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The purpose of the SMART project

* Identify the limitations of current traffic models to include automated vehicles

* Further develop current traffic models to enable analysis of traffic systems
including automated vehicles

* Evaluate the effects on traffic systems due to vehicle automation for two
application cases

* Contribute to long-term knowledge building
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SMART consists of two doctoral projects
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Public Transport

Traffic simulation of fleets with automated
vehicles

David Leffler
Wilco Burghout
Erik Jenelius
Oded Cats

New public transport solutions
. Real-time control strategies
*  Automated vehicles in flexible feed traffic
Modeling and effects of multimodal public transport systems

*  Effects of competing versus cooperating fixed and flexible
public transport systems

*  Modeling of traveler behavior

Traffic Performance

Microscopic traffic simulation of automated
vehicles

. Ivan Postigo
*  Johan Olstam
*  Clas Rydergren

*  Traffic effects of mixed traffic
*  Transition to automated roads
*  Heterogeneity of automated vehicles
*  Modeling of automated driving
* Differences in perception and reaction
*  Compliance to real-time control strategies
*  Effects of digital infrastructure
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Microscopic Modeling of Automated Vehicles

Research questions:

e How to model automated driving?

 How will the interaction between conventional and automated vehicles affect traftic
systems?
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Background

o [raffic simulation is an important tool used for traffic analysis.

e Microscopic traffic simulation models describe the movements and interactions of all individual vehicles
or travelers.

e Typical use of microsimulations is to investigate how changes in the infrastructure impact the traffic flow.

o With the introduction of automated vehicles, there is a change on the vehicle population.

« Several studies have used microscopic traffic simulation to investigate the impact caused by automated
vehicles.
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Aspects to consider for modeling automated driving

-

Automated Driving Context
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Effects on Traffic Performance due to heterogeneity of
Automated Vehicles

A <
A first study was done based on microscopic traffic simulations: 3 ;
* Over time AVs will become more advanced and improve their driving
capabilities and, .
o Different generations of AVs will coexist on the roads = AV heterogeneity. AV PenRate vs. Throughput - Section C
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Modeling Perception for Automated Driving

Automated Driving Context
Sensor—b;?sed GeeE Physical / Digital
perception Infrastructure

* Which vehicles/objects can be perceived?

* What type of information?
* Position
* Speed
* Intentions (route, desired lanes, desired speed)

e When is the information obtained?
*  Frequency
* Latency

* How is the information obtained/what are the sensing capabilities?

. rocus on the developing a generic model of perception including quality, range and
atency.

 Capture in a consistent way the key differences between human perception, sensor
based perception and connectivity based perception.
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Automated vehicles in public transit

Possible applications of autonomous vehicles (AVs) as part of a diversified
public transport system

integrated with traditional &
public transit services % e

and on-demand shuttles

e Automated transit services

* Limited real-life data and (P sy cre v
experience of such

systems @/

e Qur focus:
* Real-time control of
fixed transit
* Flexible feeder
services oo
Source: UITP (2017) Source : UITP / iistra
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BusMezzo
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Transit simulation model with extensions

Agent-based, models individual passenger’s
route and mode choices

* within-day (short-term adaptation)
e day-to-day (learned from experiences)

Extended with functionalities to model
demand-responsive services and alternative
assignment strategies
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On-demand feeder to fixed

Case description:
*  Simulate replacement of branches with shared
on-demand vehicles

*  Passenger and operator costs for collection

direction (on-demand branch to fixed corridor) Solbacka

Proposed contribution:
. Demonstrate flexible transit simulation
framework to evaluate a ‘real-life’ scenario

Conceptualize and experiment with evaluation
metrics for collaborative on-demand feeder to
fixed transit systems

Based off of the paper:

Georgios Laskaris, Oded Cats, Erik Jenelius, Marco Rinaldi & Francesco Viti (2018):
Multiline holding based control for lines merging to a shared transit corridor,
Transportmetrica B: Transport Dynamics, DOI: 10.1080/21680566.2018.1548312
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case study
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Scenario variations

Fixed DRT DRT

Scenario et fleet  capacity Algorithm

Fixed 38 0 - -

26x20 maxR 28 26 20 #Requests

50%20 maxR 28 50 20 #Requests Measured effects: _
100x10 maxR 28 100 10 4 Requests *  Passenger level-of-service
26x20 cumWT 28 26 20 CumulativeWait per.OD category

50x20 cumWT 28 50 20 CumulativeWait oranch-to-branch
10010 cumW'T 28 100 10 CumulativeWait Corridor-to-corri d(;r
20x20 maxR-rb 28 50 20 #chueats—l—Rebﬁlancing . VKT, Fleet utilization
50%x20 maxR-rb 28 50 20 #Requests+Rebalancing

100x10 maxR-rb 28 100 10 #Requests+Rebalancing

26x20 cumWT-rb 28 26 20 CumulativeWait+Rebalancing

50x20 cumWT-rb 28 50 20 CumulativeWait+Rebalancing

100x10 cumWT-rb 28 100 10 CumulativeWait+Rebalancing
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Main takeaways

* Shortening and simplifying the fixed service while maintaining the same frequency
improves LoS for travelers on the corridor

* The effects of rebalancing are positive for the largest fleet of smaller vehicles, however
can also have negative effects for smaller fleets (in this case mainly for transferring
travelers)

* Median waiting times improve for all DRT scenarios, however it is difficult to compete
with the fixed service without transfers in terms of reliability and equity of waiting times
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Future work

* Work potentially benefits operators, planners, policy-makers: experiment with different
conditions, to improve planning these types of services prior to implementation

* Next steps are to further integrate the flexible transit framework with the day-to-day learning

framework of BusMezzo

Modeling traveler behavior for
multimodal trips:

* Walking
* Fixed transit

* Flexible transit
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lvan Postigo — ivan.postigo@liu.se

David Leffler — david.leffler@abe.kth.se
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