
IN DEGREE PROJECT MECHANICAL ENGINEERING,
FIRST CYCLE, 15 CREDITS

, STOCKHOLM SWEDEN 2021

Omnidirectional Quadruped Robot
Multidirektionell Fyrbent Robot

SAMUEL STENOW

SIMON LINDENFORS

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT

Omnidirectional Quadruped Robot

SAMUEL STENOW
SIMON LINDENFORS

Bachelor’s Thesis at ITM
Supervisor: Nihad Subasic
Examiner: Nihad Subasic

TRITA-ITM-EX 2021:35

Abstract

There are a lot of quadruped robots in the world, but
few are omnidirectional. Therefore this thesis describes the
production and design process of such a robot. Examining
earlier quadruped robots determined that a central micro-
controller is required to control it, and servo motors are
used to power the robots joints. Reaserch also determined
the base of the mathematical methods used. Additionally,
there are multiple types of sprawling gaits, ranging from
statically stable to dynamically stable. In this project a
statically stable gait is used. The thesis illustrates the
mathematical models used to define the omnidirectional
movement, and describes the code used to implement it.
The result is a robot that can move omnidirectionally, both
normally and upside down. The results show that there is
a deviation depending upon the direction, but it is small.
The main advantage of omnidirectionallity is the ability to
change movement direction without stopping or turning. It
also enables directional adjustment without requiring any
steps.

Keywords
Mechatronics, Robotics, Quadruped robot, Omnidirectional
robot.

Referat
Multidirektionell Fyrbent Robot

Det här projektet gick ut p̊a att skapa en krypande fyr-
bent robot som kan g̊a i alla riktningar utan att rotera
runt sitt eget centrum. Det finns idag redan ett stort an-
tal olika fyrbenta robotar, men f̊a kan g̊a i alla riktningar.
Därav s̊a beskriver den här rapporten framtagningen och
designprocessen för en s̊adan robot. Undersökning av fyr-
benta robotar visade att en mikrokontroller är nödvändig
för att kontrollera roboten och servomotorer bör användas
för att driva lederna. Förstudeierna gav även basen för de
matematiska modellerna som används för rörelserna, samt
vetskapen om ett flertal olika typer av g̊angstilar, allt fr̊an
statiskt stabil till dynamiskt stabil. I det här projektet be-
skrivs de matematiska modellerna som används för att de-
finiera rörelsen i alla riktningar och hur dessa appliceras i
programmeringen av roboten. Resultatet blev en robot som
kan g̊a i alla riktningar utan att rotera runt sitt centrum,
b̊ade normalt och uppochner. Detta ger möjligheten att by-
ta rörelse riktning utan att behöva stanna eller vända sig,
samt möjliggör även riktnings korrektioner utan att kräva
extra steg.

Nyckelord
Mekatronik, Robotar, Fyrbenta robotar, Multidirektionell
robot.

List of Abbreviations

PWM Pulse Width Modulation
DC Direct Current
RAM Random-Access Memory
EEPROM Electrical Erasable Programmable Read-Only Memory
PLA Polyactic acid
STL Standard Triangle Language
3D Three Dimensional

Acknowledgements

We would like to thank our supervisor Nihad Subasic and the Royal Institute of
Technology for the opportunity, resources and help during the project.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 1
1.3 Scope . 2
1.4 Method . 2

2 Theory 3
2.1 Microcontrollers . 3
2.2 DC servo motors . 4
2.3 Movement of a four-legged robot . 4
2.4 Inverse kinematics . 5
2.5 Solid Edge . 5
2.6 3D-Printing . 5

3 Method 7
3.1 Omnidirectional movement . 7
3.2 Prototype construction . 7
3.3 Software . 10
3.4 Hardware and electrical circuit . 14

4 Results 17

5 Discussion and Conclusion 19
5.1 Test results . 19
5.2 Base height and its effect on the robot 19
5.3 Movement over rough terrain. 19
5.4 Implementation of wireless control. 20
5.5 Gaits . 20
5.6 Accuracy . 20
5.7 Conclusion . 21
5.8 Future work . 21

Bibliography 23

Appendices 24

A Arduino UNO datasheet 25

B MS-1.3-9 Servo motor datasheet 29

C Arduino code 31

D Acumen code 43

List of Figures

2.1 Microcontroller Arduino UNO [2] . 3
2.2 Servo motor [4] . 4

3.1 Schematic diagram of a sprawling-type robot, made by the authors. . . 8
3.2 3D model prototype 2 designed in Solid Edge, made by the authors. . . 8
3.3 3D model prototype 3 designed in Solid Edge, made by the authors. . . 9
3.4 Final prototype, picture taken by the authors. 9
3.5 Leg seen from above, illustrating the calculation of θ1, made by the authors. 10
3.6 Leg seen from the side, illustrating the calculation of θ2 and θ3, made

by the authors. 10
3.7 The center of mass’s movement to accommodate lifting the bottom right

leg, illustrated by the authors. 11
3.8 Coordinate systems for the robot, illustrated by the authors. 12
3.9 The overlap of the available area of movement for each of the four corners,

and the circle of movement defined for omnidirectionality, illustrated by
the authors. 13

3.10 Illustration of one step sequence, made by the authors. 14
3.11 Flowchart for a full step cycle in the final program, made with Lucid[12] 15
3.12 Circuit created in tinkercad [13] . 16

List of Tables

3.1 Table of coordinate conversions. 12

4.1 Length walked after 10 steps of 25 in direction 270◦. 17
4.2 Length walked after 15 steps of 20 in several directions, Ramp = 250 . . 17

Chapter 1

Introduction

1.1 Background

Throughout the world the industrial applications of robotics are large and there
is no question that robotics are constantly being more and more implemented in
our every day lives. Cars are on their way to become self driving, entire industrial
facilities are able to run autonomously at night and the military are using a lot of
funds to create the future of warfare. Many of the robots in use all over the world
are mainly traveling on wheels, but are wheels the best answer? The majority of
land is unpaved and not very accessible on wheels, for this environment walking
robots are an important alternative thanks to their ability to move more freely and
independent of flat surfaces [1]. There are many different ways to go on building
a walking robot, there are biped robots, triped robots, quadruped robots, hexapod
robots and so on. This thesis shows the construction of a quadruped robot with a
sprawling-type of movement pattern resembling a spider [1]. Many of the quadruped
robots you can find online are dependent on being positioned a specific way, but
the authors of this thesis wanted to make a robot that was not dependent on this.
In rough terrain where a multi legged robot is often made to travel, the terrain can
possibly make the robot fall over. In order to eliminate this problem the robot in
this thesis has the ability walk upside down without a problem.

1.2 Purpose

The purpose of this Bachelor’s Thesis is to design and build a functioning prototype
of a wireless walking four legged sprawling robot. The main research questions to
be answered in this Thesis are,

• How can a four legged robot be constructed to make it independent of what
direction is up and down?

• How can a four legged robot be constructed to make it omnidirectional?

1

CHAPTER 1. INTRODUCTION

• What ”gait” has an optimal stability to speed ratio?

