

Urban Transport Modelling and Optimization

Sequential consolidation of passenger and freight transport in urban environments

From the project vision...

Vision

To understand and create conditions for a sustainable transport system in the city.

By addressing...

We have a chance to also affect...

12 RESPONSIBLE CONSUMPTION AND PRODUCTION

3 GOOD HEALTH AND WELL-BEING

...to the research question

1	What are the impacts of sequentially consolidating demand flows for different stakeholder?	
2	Can the urban logistic system be made more sustainable?	
3	Is the level of service for customer affected?	Passenger Freight Time [24h]

۲

SCANIA

Illustrative Example - Conventional Vehicles

Freight \rightarrow Passenger \rightarrow Freight (Chaining of requests)

Customer	Pick-Up Time	Drop-Off Time
1 (Freight)	9:00am	9:30am
2 (Freight)	11:00am	11:20am
3 (Passenger)	10:00am	10:20am

Vehicle 1: Blue Vehicle 2: Red

Total Vehicles: 2 Module Changes: 0 Empty Time: (30+20+40+30)min

Illustrative Example - Multi-Purpose Vehicles

Freight \rightarrow Passenger \rightarrow Freight (Chaining of requests)

Customer	Pick-Up Time	Drop-Off Time
1 (Freight)	9:00am	9:30am
2 (Freight)	11:00am	11:20am
3 (Passenger)	10:00am	10:20am

Switching Module Time Penalty: 10min

Vehicle 1: Blue

Total Vehicles: $2 \rightarrow 1$ Module Changes: $0 \rightarrow 2$ Empty Time: 120min \rightarrow (10+10+30+20) min

Theoretical Advantages:

- Reduction of fleet size
- Reduction of empty time

SCANIA

Multi-Purpose Vehicle Routing Problem

NP-hard combinatorial optimization problem

1. Create a feasible solution

D	1+	2+	2-	1-	S	3+	3-	D	
---	----	----	----	----	---	----	----	---	--

- 1. Create a feasible solution
- 2. Destroy the solution

- 1. Create a feasible solution
- 2. Destroy the solution
- 3. Repair the solution

- 1. Create a feasible solution
- 2. Destroy the solution
- 3. Repair the solution

- 1. Create a feasible solution
- 2. Destroy the solution
 - 3. Repair the solution
- 4. Evaluate the solution
 - 5. Analyse best solution

D	1+	2+	2-	1-	S	3+	3-	D
D	1+	2+	1-	2-	S	3+	3-	D

Model assumptions

- 1. Soft Time window penalties
- 2. Constant vehicle travel speed
- 3. Operation of multi-purpose vehicles is possible on the road network
- 4. The exchange of a module is done with the help of two workers at dedicated areas
- 5. The vehicle size (capacity), vehicle range and vehicle costs are the same for conventional and multi-purpose vehicles
- 6. Same operational costs for multi-purpose and conventional vehicles only difference is the additional cost for exchanging the module

SCANIA

Case Studies

- Depots outside the city as practiced today
- Service depots at strategic positions in the served area \rightarrow short distance between customers and depots

		Centralized Centralized Peaks	Distributed	Cluster
conventiona	Fleet Size:	6V	6V	10V
	Fleet Size:	6V + 2MC	5V + 2MC	8V + 3MC
Multi-	Pas.WT:	lower	lower	higher
purpose	Pas. IVT:	lower	higher	higher
Т	otal Veh-km:	higher	higher	higher
		- INTECRATED TRANSPORT ARCH LAR MANTINITA DI TYUNDOGY		1/

2

3

Conclusions & Outlook

What are the **impacts** of sequentially consolidating demand flows for different stakeholder?

- Similar overall costs
- Can the urban logistic system be made more sustainable?
 - Longer routes
 - Smaller fleet size

Is the level of service for customer affected?

• Lower waiting times for passenger

• Explore different mode of operations (2-echelon operations, multi-operator consolidations, etc.)

Explore impact of depot positions and depot size

Thank you for your attention!

