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PEDESTAL PHYSICS
a phenomenological introduction
L. Frassinetti
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H-mode plasma
 When the input power to the plasma is above a specific threshold, the plasma has a 

transition from a low confinement regime (L-mode) to a high confinement regimes (H-
mode).

 The H-mode is characterized by:
o steep gradients in the pressure

”near” the edge of the plasma. 
This region is named ”pedestal”.

o sudden releases of energy and 
particles from the pedestal region 
to the SOL and the divertor. 
These events are triggered by 
MHD instabilities and are named
edge localized modes (ELMs)
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L-H transition
 Above a specific threshold in power (PLH), the plasma enters the H-mode
 The PLH threshold depends on several parameters.
 A scaling law based on results from several machines produces:

𝑃𝑃𝐿𝐿𝐿𝐿 = 0.049𝑛𝑛𝑒𝑒0.72𝐵𝐵0.8𝑆𝑆0.94 [Martin JPC2008]

[Righi NF1999]

[Neu JNM2013]

[Delabie EPS2015]

[Martin JPC2008]

 However, the links between
engineering/plasma parameters and 
PLH is more complex. Some of the 
main parameters that affects PLH are:
o Magnetic field
o Isotope mass (PLH decraeses with

isotope mass)
o Divertor geometry
o Wall material (PLH reduced from 

carbon to metal walls)
o Plasma density
Minimum around 0.2-0.4nGW
Non-monotonic behavior seem

related to edge ion heating

[Gohil IAEA2013]

[Ryter NF2014]
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L-H transition
 The physics of L-H transition is not yet fully

understood
o several models have been proposed to 

explain the experimental results
o but a physics based model of the L-H 

transition with full predictive capabilities has 
not been developed yet.

 Some key experimental and theoretical concepts
to explain the L-H transition are well established:
o The L-H transition is due to stabilization of

the turbulence near the plasma edge
[Burrel PoP1997], [Terry RMP2000]

o 𝐸𝐸 × 𝐵𝐵 shear stabilization plays a key role
 higher 𝐸𝐸 × 𝐵𝐵 in L-mode  lower PLH.
 The formation of a 𝐸𝐸𝑟𝑟 well, just inside 

the separatrix, occurs as the plasma 
enters H-mode

 The well has to reach a certain depth to 
allow the transition

[Burrel PoP1997]
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L-H transition
 Many of the theoretical works are based on the 

interplay between the L-mode turbulence and 𝐸𝐸𝑟𝑟
shearing.

 A large part of other theoretical works are based
on the stabilization of RBM via increased pressure
gradient.

 An example:
o γturb (growth rate of the turbulence) can be 

modeled from theory (either analytically or 
numerically)

o γE (𝐸𝐸𝑟𝑟 shear) can be obtained by modelling
the 𝐸𝐸𝑟𝑟 profiles.

o γturb/ γE can be used to identify at which
temperature the transition occurs

 Qualitative trends can be tested

 For a recent review on L-H transition:

[Connor PPCF2000]

[Rogers PRL1997]

[Bourdelle NF2015]

[Bourdelle NF2020]

[Bourdelle NF2015]
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Pedestal structure
 To study the pedestal, it is necessary to quantify

the parameters that identify its structure.

 The key parameters are
o pedestal heigth
o pedestal width
o pedestal position (often defined as the 

position of the maximum gradient).
o maximum gradient

 The pedestal parameters are determined for:
o pressure
o temperature
o density

 These parameters are determined by fitting an 
analytical function (typically, a modified
hyperbolic tangent) to the experimental data.

height

position
position

maximum gradient

width
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Edge Localized Modes  (ELMs)
 The pedestal is characterized by sudden events, 

triggered by MHD instabilities, called edge
localized modes (ELMs).

 The ELM triggers the collapse of the pedestal 
temperature and density, which in turn leads to 
the release of energy and particles to the 
divertor. 

[Frassinetti NF2013]
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Edge Localized Modes  (ELMs)
 The pedestal is characterized by sudden events, 

triggered by MHD instabilities, called edge
localized modes (ELMs).