1.3 Scope
Due to this being a Bachelor’s Thesis the time frame and funds were limited, con-
strains were necessary in order to make deadline and not go over budget. The main
focus was to build the physical prototype of a four-legged robot and give it the
ability to move in any direction, no matter which direction the robot was facing.
As a secondary focus the robot was also built so that it could move independent
of which side was currently upwards. If time allows testing will also be done to
determine the optimal gait for the robot.

1.4 Method
In order to answer the research questions presented above different working methods
were applied throughout the project. At an early stage research had to be done in
the different areas and technologies used in the project such as microcontrollers,
servomotors, movement algorithms and wireless connections. The information was
collected from different scientific papers, articles and course literature.

Once sufficient theoretical information was obtained through research the design
of the prototype was initiated. The main focus at this stage was to create the robot
and its essential parts, the four legs. As a starting point a single leg was built
with three servomotors controlled by an Arduino UNO. Once one leg functioned as
desired, all four were built and assembled together on a main frame. The code was
then developed so that the robot could move equally in all directions and upside
down.

2

Chapter 2

Theory

The following chapter presents the necessary theory needed for the project.

2.1 Microcontrollers

Figure 2.1. Microcontroller Arduino UNO [2]

A microcontroller is a single Integrated Circuit used in many everyday appli-
ances and tools, it gathers input, process information, and outputs a certain action.
They operate usually at low speeds around 1MHz to 200MHz [3]. The main compo-
nents of a microcontroller are an A/D converter, a microprocessor, Random-Access
Memory (RAM), a flash memory, the Electrical Erasable Programmable Read-Only
Memory (EEPROM), the Serial Bus Interface and the Input/Output ports. The
microcontroller used in this project is an Arduino UNO, see figure 2.1, which has a
lot of external components available at a low price [2].

3

CHAPTER 2. THEORY

2.2 DC servo motors

Figure 2.2. Servo motor [4]

A servo motor is a small and very energy efficient motor excellent for small or
large project that require specific positioning of the shaft. Inside a micro servo motor
used in this build, see above in figure 2.2, there is a small DC motor, potentiometer
and a control circuit. As the motor rotates the potentiometers resistance changes,
allowing the control circuit to regulate how much and in which direction movement is
happening. A servo motor uses proportional control, meaning the speed of the motor
is proportional to the difference between its actual position and desired position.
The closer it is to its desired position, the slower it will move, allowing it to be
very efficient. Servo motors are controlled with pulse width modulation (PWM),
depending on the width of the pulses the motor will turn a specific amount. Once
the shaft of a servo is in the desired position it will continue holding that position
even if it is under external force, depending on how much force is applied in relation
to the torque rating of the servo [5].

2.3 Movement of a four-legged robot
There are many different ways of moving a robot forward, so called ”gaits”. The
purpose of this thesis to build a four legged robot, and for it to work well a good
walking movement is required. The main different gait patterns are dynamic stable-
and static stable gait. Dynamic stable moves the legs fast enough that the centre of
mass does not have time to shift to an unstable position. Trotting gait is a dynamic
pattern moving the diagonal legs simultaneously, this gait is fast but not very stable.
Static stable moves one leg at a time, and shifts the center of mass away from the
moving leg, making it very stable but slower than dynamic gaits. It is possible to
combine the two methods by moving legs partly simultaneously and partly alone.
This allows for some of the stability from static stable gait to be combined with
some of the speed from dynamic stable gait [6]. An additional requirement to move

4

2.4. INVERSE KINEMATICS

the robot is that when each leg moves the robot has to shift its weight away from
the leg so that the robot does not fall towards it when it lifts of the ground.

2.4 Inverse kinematics
A robots movement can be controlled in different ways, you can hard code the de-
sired angles and speeds that motors need to move in order to get a certain movement
for a arm or leg, or you can use mathematical expressions to calculate these angles
depending on inputs. The second is called Inverse Kinematics and enables greater
mobility, since it enables control of movement without calculating the appropriate
angles for each step [7].

2.5 Solid Edge
To make a 3D model of the robot a software called Solid Edge was used. Solid
Edge is a mechanical design system with many tools at hand to create 3D digital
prototypes [8]. 3D modeling of a prototype before construction is extremely useful
when figuring out the right design without spending time and materials to build
something that wont work well in the end.

2.6 3D-Printing
In order to make the necessary parts for the robot that were not electrical com-
ponents ordered online a 3D-printer was used. A 3D-printer takes a 3D model of
the object to be printed in form of a STL file and makes it out of PLA plastic.
The printing software also allows many different settings for the prints to reach the
desired weight and detail. This method of constructing parts makes more complex
and lightweight structures possible due to the precision of a 3D-printer and the low
density of the plastic.

5

Chapter 3

Method

The following chapter describes the full process in detail for construction and testing
of the robot.

3.1 Omnidirectional movement
Using Inverse Kinematics [7] to calculate the angles in the robots joints in reference
to a predefined coordinate system enables the use of coordinates relative to each
corner to place the legs. This in turn enables the use of other coordinate systems to
control the positioning of the legs. This enables controlled movement that can be
defined to create an omnidirectional area of available steps. Rotation matrices allow
the calculation of the same movement relative to the body in each legs coordinate
system.

3.2 Prototype construction
When planning the construction of the first prototype the main factors where to
apply the concept of a sprawling-type robot, as seen in figure 3.1, as well as make the
design symmetrical. Symmetry was required in joint placement, and the mobility
of the joints. The end part of the leg also required symmetric design, to enable
movement independent of upwards direction.

The first prototype made only consisted of three servo motors of model MS-1.3-9
[9] representing a single leg. From this prototype tests were made to see how well
the servos worked together to move a leg and how a program for the microcontroller
should be constructed. The next step included the making of a prototype in Solid
Edge, see figure 3.2. Each leg has three parts, with a servo in each joint. The first
part, closest to the center, enables horisontal rotation. The other two parts enable
movement that keep a consistent height of the end of the leg, while also enabling the
end to be further from or closer to the center. The part furthest from the center is
also symmetrical to enable the robot to walk while upside down. When the design
satisfied the needs for the robots movement, the parts were made with a 3D-printer

7

CHAPTER 3. METHOD

Figure 3.1. Schematic diagram of a sprawling-type robot, made by the authors.

Figure 3.2. 3D model prototype 2 designed in Solid Edge, made by the authors.

using PLA plastic. The settings for all of the prints were 20 percent infill and a
printing speed of 40 mm/s. Once all parts were printed the second prototype could
be assembled and the full software production for the testing of different walking
movements could begin.

The tests on the first prototype revealed that though movement could be con-
trolled correctly the size of the robot was slightly to much for the servo motors. To
solve this a third and final prototype, shown in figure 3.3 was created. The third
prototypes legs where constructed so that the horizontally moving part of the leg
was closer to the center as well as shorter to minimize the momentum required from
the servo motors. The end piece of the leg was shortened, though it remained longer
than the middle piece. This enabled the robot to move its feet closer to its body,
without changing its height. However, the middle piece was lengthened to maintain
the possible range of the steps.

8

3.2. PROTOTYPE CONSTRUCTION

Figure 3.3. 3D model prototype 3 designed in Solid Edge, made by the authors.

The final prototype assembled with all components in place can be seen in figure
3.4.

Figure 3.4. Final prototype, picture taken by the authors.

