminal. The PowerBoost 500 converts the battery
voltage of 3.7V to 5.2V which is fed to the Arduino through the mini-USB interface. The final
construction is shown in figure 4.1.

Figure 4.1. Image of final construction.

4.2 Sensor Evaluation

To determine the accuracy of the glove each letter was signed 10 times consecutively. The test aims to
test the repeatability of the sensor readings and in extension the gesture interpretation. By signing the
same letter consecutively, it is more likely that the same gesture will be replicated more precisely and
thus reducing variance from user error. The result from the test is shown in figure 4.2.

19

Figure 4.2. Test results from sensor evaluation. Plotted in MATLAB.

Out of the 260 translations 250 were correct resulting in an accuracy of 96%. In most cases a 100%
accuracy was reached but for the worst cases only an accuracy of 70% could be reached.

4.3 Application Testing

Should the glove be used in realistic circumstances it is unlikely that the user will perform the same
gesture consecutively. During this test, the user will therefore translate 100 letters generated at
random to replicate a more likely scenario. The test aims to evaluate how well the translating holds up
when more variance is introduced and hopes to determine the performance in a more likely use
scenario. The result from the test is shown in figure 4.3.

20

Figure 4.3. Test result from application testing. Plotted in MATLAB.

Out of the 100 translations 93 were correct resulting in an accuracy of 93%.

21

5 Discussion

This chapter discusses the results of the project and changes which can be implemented to
further improve the glove.

5.1 Hardware

One of the main drawbacks which presented itself early during the project was the power draw
of the sensors. Traditional flex sensors which have been implemented to translate sign language
have a resistance of roughly 10kΩ compared to the conductive fabric which has 0.25% of the
resistance at 25Ω. Since power is reverse proportional to the resistance the stretch sensors draw
400 times more current comparatively. Furthermore, the current flowing through the sensors
presented limitations in the effectiveness of the sensors. Early revisions of the glove were built
using 34Ω resistors to achieve the optimal reading range which resulted in a current draw of
approximately 417mA. Once the BLE module was initiated the current draw would exceed the
maximum of 500mA resulting in the microcontroller failing. The final revision therefore
implements 52Ω resistors which lowered the power draw to 323mA but also resulted in a 12%
smaller range for the sensor values.

Originally it was planned for the IMU on the Arduino Nano 33 IoT to be utilized since space on
the glove is sparse but during prototyping the IMU stopped working and would no longer
output any values. Since the rest of the microcontroller was still functional it was decided that
an external accelerometer in the form of a MPU6050 would be implemented instead of
replacing the whole microcontroller. One advantage of the MPU6050 that was discovered was
that its smaller footprint made it easier and more comfortable to mount on the back of the hand
compared to the microcontroller. The downside with the chosen MPU was that it only had 6
DOF which resulted in that the absolute position of the hand could not reliably be determined.
For the scope of this project the signs were trivial enough for a 6 DOF MPU to suffice but
should signs involving more complex movements be translated it is recommended that an MPU
with 9 DOF be used instead.

In the original design hall-effect sensors would be implemented with magnets on the end of the
index and middle finger. The design took inspiration from the data glove constructed by
students at Cornell University who had utilized contact sensors on the end of the finger since
the glove could not differentiate between R, U and V otherwise. During testing it was found that
the hall-effect sensors were redundant which led to their removal. One advantage of the stretch
sensors which had not been considered was its ability to stretch in two directions compared to
the traditional flex sensors which only could register flexing parallel to the finger. When
signing R, U and V the change in resistance due to stretching horizontally relative the fingers
was large enough to measure and differentiate between the three letters.

5.2 Software

The interpretation of the accelerometer values is rudimentary and far from ideal. The glove can
only recognize two states of the hand position, straight or bent as well as only being able to
determine if the hand is still or moving with no differentiation between speed or direction.
Furthermore, rotation around one axis is only taken into consideration since the scope of this

22

project does not put any further requirements on the glove. It is therefore likely that the current
method would be inadequate and not provide the needed accuracy should signs with more
complex hand movements be added. The implemented method of determining the position and
movement of the hand should therefore only be viewed as a proof of concept rather than an
actual final solution.