 The ELM triggers the collapse of the pedestal 
temperature and density, which in turn leads to 
the release of energy and particles to the 
divertor. 

 The ELM collapse affects the kinetic profiles only
in the pedestal region.

 The ELM losses can be calculated by integrating
the profiles just before and soon after the ELMs:

∆𝑊𝑊𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝 −𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
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[Beurskens NF2009]

[Beurskens NF2009]
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ELM types: definitions
 H-mode plasma can be characterized by several

types of ELMs. The ELM frequency (fELM) is often
used to identify the most common ELMs.

 The most common are:
o Type I ELMs. 
 fELM increases with 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑃𝑃𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑. 
 typically occurs at 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 ≫ 𝑃𝑃𝐿𝐿𝐿𝐿. 
 they are triggered by ideal MHD. 
 they appear as sharp burst on the Dα.

o Type III ELMs.
 fELM decreases with Psep. 
 typically occurs 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 ≈ 𝑃𝑃𝐿𝐿𝐿𝐿. 
 they are not triggered by ideal MHD. 

o Type II (or ”grassy” ELMs). 
 Not achieved in all machines. 
 Occurs at high confinement and high

triangularity. 
 They lead to small but frequent energy

losses.

Pnbi (MW)
f E

LM
(H

z)

[Sartori PPCF2004]
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ELM types: examples
[Osborne EPS1997][Zohm PPCF1996]

o Type I ELMs. 
 fELM increases with 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑃𝑃𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑. 
 typically occurs at 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 ≫ 𝑃𝑃𝐿𝐿𝐿𝐿. 
o Type III ELMs.
 fELM decreases with Psep. 
 typically occurs 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 ≈ 𝑃𝑃𝐿𝐿𝐿𝐿. 

For reviews of ELM types:
 [Zohm PPCF1996]
 [Leonard PoP2014]
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ELMs: energy losses and heat loads
 ELM losses tend to increase with

decreasing collisionality.
 At ITER collisionalities, the ELM energy

losses might be 15%-20% of the 
pedestal stored energy.

 ELMs lead to fluxes of energy and 
particles to the divertor.

 The divertor can be damaged or could
even melt. This could pose a problem 
for ITER.

 It is essential to understand ELM 
pedestal physics to:
o Minimize ELM energy losses
o Develop techniques for ELM 

mitigation/suppressions. Some of
the most developed techniques are:

o RMPs               for a review:

o ELM pacing with pellets

[Eich PPCF2005]

[Baylor NF2009]

[Loarte PPCF2003]

[Evans JNM2013]

[Pitts JNM2013]
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MHD stability and transport
 What are the physical mechanisms that determines the pedestal structure and 

trigger the ELMs?
 Two main concepts

o MHD stability
o Heat and particle transport

R

Pedestal pressure

pressure

t3t2
t1

t3

t2
t1

 The time evolution is set by transport
o Transport determines time evolution of

 pedestal gradients 
 pedestal heights

 The pedestal grows till a critical threshold
in pressure. Then, the MHD stability
triggers an ELM. 
o MHD stability determines: 

 pedestal height
 the maximum gradient.

o In the pedestal, the main MHD 
instabilities are:
 ballooning (B) modes
 peeling (P) modes
 coupled PB modes
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The ballooning modes
 The ballooning instabilities are pressure

driven: they are triggered when the 
pressure gradient exceeds a critical
threshold.

 They arise from toroidicity
 B has an unfavourable curvature low field

side balloning modes develop mainly on 
the LFS 

 Two key parameters define the ballooning
stability
o the normalized pressure gradient α

𝛼𝛼 = −
2𝜇𝜇0𝑅𝑅𝑞𝑞2

𝐵𝐵2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

has a destabilizing effect.
o the magnetic shear

𝑠𝑠 = −
𝑟𝑟
𝑞𝑞
𝑑𝑑𝑞𝑞
𝑑𝑑𝑑𝑑

𝑠𝑠 has a stabilizing effect.