9

CHAPTER 3. METHOD

3.3 Software

The first program was built on the concept of static stable gait to get the robot
moving in a stable but slow motion. The code was built in several functions, one
calculated the angles the servo motors had to make relative to any end position of
the robots foot during movement using inverse kinematics. The figures 3.5 and 3.6
below shows the trigonometrical problems that had to be solved in order to achieve
this result. In order to calculate the desired angle θ1 for the first joint, equation 3.1
was used.

Figure 3.5. Leg seen from above, illustrating the calculation of θ1, made by the
authors.

Figure 3.6. Leg seen from the side, illustrating the calculation of θ2 and θ3, made
by the authors.

10

3.3. SOFTWARE

θ1 = 45◦ + arctan(StepY
StepX

) (3.1)

The angle θ2 for the mid joint could be calculated using equation 3.2 and the
angle θ3 of the end joint was calculated using equation 3.3.

θ2 = arccos(
L2

part +H2 + L2
mid − L2

end

2
√
L2

part +H2a
) − tan(H

Lpart
) (3.2)

θ3 = π

2 − arccos(
L2

mid + L2
end − L2

part −H2

2LmidLend
) (3.3)

This information is sent to another function which interpolates the servo angles in
relation to the previous position and the next position. In order to do achieve this,
the code uses the Arduino library Ramp.h [10], which contains multiple functions
for interpolation. One of the main functions used in the code is go(newvalue,
rampduration, rampmode, loopmode), which takes a value to interpolate to
and the desired duration of the interpolation. If the ramp variable is set to the
current position of a motor, this function can be implemented to interpolate from the
current position to a new one. Thus, enabling a very smooth motion by continually
using the Servo.h [11] libraries write function. This setup enables easy control of the
movement, as it only requires a desired height of the robots centre plate relative to
the ground and the next position of the foot relative to its neutral resting position.
However, moving a leg requires that the robot does not place any weight on it.
Therefore, the center of mass has to be slightly shifted away from the leg that
moves, so that it is in the area supported by the other three legs, as in figure 3.7.
This concludes the singular movement of each foot. However, to achieve movement

Figure 3.7. The center of mass’s movement to accommodate lifting the bottom
right leg, illustrated by the authors.

the robot also has to adjust its center of mass to move in the desired direction. In
the first program this was implemented by twisting each leg without lifting it, thus
propelling the robots center forward.

11

CHAPTER 3. METHOD

The second program expanded upon the first, introducing user input through
the serial monitor and walking in four directions. The ability to move in different
directions was accomplished using different cases of leg movement, depending upon
the users input. The robot then took a predefined step towards the walking direc-
tion. This program was dependant on an initial positioning of the legs according to
the desired walking direction before moving.

Figure 3.8. Coordinate systems for the robot, illustrated by the authors.

The third and final program implemented omnidirectional movement using a
circular coordinate system, shown in figure 3.8, as well as a more stable adjustment
of the center of mass. Using a circular coordinate system it is possible to define the
same movement for each leg relative to a predefined center position, relative to the
robot, symmetrically at each corner. The movement is defined relative to the center
point of the circular system then transformed to the coordinate system of each leg
using the equation 3.4. [

Xn

Yn

]
=

[
BasePoint
BasePoint

]
+ Tn

[
X
Y

]
, (3.4)

where Tn is the transformation matrix for each corner n as shown in table 3.1.

Table 3.1. Table of coordinate conversions.

Corner 1 Corner 2 Corner 3 Corner 4[
0 1

−1 0

] [
1 0
0 1

] [
0 −1
1 0

] [
−1 0
0 −1

]

Sending the location in a coordinate system specific for each leg enables the leg
to move in the desired direction of movement, independent of its relative position to
the body of the robot. The limits upon this movement are set by the maximum and

12

3.3. SOFTWARE

minimum radius of the circular system. The maximum is defined by the longest
step away from the robot possible. The minimum is defined by how close to its
body the robot can move its legs. To handle omnidirectionality, the circular system
is centered between the longest and shortest step, so that it can move an equal
distance independent of the relative direction. The overlap of all the legs movement
areas relative to the robots body, in figure 3.9 shows that a circle is a good match
relative to its complexity.

Figure 3.9. The overlap of the available area of movement for each of the four
corners, and the circle of movement defined for omnidirectionality, illustrated by the
authors.

To achieve smooth movement the center adjustment was changed to include
a simultaneous ramp for all legs. Additionally the changes in angles for the legs
were adjusted so that they would shift the robot in the desired direction. This
was achieved by modifying the order the legs moved. The program recognizes
the forward direction and defines each leg according to its relative position to the
direction using a switch case. At first the leg pointing closest to the direction of
the movement and the opposite leg move until their positions are at the front of
their movement field defined the circular coordinates. Then the center of mass is
moved forward by adjusting the positions of all legs. The two legs that moved
before are returned to the base point, and the two other legs end up at the back
of their movement field. The actual position of the robots feet on the ground does
not change when moving the center this way, so it is the movement of the center of
mass that has changed their position relative to their base position. The robot then
repeats this process with the other two legs. The entire step cycle is demonstrated
in 3.10 and the flowchart for this movement is illustrated in figure 3.11.

Because the base stance of the robot is to have every leg on the base point
the robot needs to return to its base stance if the direction changes so much that
it switches case. The robot will assume its base stance when it does not receive
input from the serial monitor. If there is no pause between the inputs the robots
movement may not entirely be in the right direction for the first step in the new

13

CHAPTER 3. METHOD

Figure 3.10. Illustration of one step sequence, made by the authors.

direction. Additionally the third program adjusts the center shift during movement,
shown in figure 3.7, so that it is relative to the desired height. This means that the
robot will adjust an equal amount no matter the height. This means the robot is
more stable than earlier at lower heights, and retains the same stability at other
heights.

3.4 Hardware and electrical circuit
The electrical hardware used in this project consisted of the Arduino UNO and
twelve micro servo motors. These are connected according to the diagram in 3.12.
The servo motors are powered by four AAA batteries, as that gives the highest
tolerable voltage. The arduino is powered by another computer which also controls
the robots movement through inputs to the Serial monitor.

14

3.4. HARDWARE AND ELECTRICAL CIRCUIT

Figure 3.11. Flowchart for a full step cycle in the final program, made with Lucid[12]

15

CHAPTER 3. METHOD

Figure 3.12. Circuit created in tinkercad [13]

16

Chapter 4

Results

The combination of the final prototype and code was a robot that could move
smoothly in any direction, and upside down. However, the legs appear to handle
movement perpendicular to their base state better than movement parallel to it.
The robot was able to walk when the base point, standard height and step radius
where within reasonable values. The tests showed that the best base height was at
60mm. With an increased step radius the robot could walk further. Unfortunately
it was limited by the power of the servo motors, as they could not counteract the
momentum upon the foot. If this limit was exceeded the robot collapses, and will
in most cases not be able to right itself. Lower height means the robots legs handle
collapsing better, as their believed ground height is closer to the actual ground
height.

The omnidirectional movement area was most limited by diagonal movement as
seen in figure 3.10. This is because the robots legs move closer or further away from
the body, rather than more side to side relative to the body.