PhD Candidate – Future Urban Transport Systems jonas.hatzenbuhler@abe.kth.se Transport Planning, Economics and Engineering (TEE) KTH Stockholm

CLOSER

Illustrative Example

Freight \rightarrow Passenger \rightarrow Freight (Chaining of requests)

Customer	Pick-Up Time	Drop-Off Time
1 (Freight)	9:00am	9:30am
2 (Freight)	11:00am	11:20am
3 (Passenger)	10:00am	10:20am

Switching Module Time Penalty: 10min

Example Analysis

• <u>http://127.0.0.1:8050/</u>

۲

SCANIA

Results

ALNS performance

Total Computation Time: ~40min Time until best Solution: ~6min

Destroy operators:

Worst Removal

Destroy operators:

- Worst Removal
- Random Removal

Destroy operators:

- Worst Removal
- Random Removal
- Path-Removal

Destroy operators:

- Worst Removal
- Random Removal
- Path-Removal
- Random Vehicle Removal

D	4+	5+	5-	4-	S	6+	6-	D
D	1+	2+	2-	1-	S	3+	3-	D
П	4+	5+	5-	4-	S	6+	6-	D

Destroy operators:

- Worst Removal
- Random Removal
- Path-Removal
- Random Vehicle Removal

Repair operators:

Greedy Insertion

2+	2-	

- 1. If a request cannot be inserted a new vehicle is created!
- 2. If all vehicles are in use request is considered unserved!

SCANIA

Destroy operators:

- Worst Removal
- Random Removal
- Path-Removal
- Random Vehicle Removal

2+	2-
----	----

Repair operators:

- Greedy Insertion
- Best Vehicle Insertion

Destroy operators:

- Worst Removal ٠
- Random Removal ٠
- Path-Removal •
- Random Vehicle Removal •

Repair operators:

- **Greedy Insertion** ٠
- **Best Vehicle Insertion** ٠
- **Best Inter-Vehicle Insertion** ٠

D

D

Illustrative Example - Conventional Vehicles

Freight \rightarrow Passenger \rightarrow Freight (Chaining of requests)

Customer	Pick-Up Time	Drop-Off Time
1 (Freight)	9:00am	9:30am
2 (Freight)	11:00am	11:20am
3 (Passenger)	10:00am	10:20am

Switching Module Time Penalty: 10min

Vehicle 1: Blue Vehicle 2: Red

Total Vehicles: 2 Module Changes: 0 Empty Time: (30+20+40+30)min

Illustrative Example - Multi-Purpose Vehicles

Freight \rightarrow Passenger \rightarrow Freight (Chaining of requests)

Customer	Pick-Up Time	Drop-Off Time		
1 (Freight)	9:00am	9:30am		
2 (Freight)	11:00am	11:20am		
3 (Passenger)	10:00am	10:20am		

Switching Module Time Penalty: 10min

Vehicle 1: Blue

Total Vehicles: $2 \rightarrow 1$ Module Changes: $0 \rightarrow 2$ Empty Time: 120min \rightarrow (10+10+30+20) min

Results – Oper Perspective

		Centra	lized	Distribu	uted	Clust	er
		no Time Window	Peaks	no Time Window	Peaks	no Time Window	Peaks
conventiona	Fleet Size:	6V	3V	5V	5V	10∨	10V
Multi- purpose	Fleet Size:	2V + 2MC	3V + 2MC	2V + 2MC	4V + 1MC	10V + 5MC	10V + 1MC
	Pas.WT:	-	higher	lower	-	lower	lower
	Pas. IVT:	lower	-	-	lower	higher	higher
To	otal Veh-km:	lower	lower	-	higher	lower	higher
CLOSER III INTEGRATED TRANSPORT							

Results – User Perspective

		Central	lized	Distribu	uted	Clust	er
		no Time Window	Peaks	no Time Window	Peaks	no Time Window	Peaks
conventiona	Fleet Size:	6V	6V	6V	6V	10V	10V
Multi- purpose	Fleet Size:	6V + 2MC	6V + 0MC	6V + 4MC	6V + 1MC	10V + 4MC	8V + 3MC
	Pas.WT:	-	lower	lower	-	lower	higher
	Pas. IVT:	-	-	-	-	-	lower
т	otal Veh-km:	lower	higher	lower	lower	higher	higher
CLOSER III ITEL-INTEGRATED TRANSPORT RESEARCH LAB 31							

RESEARCH LAB KTH ROVAL INSTITUTE OF TECHNOLOGY

Conclusions

Due to Technology	Stakeholder perspective	Scenario		
 Similar overall costs Longer routes Lower waiting times for passenger Higher waiting times for freight Smaller fleet size 	 Operator: Shorter routes Smaller fleet sizes User: Lower waiting times Lower in-vehicle times Balanced: Similar results as user perspective 	 In general, similar effects on user and operator cost Spatial Cluster do not lead to a fleet size reduction Temporal Time window constraints minimize the use of modules 		

CLOSER