5.3 Results

From the sensor evaluation result it is observed that the letters with the least success rate M, N,
S and T all have similar gestures where the only difference is the position of the thumb. As
discussed earlier in chapter 3.2.3 similar gestures were identified as a potential problem due to
the sensor values being close with the average difference between S and T at 4.6%. The issue
persists through both test which indicates that the issue lies with the sensor data. Since the only
differentiation between the signs is the position of the thumb it is likely that the issue could be
resolved by attaching another stretch sensor to it. Furthermore, in the processing of the sensor
data a weighting could be attributed to the thumb values resulting in the placement of the thumb
having a larger impact on the average difference.

Another interesting finding was the translation of R and U. From the sensor evaluation the
accuracy was 95% but, in the application, testing the accuracy dropped to 62.5%. The glove can
translate the signs with high accuracy but when the user is not reliable able to replicate the signs
the translation becomes inadequate. From figure 4.2 it is evident that a high degree of accuracy
is achievable with the existing hardware which would suggest that the issue could be resolved
by implementing a more refined process for evaluating the sensor data.

The result show that the project has been a success. Most signs could reliably be translated and
overall, the accuracy was 93% which is more than adequate as a baseline. Using the findings of
this report as a foundation for future work would likely see an improve of accuracy to the high
nineties which other similar projects have successfully achieved.

5.4 Conclusion

This project set out to answer two questions, how can conductive fabric be applied as a stretch
sensor and how can one accurately read hand gestures with a glove to translate ASL.

From the research and experiments conducted during this project it is evident that conductive
fabric can be utilized as a stretch sensor by measuring the voltage change over the fabric when
it is stretched. The sensor readings are precise and repeatable and can thus be applied in
situations where it is crucial to accurately record differences in stretching. Furthermore, the
conductive fabrics ability to stretch in several directions made so that the stretch sensors could
differentiate between more signs compared to a traditional flex sensor making it superior in
applications such as a translating glove.

The project also succeeded in reliably reading hand gestures to translate ASL. By implementing
the conductive fabric as stretch sensors to register the finger movement and a MPU6050 to
track the hand movements the ASL alphabet could be translated with an accuracy of 93%.

5.5 Future work

The implemented method to process the sensor values can be refined with machine learning. By
implementing machine learning into the glove, the program used will automatically improve
and refine each time the glove is used, by recognizing patterns and setting reasonable margins

23

of error based on the values gathered. There are several Arduino libraries to implement machine
learning such as TinyML, though it should be noted that these libraries might require an
Arduino Nano 33 BLE Sense which has a more powerful CPU [14].

The findings during the project were only based on the sample of conductive fabric provided by
PLUX. Whether other conductive textiles have similar or better characteristics was never
explored. It is therefore recommended that work based on these findings conduct experiments
and research on different conductive fabrics to evaluate the best fitting for its intended use.

24

Bibliography

[1] S.Waterfield. ASL Day 2019: Everything You Need To Know About American Sign
Language, 2019 [Online] Available at: https://www.newsweek.com/asl-day-2019-american-
sign-language-1394695 [Accessed 2021-03-01]

[2] M.Lin and R.Villalba. Sign Language Glove, Cornell University: School of Electrical and
Computational Engineering, 2014. [Online] Available at:
https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/f2014/rdv28_mjl256/webpag
e/ [Accessed 2021-04-04]

[3] Zhou, Z., Chen, K., Li, X. et al. Sign-to-speech translation using machine-learning-assisted
stretchable sensor arrays. Nat Electron 3, 571–578, 2020. [Online] Available at:
https://doi.org/10.1038/s41928-020-0428-6 [Accessed: 2021-03-30]

[4] M.Brain. How Microcontrollers Work, 2000. [Online] Available at:
https://electronics.howstuffworks.com/microcontroller.htm [Accessed: 2021-03-30]

[5] Arduino, Arduino Nano 33 IoT, [Online] Available at: https://store.arduino.cc/arduino-nano-
33-iot [Accessed: 2021-03-31]