To test different speeds, the robot was measured while taking ten steps in the
270◦ direction, at different interpolation times.

Table 4.1. Length walked after 10 steps of 25 in direction 270◦.

Ramp 100 250 400
cm 14 28 31

To test the quality of the omnidirectionallity, tests of how far the robot moved
with the same step length in several directions were performed.

Table 4.2. Length walked after 15 steps of 20 in several directions, Ramp = 250 .

Direction 22.5◦ 45◦ 90◦

cm 42 51 38

17

Chapter 5

Discussion and Conclusion

5.1 Test results
The results of the test of different interpolation time show that faster movements
leads to shorter distance traveled, but between 250ms and 400ms the difference is
not substantial. From visual observation of the test it is clear that this is dependent
on the amount of friction between the feet and the floor tested on. Thanks to the
faster relative movement on the surface, the grip is lower and therefor results in
shorter steps. To counter this we could have tried different surfaces, as well as find
a better way to increase the grip of each foot.

When testing different angular directions we saw that the legs appear to handle
movement perpendicular to their base state better than movement parallel to it.
We are not sure exactly why this is the case because the step radius was the same
for all the test, but our theory is that thanks to the different positioning patterns
of the legs, the shift of the center off mass is more or less effective.

5.2 Base height and its effect on the robot
If the center of mass is out of the area where it is stable, its fall will accelerate
faster at higher heights, because of the increased momentum of a longer rotational
arm. This means that a robot will experience a larger force upon the supporting
leg when the base height is higher. This means that the robot can shift its center
of mass further at lower heights, while still maintaining the same level of stability.

5.3 Movement over rough terrain.
Because the robot has no sense of what is around it, it has no ability to correct
for rough terrain. However, if the robots capabilities were expanded to sense the
terrain around it, it could be adjusted to be able to walk across rough terrain. One
way to do this would be to use the overlap of available stepping points in the terrain
and the area where the robot steps.

19

CHAPTER 5. DISCUSSION AND CONCLUSION

5.4 Implementation of wireless control.

The robot is controlled by a serial monitor, and its steps are defined by angle relative
to the robot and step size, as well as whether it is upside down or not. This could
easily be adapted in to a wireless connection where the robot receives the needed
inputs from a Bluetooth connected device instead of the Serial Monitor. A step
in one direction would for example only need the angle of direction, a step speed
and knowledge of if it is upside down. The robot would then executes one full
step cycle in that direction, before receiving a command again. In the code, this
would simply be a change of where the input comes from. However it would require
a Bluetooth module for the Arduino. Due to limitations stated in the scope this
was not implemented for the robot during the project, but its a possible future
development.

5.5 Gaits

To make the robot walk, there are many more possible gaits than the one that
was implemented. Ranging from highly dynamic to statically stable, these could
increase the robots speed, if implemented well. Due to limitations, primarily time,
gait testing was very limited. We could only make the robot walk well and omni-
directional using a slow stable gait. The robot could be improved by testing over
values between fully dynamic gait and fully stable gait. This would give the highest
speed at which the robot could still move reliably. An additional factor for the
speed is the correlation between the size of steps and how fast they are taken.

5.6 Accuracy

With the available resources it is not possible to achieve incredible accuracy during
movement. In part this is due to the fact that the components did not fit perfectly
together. The servo arms are slightly loose, all components are assembled by hand,
and servo motors do not have 100% accuracy. These discrepancies amount to a loss
of accuracy that is noticeable in the robots movement. Some of the discrepancies
have been counteracted in the code, for example adjusting all values for the angle
of a certain motor by a small degree because it was slightly crooked. However,
the design of the robot could be improved to be less loose and give a more stable
movement.

A problem while testing was that the robots feet often slipped on the surface it
walked on. Though this was mostly a problem at lower interpolation times, it might
still have affected the tests run on higher interpolation times. Additionally the bat-
tery power might have had an effect on the results, as the robot seemed to get slower
towards the end of testing. Also the human error and the suitable measurement
instruments available limited the precision of the measurements. Taking more steps

20

5.7. CONCLUSION

while testing each angle would increase the reliability of the measurements, but the
current amount still gives relatively reliable results.

5.7 Conclusion
To solve the first research question, how to make the robot independent of what
direction is up and down, the legs were built symmetrically. Additionally, the
software was adjusted to mirror some parts of the movement to achieve the same
movement independent of which side was up.

To solve the second research question, how can a four legged robot be constructed
to make it omnidirectional, a circular movement area was defined for each leg, so
that the steps would be the same no matter the direction. The omnidirectional
movement area was most limited by diagonal movement as seen in figure 3.10. This
is because the robots legs move closer or further away from the body, rather than
more side to side relative to the body.

To explore the third research question, what ”gait” has an optimal stability to
speed ratio, the tests show that the robots movement is most reliable when taking
steps within the radius of 25mm, with a leg motion time of around 250ms per move.

5.8 Future work
Improvements that could be made upon the robot include the implementation of
wireless control, as discussed above. Additionally the robot could be optimized in
many ways. The 3D model could be optimized for weight. The parts of the legs
could be optimized so that the horizontally moving part is closer to the center, thus
lessening the load upon the joints. Additionally, the length of the middle and end
parts could be adjusted so that they could handle the momentum of full extension.

The robot could also be optimized in its movement. This could be done with
extensive testing, as only coarse tests were made for several parts of the system.
The omnidirectional circular area could be exchanged for an area better fitting
to the available overlap displayed in 3.9. However, this would make the robot
slightly dependent of what direction it is walking, making it a trade-off between
omnidirectionality and speed.

21

Bibliography

[1] Satoshi Kitano et al. “Development of lightweight sprawling-type quadruped
robot TITAN-XIII and its dynamic walking”. In: 2013 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. 2013, pp. 6025–6030.
doi: 10.1109/IROS.2013.6697231.

[2] Arduino.cc. ARDUINO UNO REV3. url: https : / / store . arduino . cc /
arduino-uno-rev3. (accessed: 03.02.2021).

[3] Miguel Gudino. Introduction to Microcontrollers. url: https://
www.arrow. com/en/research-and-events/articles/engineering-
basics-what-is-a-microcontroller. (accessed: 03.02.2021).

[4] Kjell & Company. Luxorparts SG90 Micro-servo 4-pack. url: https://www.
kjell . com / se / produkter / el - verktyg / arduino / arduino - tillbehor /
luxorparts-sg90-micro-servo-4-pack-p90720. (accessed: 04.02.2021).

[5] Jameco Electronics. How Servo Motors Work. url: https://www.jameco.
com/jameco/workshop/howitworks/how- servo- motors- work.html. (ac-
cessed: 04.02.2021).

[6] Xilun Ding Kun Xu Peijin Zi. “Gait Analysis of Quadruped Robot Using the
Equivalent Mechanism Concept Based on Metamorphosis”. In: Chin. J. Mech.
Eng 32.8 (2019). url: https://doi.org/10.1186/s10033-019-0321-2.

[7] Rickard Nilsson. “Inverse Kinematics”. Master Thesis, Luleå Univerity of
Technology, (2009). url: https: //www.diva-portal.org/smash/get/
diva2:1018821/FULLTEXT01.pdf.