[Freidberg, ”Ideal MHD”]
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The ballooning modes
 the normalized pressure gradient α

𝛼𝛼 = −
2𝜇𝜇0𝑅𝑅𝑞𝑞2

𝐵𝐵2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

o the increase of α destabilizes balloning 
modes

o at a certain threshold in α (αcrit) , the 
mode is unstable

 the magnetic shear

𝑠𝑠 = −
𝑟𝑟
𝑞𝑞
𝑑𝑑𝑞𝑞
𝑑𝑑𝑑𝑑

o the shear has a stabilizing effect
o Increasing the shear leads to an 

increase in αcrit.
 Most of the machines have a pedestal in 

region (1): the first stability region
 However, theory predicts a second stability

region, at high α and low shear

[Wesson ”tokamaks”]

αcrit

well before
the ELM

the ELM is 
triggered
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The ballooning modes
 the normalized pressure gradient α

𝛼𝛼 = −
2𝜇𝜇0𝑅𝑅𝑞𝑞2

𝐵𝐵2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

o the increase of α destabilizes balloning 
modes

o at a certain threshold in α (αcrit) , the 
mode is unstable

 the magnetic shear

𝑠𝑠 = −
𝑟𝑟
𝑞𝑞
𝑑𝑑𝑞𝑞
𝑑𝑑𝑑𝑑

o the shear has a stabilizing effect
o Increasing the shear leads to an 

increase in αcrit.
 Most of the machines have a pedestal in 

region (1): the first stability region
 However, theory predicts a second stability

region, at high α and low shear
 Finite Larmor radius effects have a stabilzing

effects and reduce the unstable region

unstable

well before
the ELM

the ELM is 
triggered

?

No!
There are further instabilitiessee later.

But first…
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The bootstrap current

[Horvath PPCF2018]

α

s Balloning modes

pedestal region

1st stability region

2nd stability region

 Due to the steep gradients in the 
pedestal region, the bootstrap current
(jbs) can give a significant contribution
to the total current density. 

 For an expression of jbs:
 The increase in the current density

affects the shear

 jbs has an effect on the ballooning
stability. 

 the parameters that affects jbs will
affect also the balloning stability:
o collisionality
o plasma shape

 It is common to use jtot instead of the 
shear in the stability diagram

[Miller PoP1999]

[Snyder PoP2002]

[Sauter PoP1999]
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The bootstrap current

[Horvath PPCF2018]

α

jtot Balloning modes

pedestal region

1st stability region

2nd stability region

 Due to the steep gradients in the 
pedestal region, the bootstrap current
(jbs) can give a significant contribution
to the total current density. 

 For an expression of jbs:
 The increase in the current density

affects the shear

 jbs has an effect on the ballooning
stability. 

 the parameters that affects jbs will
affect also the balloning stability:
o collisionality
o plasma shape

 It is common to use jtot instead of the 
shear in the stability diagram

[Miller PoP1999]

[Snyder PoP2002]

[Sauter PoP1999]
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The external kink / peeling mode
 The external kink mode is current driven
 The kink mode (𝑚𝑚,𝑛𝑛) is destabilized when 𝑞𝑞

at the plasma edge is low enough that
𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < 𝑚𝑚/𝑛𝑛 and the resonance is very
close to the plasma
 the kink mode is resonant outside the 

plasma
 the kink mode is strongly localized at the 

plasma edge. 
For comparison, the ballooning modes 
have a more global structure.

 The kink mode depends on the edge current
 jbs has a strong role [Huijsmans NF1998]

displacement due to a peeling mode

balloning eigenfunctions for n=10

[Wilson PoP2002]

[Huijsmans NF1998]

α

jbs

kink/peeling unstable



The peeling-ballooning (PB) modes
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 Toroidicity and shaping effects can
couple peeling and ballooning (PB) 
modes.

 The coupleds PB modes can be 
destabilized even if the single peeling 
mode and ballooning are stable.

 The PB stability are driven by both
pressure gradient and current density.

 The PB stability is the leading theory
to explain the pedestal behvaior in 
type I ELMy H-modes.

 The PB modes strongly limit the stable
region. 

 The access to the 2nd stability region 
is closed (most of the times).

[Snyder PoP2002]
[Wilson PoP2002]

[Connor PoP1998]

α

jtot
Balloning modes

1st stability region

2nd stability
region

peeling modes
coupled PB 
modes
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 Just after an ELM, the pedestal has 
low gradient and low jbs.