[6] Dejan, Arduino and MPU6050 Accelerometer and Gyroscope Tutorial, 2019 [Online]
Available at: https://howtomechatronics.com/tutorials/arduino/arduino-and-mpu6050-
accelerometer-and-gyroscope-tutorial/ [Accessed 2021-04-10]

[7] A&S POWER, The advantages and disadvantages of lithium polymer battery, 2017
[Online] Available at: https://www.szaspower.com/industry-news/The-advantages-and-
disadvantag.html [Accessed 2021-04-25]

[8] Digi-Key, Introduction to DC-DC converters, 2016 [Online] Available at:
https://www.digikey.com/en/maker/blogs/introduction-to-dc-dc-converters [Accessed 2021-04-
25]

[9] Adafruit, PowerBoost 500 Basic – 5V USB Boost @ 500mA from 1,8V+. [Online] Available
at: https://www.adafruit.com/product/1903 [Accessed 2021-04-25]

[10] Arduino, Arduino Playground - RunningMedian, Playground.arduino.cc 2014[Online].
Available at: https://playground.arduino.cc/Main/RunningMedian/ [Accessed 2021-04-30]

[11] Y. Teyeme, B. Malengier, T. Tesfaye, and L. Van Langenhove, A Fabric-Based Textile
Stretch Sensor for Optimized Measurement of Strain in Clothing, vol. 20, no. 24, p. 7323, 2020
[Online] Available at: http://dx.doi.org/10.3390/s20247323 [Accessed: 2021-04-03]

[12] Pal, S., Sarkar, D., S. Roy, D., Paul, A., Arora, A., Design, development and fabrication of
a conductive fabric based flexible and stretchable strain sensor, Sayantan Pal et al IOP Conf.
Ser.: Mater. Sci. Eng. vol. 912, 2020 [Online] Available at:
https://iopscience.iop.org/article/10.1088/1757-899X/912/2/022009 [Accessed: 2021-04-04]

https://www.newsweek.com/asl-day-2019-american-sign-language-1394695
https://www.newsweek.com/asl-day-2019-american-sign-language-1394695
https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/f2014/rdv28_mjl256/webpage/
https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/f2014/rdv28_mjl256/webpage/
https://doi.org/10.1038/s41928-020-0428-6
https://electronics.howstuffworks.com/microcontroller.htm
https://store.arduino.cc/arduino-nano-33-iot
https://store.arduino.cc/arduino-nano-33-iot
https://howtomechatronics.com/tutorials/arduino/arduino-and-mpu6050-accelerometer-and-gyroscope-tutorial/
https://howtomechatronics.com/tutorials/arduino/arduino-and-mpu6050-accelerometer-and-gyroscope-tutorial/
https://www.szaspower.com/industry-news/The-advantages-and-disadvantag.html
https://www.szaspower.com/industry-news/The-advantages-and-disadvantag.html
https://www.digikey.com/en/maker/blogs/introduction-to-dc-dc-converters
https://www.adafruit.com/product/1903
https://playground.arduino.cc/Main/RunningMedian/
http://dx.doi.org/10.3390/s20247323
https://iopscience.iop.org/article/10.1088/1757-899X/912/2/022009

25

[13] Mathworks, MATLAB 2019a. [Online] Available at:
https://www.mathworks.com/products/matlab.html [Accessed 2021-02-28]

[14] TensorFlow, TensorFlow Lite for Microcontrollers, 2021 [Online] Available at:
https://www.tensorflow.org/lite/microcontrollers?fbclid=IwAR2BMHugRAJmWDQN8OmqQi
KGiyCZpgLjdRZ0C8zE4hqQyYZuKE1dVAr1A2Y [Accessed 2021-05-01]

[15] Circuit-Diagram, Circuit-Diagram editor [Online] Available at: https://www.circuit-
diagram.org/editor/ [Accessed 2021-05-02]

[16] Arduino, Wire Library, 2019. [Online] Available at:
https://www.arduino.cc/en/reference/wire [Accessed 2021-05-02]

[17] Lucid, Lucid Chart. [Online] Available at: https://lucid.co/product/lucidchart [Accessed 2021-05-
05]