[8] Seimens. Solid Edge. url: https://solidedge.siemens.com/en/. (accessed:
21.02.2021).

[9] Electrokit. Servo MS-1.3-9. url: https://www.electrokit.com/produkt/
servo-ms-1-3-9/. (accessed: 04.02.2021).

[10] Sylvain Garnavault. ramp.h. Sept. 4, 2020. url: https : / / github . com /
siteswapjuggler/RAMP. (accessed: 01.05.2021).

[11] Martino Facchim. servo.h. Sept. 4, 2020. url: https://github.com/arduino-
libraries/Servo. (accessed: 21.05.2021).

[12] Lucid. Diagram your people, processes, and systems. url: https : / /
www . lucidchart.com/pages/product. (accessed: 06.5.2021).

23

https://doi.org/10.1109/IROS.2013.6697231
https://store.arduino.cc/arduino-uno-rev3
https://store.arduino.cc/arduino-uno-rev3
https://www.arrow.com/en/research-and-events/articles/engineering-basics-what-is-a-microcontroller
https://www.arrow.com/en/research-and-events/articles/engineering-basics-what-is-a-microcontroller
https://www.arrow.com/en/research-and-events/articles/engineering-basics-what-is-a-microcontroller
https://www.kjell.com/se/produkter/el-verktyg/arduino/arduino-tillbehor/luxorparts-sg90-micro-servo-4-pack-p90720
https://www.kjell.com/se/produkter/el-verktyg/arduino/arduino-tillbehor/luxorparts-sg90-micro-servo-4-pack-p90720
https://www.kjell.com/se/produkter/el-verktyg/arduino/arduino-tillbehor/luxorparts-sg90-micro-servo-4-pack-p90720
https://www.jameco.com/jameco/workshop/howitworks/how-servo-motors-work.html
https://www.jameco.com/jameco/workshop/howitworks/how-servo-motors-work.html
https://doi.org/10.1186/s10033-019-0321-2
https://www.diva-portal.org/smash/get/diva2:1018821/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1018821/FULLTEXT01.pdf
https://solidedge.siemens.com/en/
https://www.electrokit.com/produkt/servo-ms-1-3-9/
https://www.electrokit.com/produkt/servo-ms-1-3-9/
https://github.com/siteswapjuggler/RAMP
https://github.com/siteswapjuggler/RAMP
https://github.com/arduino-libraries/Servo
https://github.com/arduino-libraries/Servo
https://www.lucidchart.com/pages/product
https://www.lucidchart.com/pages/product

BIBLIOGRAPHY

[13] Autodesk. Tinkercad. url: https://www.tinkercad.com/. (accessed: 20.02.2021).

24

https://www.tinkercad.com/

Appendix A

Arduino UNO datasheet

25

Appendix B

MS-1.3-9 Servo motor datasheet

29

MS-1.3-9

Servo Motor MS-1.3-9

 Dimensions: 23.2 x 12.5 x 22 mm

 Operating Speed: 0.12sec/60degree (4.8V), 0.10sec/60degree (6V)

 Stall Torque: 1.3kg.cm/18.09oz.in(4.8V)

 Operating Voltage: 4.8V~6V

 Control System: Analog

 Direction: CCW

 Operating Angle: 120degree

 Required Pulse: 900us-2100us

 Bearing Type: None

 Gear Type: Plastic

 Motor Type: Metal

 Connector Wire Length: 20 cm

Appendix C

Arduino code

1 // Omnidirectional quadruped sprawling type robot
2 // Bachelors Thesis MF133X
3 // Date: 2021 -05 -21
4 // Authors : Samuel Stenow , Simon Lindenfors
5 // Description : Code running on Arduino Uno.
6 // Recieves input from the serial monitor
7 // Translates inputs into movement
8
9 # include <Servo.h>

10 # include <Ramp.h>
11
12
13 Servo End_One ; // End servo of leg one
14 Servo Mid_One ; // Mid servo of leg one
15 Servo First_One ; // First servo of leg one
16
17 Servo End_Two ; // End servo of leg Two
18 Servo Mid_Two ; // Mid servo of leg Two
19 Servo First_Two ; // First servo of leg Two
20
21 Servo End_Three ; // End servo of leg Three
22 Servo Mid_Three ; // Mid servo of leg Three
23 Servo First_Three ; // First servo of leg Three
24
25 Servo End_Four ; // End servo of leg Four
26 Servo Mid_Four ; // Mid servo of leg Four
27 Servo First_Four ; // First servo of leg Four
28
29 double L_mid = 55; // Length of mid part
30 double L_end = 80; // Length of end part
31 double L_first = 9 + 18; // Length of first part
32 double StepRadius = 20; // Radius of circle which foot can move within
33 double Base_point = 50; // centrpoint of the cirkle (x and y distance

from the first servo to this point)
34 double Base_height = 60; // the centre parts base height from ground
35
36 int i;

31

APPENDIX C. ARDUINO CODE

37 int j;
38
39 double StandardAngle = 90; // Standard angle for mid and end servo
40 double v_First ; // Angle of first servo
41 double v_Mid ; // Angle of mid servo
42 double v_End ; // Angle of end servo
43
44 double L_hyp ;
45 double L_part ; // partial lenght from first servo to foot position

without length of first part
46
47 String input; // input from serial monitor
48 int intInput ; // input from serial monitor converted to integer
49
50 struct Leg{ // Struct for every leg
51
52 String Name; // Name of the leg
53 Servo First; // servo of first joint
54 Servo Mid; // servo of mid joint
55 Servo End; // servo of end joint
56
57 double midCorrection ; // small angle correction of mid joint
58 double endCorrection ; // small angle correction of end joint
59
60 double First_Pos ; // current angle position of first joint
61 double Mid_Pos ; // current angle position of mid joint
62 double End_Pos ; // current angle position of end joint
63
64 double totX; //
65 double totY; //
66
67 ramp First_Ramp ; // ramp variable for first joint
68 ramp Mid_Ramp ; // ramp variable for mid joint
69 ramp End_Ramp ; // ramp variable for end joint
70
71 double v_First_Deg ; // new angle for first joint
72 double v_Mid_Deg ; // new angle for first joint
73 double v_End_Deg ; // new angle for first joint
74 };
75
76 struct Leg LegOne ,LegTwo ,LegThree , LegFour ; // creating struct for all

four legs
77
78
79 void setup ()
80 {
81 Serial . begin (9600) ;
82 End_One . attach (11); // Tilldelar varje servo en port
83 Mid_One . attach (12);
84 First_One . attach (13);
85
86 End_Two . attach (8);
87 Mid_Two . attach (9);
88 First_Two . attach (10);

32

89
90 End_Three . attach (2);
91 Mid_Three . attach (3);
92 First_Three . attach (4);
93
94 End_Four . attach (5);
95 Mid_Four . attach (6);
96 First_Four . attach (7);
97
98
99 // Asigning every struct variable to each leg