 During the ELM cycle, the pressure
gradient (and hence jbs) increases

 The process continues till the PB 
boundary is reached.

 Then an ELM is triggered:
o the pressure gradient and the jbs

collapse.
o the process starts again.

The PB model for the ELM cycle

R

Pedestal 
pressure

pressure
t3t2

t1
t3

t2
t1

t3t2t1

time

ELM

stable

unstable1

2

3

4
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 𝛽𝛽 = 𝑝𝑝
𝐵𝐵2/(2𝜇𝜇0)

 the increase of β leads to the 
increases of the Shafranov shift.
o the Shafranov shift has a 

stabilizing effect on the ballooning
modes.

o the ballooning modes boundary 
moves to higher α

o the pre-ELM pedestal pressure
gradient increases

 pped increases with increasing β.

Parameters that affect the pedestal: β

α

jtot increasing β

R

pressure

increasing β
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 𝛽𝛽 = 𝑝𝑝
𝐵𝐵2/(2𝜇𝜇0)

 the increase of β leads to the 
increases of the Shafranov shift.
o the Shafranov shift has a 

stabilizing effect on the ballooning
modes.

o the ballooning modes boundary 
moves to higher α

o the pre-ELM pedestal pressure
gradient increases

 pped increases with increasing β.

Parameters that affect the pedestal: β
[Saarelma PoP2015]
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 Collisionality

𝜈𝜈∗ = 𝑐𝑐𝑙𝑙𝑙𝑙𝛬𝛬
𝑅𝑅𝑞𝑞 𝑛𝑛𝑒𝑒

𝜀𝜀3/2(𝑇𝑇𝑒𝑒)2
 the collisionality has a major effect on jbs. 

[Sauter PoP1999]

 Approximately:
𝑗𝑗𝑏𝑏𝑏𝑏 ≈ 𝜈𝜈∗ −1

 The reduction of collisionality tends to increase
∇p, if the pedestal is near the ballooning
boundary

Parameters that affect the pedestal: ν

jtot

peeling

αjbs

decreasing 𝜈𝜈∗

ballooning

R

pedestal 
region
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 𝛿𝛿: plasma triangularity
 the increase of 𝛿𝛿 stabilizes part of the 

ballooning modes.
 the PB is strongly shaped at high δ and a so 

called ”nose” is formed:
o high jbs∇p increases with increasing δ.
o low jbs ∇p does not change much with δ.

Parameters that affect the pedestal: δ

jtot low δ

high δ

nose

[Saibene PPCF2002]
[Beurskens NF2013]
[Urano NF2014]

[Beurskens NF2013]

low δ
high δ

α
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 Other parameters that affect the pedestal 
stability are:
o Impurities. Zeff affects collisionality and jbs. It 

affects the electron pressure via the dilution
effect.

o q-profile. A change in q-profiles affects the 
shear.

o Pedestal width. A wider pedestal can
contain more ballooning modes, so it is 
more unstable

o Plasma rotation. 
o Density at the pedestal top. Not trivial 

effects, see later
o Position of the pedestal. An outward shift of

the pedestal destabilizes the ballooning
modes pedestal reduction

o Density at the separatrix. Only partially
understood.

o Isotope mass. Origin of the effect still 
unclear. 

Parameters that affect the pedestal

[Saarelma PoP2015]

[Snyder PoP2002]

[Snyder NF2011]

[Dunne PPCF2007]

[Snyder PoP2002]

[Snyder IAEA2018]

[Maggi NF2019]

[Aiba NF2018]

[Dunne PPCF2007]

ne outward shift

[Aiba NF2011]
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Pedestal predictions: the PB constraint
 Can we use the PB model to predict the 

pedestal pressure height before the ELM?

 The PB model identify the critical normalized
pressure gradient (αcrit) above which the PB 
modes are destibilized.
 It can be used to determine ∇p.

 For a specific pedestal width, the PB model can
determine the critical ∇p at which the PB 
modes are destabilized. 
 for this specific width, the critical

pressure height can determined from 
(∇p)crit.