[18] Alapati, Sreejan & Yeole, Shivraj. A Review on Applications of Flex Sensors, 2017.
International Journal of Emerging Technology and Advanced Engineering. Vol.7 page.97-100.
[Online] Available at:
https://www.researchgate.net/publication/318850816_A_Review_on_Applications_of_Flex_Se
nsors [Accessed 2021-04-04]

https://www.mathworks.com/products/matlab.html
https://www.tensorflow.org/lite/microcontrollers?fbclid=IwAR2BMHugRAJmWDQN8OmqQiKGiyCZpgLjdRZ0C8zE4hqQyYZuKE1dVAr1A2Y
https://www.tensorflow.org/lite/microcontrollers?fbclid=IwAR2BMHugRAJmWDQN8OmqQiKGiyCZpgLjdRZ0C8zE4hqQyYZuKE1dVAr1A2Y
https://www.circuit-diagram.org/editor/
https://www.circuit-diagram.org/editor/
https://www.arduino.cc/en/reference/wire
https://lucid.co/product/lucidchart
https://www.researchgate.net/publication/318850816_A_Review_on_Applications_of_Flex_Sensors
https://www.researchgate.net/publication/318850816_A_Review_on_Applications_of_Flex_Sensors

1

Appendices

Appendix A

Sign Language chart

1

Appendix B

MPU6050 datasheet

1

Appendix C

Nina-W10 series data sheet

1

Appendix D

SAM D21 Family data sheet

1

Appendix E

Arduino code

// Authors - Pierre Sinander and Tomas Issa
// KTH - Royal Institute of Technology
// Course – MF133X – Degree Project in Mechatronics
// TRITA ITM-EX 2021:38
// Name of project – Sign Language Translation
// Date – 09-05-2021
//The program reads the values from the stretch sensors and the MPU6050 and compares them
// against the known signs stored in the file HandGesturesPierre.h. The best matching sign is the
// transmitted wirelessly over BLE.

#include "RunningMedian.h"
#include <ArduinoBLE.h>
#include <Adafruit_MPU6050.h>
#include <Adafruit_Sensor.h>
#include <Wire.h>
#include "HandGesturesPierre.h"
Adafruit_MPU6050 mpu;

//analog pin for each respective finger
int pin1 = A3;
int pin2 = A2;
int pin3 = A6;
int pin4 = A1;
int pin5 = A0;

int SensorReading[5] = {0,0,0,0,0}; //Array that stores the readings
int TrailingValue[5] = {0,0,0,0,0}; //Array that stores the trailing data
int Data[7] = {0,0,0,0,0,0,0};

RunningMedian s1 = RunningMedian(7); //Initiates a sample pool for each finger that stores 20
values
RunningMedian s2 = RunningMedian(7);
RunningMedian s3 = RunningMedian(7);
RunningMedian s4 = RunningMedian(7);
RunningMedian s5 = RunningMedian(7);

RunningMedian norm = RunningMedian(7);
RunningMedian x = RunningMedian(7);

int boundry = 5; //Boundry value
float BestMatch[2]; //array for storing the best match, inex 0 is the error and 1 is the index of
the character

float error; //Variable which stores the error

2

int ind;
int c = 0;

BLEService SensorService("1101");
BLEUnsignedCharCharacteristic sensorLevelChar("2101", BLERead | BLENotify);

void setup() {
 //Specifies output and input pins
 pinMode(pin1, INPUT);
 pinMode(pin2, INPUT);
 pinMode(pin3, INPUT);
 pinMode(pin4, INPUT);
 pinMode(pin5, INPUT);
 pinMode(LED_BUILTIN, OUTPUT);
 Serial.begin(9600);

 //Initializes the MPU6050
 if (!mpu.begin()) {
 while (1);
 }

 mpu.setAccelerometerRange(MPU6050_RANGE_4_G);
 mpu.setGyroRange(MPU6050_RANGE_250_DEG);
 mpu.setFilterBandwidth(MPU6050_BAND_21_HZ);

 //Initializes BLE
 if (!BLE.begin()) {
 Serial.println("starting BLE failed!");
 while (1);
 }