100 LegOne .Name = "Leg One";
101 LegOne . First = First_One ;
102 LegOne .Mid = Mid_One ;
103 LegOne .End = End_One ;
104 LegOne . First_Pos = 90;
105 LegOne . Mid_Pos = 90;
106 LegOne . End_Pos = 90;
107 LegOne . midCorrection = - 10;
108 LegOne . endCorrection = - 10;
109 LegOne . First_Ramp = 0;
110 LegOne . Mid_Ramp = 0;
111 LegOne . End_Ramp = 0;
112 LegOne . v_First_Deg = 0;
113 LegOne . v_Mid_Deg = 0;
114 LegOne . v_End_Deg = 0;
115
116 LegTwo .Name = "Leg Two";
117 LegTwo . First = First_Two ;
118 LegTwo .Mid = Mid_Two ;
119 LegTwo .End = End_Two ;
120 LegTwo . First_Pos = 90;
121 LegTwo . Mid_Pos = 90;
122 LegTwo . End_Pos = 90;
123 LegTwo . endCorrection = 5;
124 LegTwo . First_Ramp = 0;
125 LegTwo . Mid_Ramp = 0;
126 LegTwo . End_Ramp = 0;
127 LegTwo . v_First_Deg = 0;
128 LegTwo . v_Mid_Deg = 0;
129 LegTwo . v_End_Deg = 0;
130
131 LegThree .Name = "Leg Three ";
132 LegThree . First = First_Three ;
133 LegThree .Mid = Mid_Three ;
134 LegThree .End = End_Three ;
135 LegThree . First_Pos = 90;
136 LegThree . Mid_Pos = 90;
137 LegThree . End_Pos = 90;
138 LegThree . First_Ramp = 0;
139 LegThree . Mid_Ramp = 0;
140 LegThree . End_Ramp = 0;
141 LegThree . v_First_Deg = 0;
142 LegThree . v_Mid_Deg = 0;

33

APPENDIX C. ARDUINO CODE

143 LegThree . v_End_Deg = 0;
144
145 LegFour .Name = "Leg Four";
146 LegFour . First = First_Four ;
147 LegFour .Mid = Mid_Four ;
148 LegFour .End = End_Four ;
149 LegFour . First_Pos = 90;
150 LegFour . Mid_Pos = 90;
151 LegFour . End_Pos = 90;
152 LegFour . endCorrection = -20;
153 LegFour . First_Ramp = 0;
154 LegFour . Mid_Ramp = 0;
155 LegFour . End_Ramp = 0;
156 LegFour . v_First_Deg = 0;
157 LegFour . v_Mid_Deg = 0;
158 LegFour . v_End_Deg = 0;
159 }
160
161 void TurnOff (){
162 End_One . detach (); // disconnecting every servo from its signal port
163 Mid_One . detach ();
164 First_One . detach ();
165
166 End_Two . detach ();
167 Mid_Two . detach ();
168 First_Two . detach ();
169
170 End_Three . detach ();
171 Mid_Three . detach ();
172 First_Three . detach ();
173
174 End_Four . detach ();
175 Mid_Four . detach ();
176 First_Four . detach ();
177 }
178
179 // --
180
181 void Interpolate (struct Leg * leg , int Time){ // interpolates the

given values using go function in Ramp.h
182 leg -> First_Ramp = leg -> First_Pos ;
183 leg -> Mid_Ramp = leg -> Mid_Pos ;
184 leg -> End_Ramp = leg -> End_Pos ;
185 leg -> First_Ramp .go(leg -> v_First_Deg , Time);
186 leg -> Mid_Ramp .go(leg -> v_Mid_Deg + leg -> midCorrection , Time);
187 leg -> End_Ramp .go(leg -> v_End_Deg + leg -> endCorrection , Time);
188 }
189
190 // --
191
192 void Write (struct Leg * leg){ // writes the new position for each

servo
193 leg -> First. write(leg -> First_Ramp . update ());
194 leg -> Mid.write (leg -> Mid_Ramp . update ());

34

195 leg -> End.write (leg -> End_Ramp . update ());
196 }
197
198 // --
199
200 void update_position (struct Leg * leg){ // updates the positions of

each servo
201 leg -> First_Pos = leg -> First_Ramp . update ();
202 leg -> Mid_Pos = leg -> Mid_Ramp . update ();
203 leg -> End_Pos = leg -> End_Ramp . update ();
204 }
205
206 // --
207
208 void Move (struct Leg * leg){ // calls for interpolation , write of

servos and updates their position
209
210 Interpolate (leg , 250);
211
212 while(leg -> First_Ramp . isRunning ()){
213 Write(leg);
214 }
215
216 update_position (leg);
217 }
218
219 // --
220
221 // calculate every new angle for joints
222 void Calculate_angles (struct Leg* leg , double Height , double StepX ,

double StepY , bool upside_down , bool simultaneously){
223
224 v_First = PI/4 + atan(StepY/StepX); // calculates angle for first

servo
225
226 L_part = sqrt(pow(StepY ,2) + pow(StepX ,2)) - L_first ;
227 L_hyp = sqrt(pow(Height ,2) + pow(L_part ,2));
228
229 v_Mid = acos ((pow(L_hyp ,2) + pow(L_mid ,2) - pow(L_end ,2))/(2* L_hyp*

L_mid)) - atan(Height / L_part); // calculates angle of mid servo
230 v_End = PI/2 - acos ((pow(L_mid ,2) + pow(L_end ,2) - pow(L_hyp ,2))

/(2* L_mid*L_end)); // calculates angle of end servo
231
232
233 if (upside_down &! simultaneously){ // if the robot is upside down

and only one leg is suppose to move
234 leg -> v_First_Deg = v_First * (180/ PI); // saves angle to struct
235 leg -> v_Mid_Deg = StandardAngle - v_Mid * (180/ PI);
236 leg -> v_End_Deg = StandardAngle - v_End * (180/ PI);
237 Move(leg);
238 }
239 else if (simultaneously &! upside_down){ //if robot is suppose to

move all legs simultaniously and is not upside down
240 leg -> v_First_Deg = v_First * (180/ PI);

35

APPENDIX C. ARDUINO CODE

241 leg -> v_Mid_Deg = StandardAngle + v_Mid * (180/ PI);
242 leg -> v_End_Deg = StandardAngle + v_End * (180/ PI);
243 }
244 else if (simultaneously && upside_down){ //if robot is suppose to

move all legs simultaniously and is upside down
245 leg -> v_First_Deg = v_First * (180/ PI);
246 leg -> v_Mid_Deg = StandardAngle - v_Mid * (180/ PI);
247 leg -> v_End_Deg = StandardAngle - v_End * (180/ PI);
248 }
249 else{ // if robot is suppose to only suppose to move one leg and is

not upside down
250 leg -> v_First_Deg = v_First * (180/ PI);
251 leg -> v_Mid_Deg = StandardAngle + v_Mid * (180/ PI);
252 leg -> v_End_Deg = StandardAngle + v_End * (180/ PI);
253 Move(leg);
254 }
255 }
256
257 // --
258
259 void Move_all_legs_at_once (struct Leg * Front , struct Leg * Back ,

struct Leg * Left , struct Leg * Right){
260
261 Interpolate (Front , 250);
262 Interpolate (Back , 250);
263 Interpolate (Left , 250);
264 Interpolate (Right , 250);
265
266 while(Front -> First_Ramp . isRunning ()){
267 Write(Front);
268 Write(Back);
269 Write(Left);
270 Write(Right);
271 }
272
273 update_position (Front);
274 update_position (Back);
275 update_position (Left);
276 update_position (Right);
277
278 }
279
280 // --
281
282 // calls for functiones that together moves the center of mass forward
283 void Full_center_move (struct Leg * First_to_Base_point , struct Leg *