 A correlation between width and 
critical pressure can be obtained. This
is often called ”PB constraint”

 More information is necessary to predict
pedestal height and width.

αcrit

[Maggi NF2015]
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Pedestal predictions: the KBM constraint
 The other constraint can come from 

pedestal transport
 The problem is that the pedestal 

transport is (often) driven by turbulence. 
Turbulence studies are not trivial and 
very time consuming

 The most succesfull approach, so far, has 
been developed in DIII-D
 experimental results suggest that DIII-

D pedestal transport is driven by 
kinetic ballooning modes (KBMs)

 from the theoretical arguments, it can
be derived that for pedestals limited by 
the KBM turbulence:

𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑐𝑐 𝛽𝛽𝜃𝜃
𝑝𝑝𝑝𝑝𝑝𝑝

 an experimental fit from DIII-D data 
gives:

𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝 = 0.076 𝛽𝛽𝜃𝜃
𝑝𝑝𝑝𝑝𝑝𝑝

[Snyder PoP2009]
[Snyder PoP2009]

KBM constraint
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The EPED1 model
 The EPED1 model predicts pedestal 

pressure height and pedestal pressure
width using the
 KBM constraint: 

local KBM stability ”clamps” ∇p
 PB constraint:

global PB stability triggers the ELM

[Snyder PoP2009]
[Snyder NF2011]

𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝 = 0.076 𝛽𝛽𝜃𝜃
𝑝𝑝𝑝𝑝𝑝𝑝

THE ELM CYCLE ACCORDING TO EPED1:

a) ∇p grows unconstrained
b) KBM boundary is reached:

 ∇p is ”clamped”
 The pedestal height grows via the increase

of the pedestal width:

c) PB boundary is reached
 ELM triggered

1
2

3

2

3
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 EPED1 tends to predicts the pedestal 
pressure height rather well, for a large of
parameters and in many machines.

 EPED1 is a useful tool to test the PB 
model.

 EPED1 is widely used to predict the 
pedestal height (also in ITER).

 Example: prediction of pedestal pressure
dependence with:

o density
o β

28

[Snyder NF2019]

[Snyder NF2019]

[Snyder IAEA2012]

The EPED1 model
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 EPED1 works relatively well, but it is a 
linear model:

o it does not predict time
evolutions

o cannot predict ELM energy
losses

 Non-linear codes are necessary for 
modelling the details of the ELMs.

 Recent results with the JOREK code
are very promising:

o type I ELMs start to be 
modeled rather accurately

o ELMs similar to type III have
also been modelled.

29

[Huijsmans NF2007]

Non-linear MHD modelling

[Cathey NF2021]
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Some active research areas
 Discrepancies between EPED1 and 

experimental results, especially in JET-ILW, 
have been observed.

o what physics is missing in EPED?
 Super H-mode: DIII-D results show that at 

high δ the 2nd stability region can be 
accessed.
o can other experiments reach this region?

 Isotope effect
o What is the physical mechanism that

exlains the effect of isotope mass on the 
pedestal?

 Small ELMs
o will operation with good pedestals and 

small ELMs be posisble in ITER?
 ELM mitigation
o develop and test ELM mitigation

techniques that can be used in ITER

30

[Frassinetti NF2019], [Saarelma PoP2019], [Frassinetti NF2021]

[Saarelma PoP2019]

wpe (experimental)

w
pe

(E
PE

D1
)

[Snyder NF2015]

[Snyder NF2015]

1st stability region
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Some useful references
The choice of the following papers is based on two criteria:
o overview papers, when possible.
o most recent papers.
This list does not necessarily cite the original papers on the topic. 
Many excellent papers have not been included.

 Pedestal physics: [Urano NF2014]
[Leonard PoP2014]

 LH transition: [Bourdelle NF2020]
 Pedestal structure: [Frassinetti NF2021]
 Isotope effect: [Maggi PPCF2018]
 ELMs: [Zohm PPCF1996]

[Leonard PoP2014]
 PB model: [Wilson PoP1999]

[Snyder PoP2002]
[Snyder NF2004]

 EPED model: [Snyder PoP2009]
[Snyder NF2011]
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