 BLE.setLocalName("Translating Glove");
 BLE.setDeviceName("Translating Glove");
 BLE.setAdvertisedService(SensorService);
 SensorService.addCharacteristic(sensorLevelChar);
 BLE.addService(SensorService);

 BLE.advertise();

}

void loop() {
 BLEDevice central = BLE.central();
 if (central){
 digitalWrite(LED_BUILTIN, HIGH); //Once connected the LED will be turnt on

 while (central.connected()){

 BestMatch[0] = 0.12;
 BestMatch[1] = n; //Assigns an index which displays nothing

 ReadMPU();
 ReadStretchSensor();

3

 for (int i = 0; i < n; i++){ //Iterates through the rows of the matrix
 if(Data[5] == Words[i][5] && Data[6] == Words[i][6]){
 error = Error(i);

 if(error < BestMatch[0]){
 BestMatch[0] = error;
 BestMatch[1] = i;
 }
 }

 }

 if(ind == BestMatch[1]){ //If it is the same reading as before we add one to c
 c++;
 }

 ind = BestMatch[1]; //Sets the index in the translation matrix to the best match
 if(c > 4){
 sensorLevelChar.writeValue(Translation[ind]);
 }

 //PlotValues(); //Function to plot the readings from the stretch sensor
 delay(50);
 }
 }
 //When the Arduino isnt connected to another device through BLE the on-board LED
 //will blink every second indicating that it is read for pairing
 digitalWrite(LED_BUILTIN, HIGH);
 delay(500);
 digitalWrite(LED_BUILTIN, LOW);
 delay(500);

}

float Error(int i){ //Error calculations using percent
 float max_error = 0.12;
 float error = 0;

 for(int j = 0; j < 5; j++){
 if(abs(1 - Data[j]/Words[i][j]) > max_error){
 return 1;
 }

 error = error + abs(1 - Data[j]/Words[i][j]);
 }

 return error;
}

void PlotValues(){ //Plots the values for each finger
 Serial.print(Data[0]);
 Serial.print(",");

4

 Serial.print(Data[1]);
 Serial.print(",");
 Serial.print(Data[2]);
 Serial.print(",");
 Serial.print(Data[3]);
 Serial.print(",");
 Serial.println(Data[4]);
}

void ReadMPU(){
 sensors_event_t a, g, temp;
 mpu.getEvent(&a, &g, &temp);

 x.add(a.acceleration.x);
 norm.add(abs(9.82 - sqrt(sq(a.acceleration.x) + sq(a.acceleration.y) + sq(a.acceleration.z))));

 if(x.getAverage() < 6){
 Data[5] = 0; //Position of hand laying down
 }
 else{
 Data[5] = 1; //Position of hand straight up
 }

 if(norm.getAverage() < 1.1){
 Data[6] = 0; //Hand is still
 }
 else{
 Data[6] = 1; //Hand is in motion
 }
}

void ReadStretchSensor(){
 s1.add(analogRead(pin1)); //Adds the readings to each respective sample pool
 s2.add(analogRead(pin2));
 s3.add(analogRead(pin3));
 s4.add(analogRead(pin4));
 s5.add(analogRead(pin5));

 SensorReading[0] = s1.getMedian(); //Assigns the median of each respective finger
 SensorReading[1] = s2.getMedian();
 SensorReading[2] = s3.getMedian();
 SensorReading[3] = s4.getMedian();
 SensorReading[4] = s5.getMedian();

 for(int i=0; i<5; i++){ //Reads the sensor values
 if(abs(SensorReading[i] - TrailingValue[i]) > boundry){
 Data[i] = SensorReading[i];
 }
 TrailingValue[i] = SensorReading[i];
 }
}

1

Appendix F

Arduino header file

// Authors - Pierre Sinander and Tomas Issa
// KTH - Royal Institute of Technology
// Course – MF133X – Degree Project in Mechatronics
// TRITA ITM-EX 2021:38
// Name of project – Sign Language Translation
// Date – 09-05-2021
//The header file stores all the known signs as well as the corresponding values.