Second_to_Base_point , struct Leg * First_to_move_back , struct Leg
* Second_to_move_back , bool upside_down){

284 Calculate_angles (First_to_Base_point , Base_height , Base_point ,
Base_point , upside_down , true);

285 Calculate_angles (Second_to_Base_point , Base_height , Base_point ,
Base_point , upside_down , true);

286
287 Calculate_angles (First_to_move_back , Base_height , 2* Base_point -

36

First_to_move_back -> totX , 2* Base_point - First_to_move_back ->
totY , upside_down , true);

288 Calculate_angles (Second_to_move_back , Base_height , 2* Base_point -
Second_to_move_back -> totX , 2* Base_point - Second_to_move_back ->

totY , upside_down , true);
289
290 Move_all_legs_at_once (First_to_Base_point , Second_to_Base_point ,

First_to_move_back , Second_to_move_back);
291 }
292
293 // --
294
295 void Center_shift (struct Leg * Opposite , struct Leg * Left , struct

Leg * Right , struct Leg * Corner , int ToOrFrom){ //
296 for(int i = 0; i <= 2; i ++){
297 Opposite -> Mid. write(Opposite -> Mid_Pos - 2* ToOrFrom);
298 Opposite -> Mid_Pos -= (7 -6*(Base_height /100))* ToOrFrom ; //

Depending on base height , the amount of correction changes ,
299 Opposite -> End. write(Opposite -> End_Pos - 2* ToOrFrom); // lower

base height results in greater angular correction
300 Opposite -> End_Pos -= (7 -6*(Base_height /100))* ToOrFrom ;
301 Left -> First .write (Left -> First_Pos - 2* ToOrFrom);
302 Left -> First_Pos -= (12 -8*(Base_height /100))* ToOrFrom ;
303 Right -> First.write (Right -> First_Pos - 2* ToOrFrom);
304 Right -> First_Pos += (12 -8*(Base_height /100))* ToOrFrom ;
305 delay (100);
306 }
307
308 }
309
310 // --
311
312 // decides depending on which leg is moving , which legs that are

suppose to shift the center of mass
313 void Center_shift_order (struct Leg * leg , int ToOrFrom){
314 if (leg -> Name == "Leg One"){
315 Center_shift (& LegThree , &LegTwo , &LegFour , &LegOne , ToOrFrom); //

calls for the center off mass shifting
316 Serial . println (" LegOne ");
317 }
318 else if(leg -> Name == "Leg Two"){
319 Center_shift (& LegFour , &LegThree , &LegOne , &LegTwo , ToOrFrom);
320 Serial . println (" LegTwo ");
321 }
322 else if(leg -> Name == "Leg Three "){
323 Center_shift (& LegOne , &LegFour , &LegTwo , &LegThree , ToOrFrom);
324 Serial . println ("Leg Three ");
325 }
326 else{
327 Center_shift (& LegTwo , &LegOne , &LegThree , &LegFour , ToOrFrom);
328 Serial . println ("Leg Four");
329 }
330 }
331

37

APPENDIX C. ARDUINO CODE

332 // --
333
334 void Full_step_one_leg (struct Leg * leg , bool upside_down , bool

simultaneously){ // cycle of one leg move
335 Center_shift_order (leg , - 1);
336 Calculate_angles (leg , Base_height - 40, Base_point , Base_point ,

upside_down , simultaneously);
337 Calculate_angles (leg , Base_height , leg -> totX , leg -> totY ,

upside_down , simultaneously);
338 Center_shift_order (leg ,1);
339 }
340
341 // --
342
343 // moves legs one at a time in the correct order in correlation to

direction
344 void Move_order (struct Leg * Front , struct Leg * Back , struct Leg *

Right , struct Leg * Left , bool upside_down){
345
346 Full_step_one_leg (Front , upside_down , false); // move front leg

relative to direction
347 delay (1000) ;
348 Full_step_one_leg (Back , upside_down , false); // move back leg

relative to direction
349 delay (1000) ;
350 Full_center_move (Front , Back , Right , Left , upside_down); // shift

centre of mass in forward direction
351 delay (1000) ;
352
353 Full_step_one_leg (Right , upside_down , false); // move right leg

relative to direction
354 delay (1000) ;
355 Full_step_one_leg (Left , upside_down , false); // move left leg

relative to direction
356 delay (1000) ;
357 Full_center_move (Front , Back , Right , Left , upside_down); // shift

centre of mass in forward direction
358 delay (1000) ;
359 }
360
361 // --
362
363 // calculates positions for the foot that is suppose to move and

desides order depending on direction
364 void Full_step_cycle (double Direction , double Speed , bool upside_down

){
365 double x = StepRadius *cos(Direction)*Speed ;
366 double y = StepRadius *sin(Direction)*Speed ;
367
368
369 LegOne .totX = Base_point + y;
370 LegTwo .totX = Base_point + x;
371 LegThree .totX = Base_point - y;
372 LegFour .totX = Base_point - x;

38

373
374 LegOne .totY = Base_point - x;
375 LegTwo .totY = Base_point + y;
376 LegThree .totY = Base_point + x;
377 LegFour .totY = Base_point - y;
378
379 if(0<= Direction && Direction <=PI /2){
380 Move_order (& LegTwo , &LegFour , &LegThree , &LegOne , upside_down);
381 }
382 if(PI/2< Direction && Direction <=PI){
383 Move_order (& LegOne , &LegThree , &LegTwo , &LegFour , upside_down);
384 }
385 if(PI < Direction && Direction <=3* PI /2){
386 Move_order (& LegFour , &LegTwo , &LegOne , &LegThree , upside_down);
387 }
388 if (3* PI/2< Direction && Direction <=2* PI){
389 Move_order (& LegThree , &LegOne , &LegFour , &LegTwo , upside_down);
390 }
391 }
392
393 // --
394
395 void loop ()
396 {
397 if(Serial . available ()){
398 input = Serial . readStringUntil (’\n’);
399 intInput = input.toInt ();
400 Serial . print("You typed : ");
401 Serial . println (intInput);
402 }
403 // folling are tests of different directions and steps
404 switch (intInput){
405 case 7:
406 TurnOff ();
407 delay (1000) ;
408 intInput == 0;
409 break;
410 case 3:
411 Center_shift_order (& LegOne ,-1);
412
413 Calculate_angles (& LegOne ,50 ,30 ,30 , false ,false);
414 delay (500);
415 Calculate_angles (& LegOne ,20 ,80 ,80 , false ,false);
416 delay (500);
417 Calculate_angles (& LegOne ,50 ,30 ,30 , false ,false);
418 delay (500);
419 Calculate_angles (& LegOne ,20 ,80 ,80 , false ,false);
420 intInput =0;
421 break;
422 case 2:
423 Full_step_cycle (0,1, false);
424 intInput = 0;
425 break;
426 case 4:

39

APPENDIX C. ARDUINO CODE

427 Full_step_cycle (PI/2,1, false);
428 intInput = 0;
429 break;
430 case 8:
431 Full_step_cycle (PI ,1, false);
432 intInput = 0;
433 break;
434 case 6:
435 Full_step_cycle (3* PI/2,1, false);
436 intInput = 0;
437 break;
438 case 45:
439 Full_step_cycle (PI/2,1, false);
440 Full_step_cycle (PI/2,1, false);
441 Full_step_cycle (PI/2,1, false);
442 Full_step_cycle (PI/2,1, false);
443 Full_step_cycle (PI/2,1, false);
444 intInput = 0;
445 break;
446 case 9:
447 Full_step_cycle (5* PI/8,1, false);
448 Full_step_cycle (5* PI/8,1, false);
449 Full_step_cycle (5* PI/8,1, false);
450 Full_step_cycle (5* PI/8,1, false);
451 Full_step_cycle (5* PI/8,1, false);
452 intInput = 0;
453 break;
454 case 4555:
455 Full_step_cycle (3* PI/2,1, true);
456 Full_step_cycle (3* PI/2,1, true);
457 Full_step_cycle (3* PI/2,1, true);
458 Full_step_cycle (3* PI/2,1, true);
459 Full_step_cycle (3* PI/2,1, true);
460 Full_step_cycle (3* PI/2,1, true);
461 intInput = 0;
462 break;
463 case 1793:
464 Full_step_cycle (0,0, false);
465 for(int v = 0; v <=20; v++){
466 Full_step_cycle (PI*v/10 ,1 , false);
467 Full_step_cycle (PI*v/10 ,1 , false);
468 }
469 intInput = 0;
470 break;
471 case 1452:
472 for(int v = 1; v <=2; v++){
473 Full_step_cycle (7* PI/4,1, false);
474 }
475 for(int v = 1; v <=2; v++){
476 Full_step_cycle (PI ,1, false);
477 }
478 for(int v = 1; v <=2; v++){
479 Full_step_cycle (PI/2,1, false);
480 }

40

481 for(int v = 1; v <=2; v++){
482 Full_step_cycle (0,1, false);
483 }
484 intInput = 0;
485 break;
486 case 666:
487 Full_step_cycle (PI/4,0, false);
488 intInput = 0;
489 break;
490 }
491 delay (4000) ;
492 }

41

Appendix D

Acumen code

1 // Omnidirectional quadruped sprawling type robot
2 // Bachelors Thesis MF133X
3 // Date: 2021 -05 -21
4 // Authors : Samuel Stenow , Simon Lindenfors
5 // Description : Code for Acumen simulation .
6 // Simulates a very simple design of the robot
7 // and a circular movement of one leg
8
9 model Main(simulator) =

10 initially
11 c1 = create Robot ((0 ,0 ,0) ,(0,0,0) ,0), // creates robot
12 // creates and initiates variables
13 theta = 0, theta ’ = 0, theta ’’ = 0,// angle , angular velocity as well

as acceleration
14 theta2 = 0, theta2 ’ = 0, theta2 ’’ = 0,
15 l = 2, // radius
16 l2 = 4,
17 x = 0, y = 0, //x and y pos difference
18 x2 = 0, y2 = 0
19
20
21
22 always
23 if theta < pi /4 //to move a quarter of a cirle
24 then theta ’’ = 0.25 , theta2 ’’ = 0.25 // increase angular acceleration
25 else if theta ’ > 0 // stops when reaching the destination
26 then theta ’ = 0, theta2 ’ = 0
27 else if theta > 0 // changing acceleration to 0
28 then theta ’’ = 0, theta2 ’’ = 0
29 noelse ,
30 // equations for x and y coordinates
31 x = l*cos(theta),y = l*sin(theta),
32 x2 = l2*cos(theta2) -2,y2 = l2*sin(theta2),
33 // send to robot
34 c1.pos1 = (x,y ,0) ,
35 c1.pos2 = (x2 ,y2 ,0) ,
36 c1.theta = theta2

43

APPENDIX D. ACUMEN CODE

37
38
39
40 model Robot(pos1 ,pos2 , theta) =
41 initially
42 _3D = (),_Plot =()
43 always
44 // skapar roboten
45 _3D = (Box center =(0 ,0 ,0) size = (4 ,7 ,0.5) color = cyan rotation =

(0 ,0 ,0)
46 Sphere center =(2 ,3.5 ,0) size = 0.5 color = magenta rotation =(0 ,0 ,0)
47 Sphere center =(-2 , -3.5 ,0) size = 0.5 color=red rotation =(0 ,0 ,0)
48 Sphere center =(2 , -3.5 ,0) size = 0.5 color= green rotation =(0 ,0 ,0)
49 Sphere center =(-2 ,3.5 ,0) size = 0.5 color = yellow rotation =(0 ,0 ,0)
50 Cylinder center =pos1 +(2 ,3.5 ,0) size = (3 ,0.2) color = black rotation

=(0,0, theta+pi /2)
51 Cylinder center =(4 , -3.5 ,0) size = (3 ,0.2) color = black rotation

=(0,0,pi /2)
52 Cylinder center =(-4 , -3.5 ,0) size = (3 ,0.2) color = black rotation

=(0,0,pi /2)
53 Cylinder center =(-4 ,3.5 ,0) size = (3 ,0.2) color = black rotation

=(0,0,pi /2)
54 Sphere center =pos2 +(4 ,3.5 ,0) size = 0.5 color = magenta rotation

=(0 ,0 ,0)
55 Sphere center =(-6 , -3.5 ,0) size = 0.5 color=red rotation =(0 ,0 ,0)
56 Sphere center =(6 , -3.5 ,0) size = 0.5 color= green rotation =(0 ,0 ,0)
57 Sphere center =(-6 ,3.5 ,0) size = 0.5 color = yellow rotation =(0 ,0 ,0)
58 Cylinder center =pos2 +(4 ,3.5 , -1.5) size = (3 ,0.2) color = black

rotation =(pi /2 ,0 ,0)
59 Cylinder center =(6 , -3.5 , -1.5) size = (3 ,0.2) color = black rotation =(

pi /2 ,0 ,0)
60 Cylinder center =(-6 , -3.5 , -1.5) size = (3 ,0.2) color = black rotation

=(pi /2 ,0 ,0)
61 Cylinder center =(-6 ,3.5 , -1.5) size = (3 ,0.2) color = black rotation =(

pi /2 ,0 ,0)
62)

44

TRITA TRITA-ITM-EX 2021:35

www.kth.se

	Introduction
	Background
	Purpose
	Scope
	Method

	Theory
	Microcontrollers
	DC servo motors
	Movement of a four-legged robot
	Inverse kinematics
	Solid Edge
	3D-Printing

	Method
	Omnidirectional movement
	Prototype construction
	Software
	Hardware and electrical circuit

	Results
	Discussion and Conclusion
	Test results
	Base height and its effect on the robot
	Movement over rough terrain.
	Implementation of wireless control.
	Gaits
	Accuracy
	Conclusion
	Future work

	Bibliography
	Appendices
	Arduino UNO datasheet
	MS-1.3-9 Servo motor datasheet
	Arduino code
	Acumen code