#define n 26 //Number of words we have in our matrix

float Words[n][7] = { //Matrix containing all the sensor values
 {725.40, 703.10, 587.90, 635.20, 726.80, 1, 0}, //A
 {527.70, 540.30, 750.80, 470.60, 544.10, 1, 0}, //B
 {757.40, 713.50, 731.90, 675.20, 671.50, 1, 0}, //C
 {758.50, 515.20, 754.90, 598.80, 750.30, 1, 0}, //D
 {695.20, 620.70, 746.50, 616.00, 637.50, 1, 0}, //E
 {557.90, 738.90, 740.20, 541.90, 530.30, 1, 0}, //F
 {734.30, 535.20, 654.50, 638.30, 709.60, 0, 0}, //G
 {676.50, 638.70, 752.10, 473.10, 700.50, 0, 0}, //H
 {725.90, 706.10, 688.20, 633.80, 557.80, 1, 0}, //I
 {725.90, 706.10, 688.20, 633.80, 557.80, 1, 1}, //J
 {681.40, 545.20, 663.50, 488.40, 662.00, 1, 0}, //K
 {693.10, 511.40, 513.70, 599.90, 704.20, 1, 0}, //L
 {688.60, 745.10, 663.10, 629.10, 656.80, 1, 0}, //M
 {651.90, 699.90, 648.40, 583.40, 601.00, 1, 0}, //N
 {775.00, 753.60, 735.70, 691.60, 743.90, 1, 0}, //O
 {723.70, 599.30, 693.50, 615.80, 695.50, 0, 0}, //P
 {700.90, 662.30, 628.90, 594.40, 697.60, 0, 0}, //Q
 {696.20, 593.20, 748.80, 455.90, 671.90, 1, 0}, //R
 {689.90, 651.40, 701.00, 572.40, 665.80, 1, 0}, //S
 {697.70, 704.10, 683.80, 603.20, 714.50, 1, 0}, //T
 {687.20, 534.30, 757.90, 426.20, 687.80, 1, 0}, //U
 {715.60, 470.70, 755.70, 417.90, 677.00, 1, 0}, //V
 {536.30, 545.00, 758.50, 463.90, 698.70, 1, 0}, //W
 {720.30, 540.10, 736.70, 518.60, 700.30, 1, 0}, //X
 {732.00, 735.40, 526.70, 640.70, 577.10, 1, 0}, //Y
 {748.40, 619.00, 752.10, 595.70, 735.50, 0, 1} //Z
};

char Translation[n+1]{'A' ,'B' ,'C' ,'D' ,'E' ,'F' ,'G' ,'H' ,'I' ,'J' ,'K' ,'L' ,'M' ,'N' ,'O' ,'P' ,'Q' ,'R' ,'S'
,'T' ,'U' ,'V' ,'W' ,'X' ,'Y' ,'Z' ,' '}

1

Appendix G

Acumen simulation
// Authors - Pierre Sinander and Tomas Issa
// KTH - Royal Institute of Technology
// Course – MF133X – Degree Project in Mechatronics
// TRITA ITM-EX 2021:38
// Name of project – Sign Language Translation
// Date – 28-03-2021

model Main(simulator) =
initially
_3D = (),
_3DView = ((3,-7,5) ,(0,0,0)), //Kamera positionen, kameran sitter i (3,-7,5) och är riktad mot
Origo

alpha1 = 0, //Vinklar för respektive finger vid handen, index anger vilket finger det är
alpha2 = 0,// t.ex. alpha1 är vinkeln för tummen, alpha2 är för pekfingret o.s.v.
alpha3 = 0,
alpha4 = 0,
alpha5 = 0,

alpha1' = 0, //Rotationshastigheten för respektive finger. Eftersom fingret består av två delar
separerade av en led
alpha2' = 0, //Så anger vi två olika vinklar för respektive del. Alpha är vinkeln för delen av
fingret innan leden
alpha3' = 0,
alpha4' = 0,
alpha5' = 0,

beta1 = 0, //Vinklar för fingrarna efter leden
beta2 = 0,
beta3 = 0,
beta4 = 0,
beta5 = 0,

beta1' = 0, //Rotationshastighet för beta vinklarna
beta2' = 0,
beta3' = 0,
beta4' = 0,
beta5' = 0,

length1 = 2, //Fingrarnas längd, undre delen innan leden
length2 = 1.5, //Längden på fingret efter leden
width = 0.25, //Fingrarnas bredd
speed = pi/10, //Hastigheten med vilken fingrarna roterar
sizeA = 0 //Storlek på texten som visar vilket tecken handsken gör

2

always
 _3D = (
 //Skapar handen
 Sphere center = (0,0,0) size = 2 color = yellow rotation = (0,0,0)

 //För att bestämma positionerna av fingrarna används cylindriska koordinater. Centrum av
fingrarna beror på fyra variabler: length1, length2, alpha och beta. length1 och length2 är
konstanta medans
 //alpha och beta varierar. Genom att ange vinklar på alpha och beta så kan handskens olika
tecken simuleras
 //Skapar långfingret
 Cylinder center = (0,0,2) size = (length1,width) color = red rotation = (pi/2 + alpha1,0,0)
 Cylinder center = (0,-sin(alpha1)*length1/2 - sin(beta1)*length2/2,1.9 + cos(alpha1)*length1/2
+ cos(beta1)*length2/2) size = (length2,width) color = red rotation = (pi/2 + beta1,0,0)
 //Skapar pekfinger
 Cylinder center = (0.6,0,1.7) size = (length1,width) color = red rotation = (pi/2 + alpha1,0,0)
 Cylinder center = (0.6,-sin(alpha2)*length1/2 - sin(beta2)*length2/2,1.6 +
cos(alpha2)*length1/2 + cos(beta2)*length2/2) size = (length2,width) color = red rotation =
(pi/2 + beta1,0,0)
 //Skapar ringfinger
 Cylinder center = (1.4,0,1) size = (length1,1.2*width) color = red rotation = (pi/2 + alpha1,0,0)
 Cylinder center = (1.4,-sin(alpha1)*length1/2 - sin(beta1)*length2/2,0.9 +
cos(alpha1)*length1/2 + cos(beta1)*length2/2) size = (length2,1.2*width) color = red rotation =
(pi/2 + beta1,0,0)
 //Skapar tummen
 Cylinder center = (-0.6,0,1.7) size = (length1,width) color = red rotation = (pi/2 + alpha1,0,0)
 Cylinder center = (-0.6,-sin(alpha2)*length1/2 - sin(beta2)*length2/2,1.6 +
cos(alpha2)*length1/2 + cos(beta2)*length2/2) size = (length2,width) color = red rotation =
(pi/2 + beta1,0,0)
 //Skapar lillfingret
 Cylinder center = (-1.2,0,1.4) size = (length1,width) color = red rotation = (pi/2 + alpha1,0,0)
 Cylinder center = (-1.2,-sin(alpha1)*length1/2 - sin(beta1)*length2/2,1.3 +
cos(alpha1)*length1/2 + cos(beta1)*length2/2) size = (length2,width) color = red rotation =
(pi/2 + beta1,0,0)
 Text center=(2.5,0,0) size=sizeA color=blue rotation=(0,0,0) content="A" //Visar outputen
av handsken. Storleken är 0 till början men ändras när tecknet ska visas.
),

alpha1' = speed, //Anger ekvationerna för alla vinklar, där vinklarna innan leden är samma som
speed
alpha2' = speed,
alpha3' = speed,
alpha4' = speed,
alpha5' = speed,

beta1' = 2*speed, //Delen av fingret efter leden rör sig dubbelt så snabbt
beta2' = 2*speed,
beta3' = 2*speed,
beta4' = 2*speed,

3

beta5' = 2*speed,

 if alpha1 > pi/3.5 //Simulerar handsken när användaren visar ett A på ASL
 then speed = -pi/10,
 sizeA = 4 //När handsken nått längst ner känner den av att tecknet är ett A och ger det som
output. Storleken på texten ändras från 0 -> 4 vilket gör den synlig
 noelse,

 if alpha1 < 0 //Handen återgår till ursprungstillståndet
 then speed = 0,
 sizeA = 0 //När inget tecken längre visas blir output noll igen
 noelse

TRITA ITM-EX 2021:38

www.kth.se

