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Examensarbete för avläggande av teknologie masterexamen i Teknisk fysik, inom
ämnesomr̊adet Flyg- och rymdteknik.

Master’s thesis for the degree of Master in Science of Engineering (MSc), in the
subject area of Aerospace Engineering.

TRITA-xxxx

© Anna Hidalgo Larsson, June 2021



Abstract

Space debris is becoming an increased threat to the future use of space orbits. In
order to counteract this threat, the field of Space Situational Awareness (SSA),
and the sub-field Space Surveillance and Tracking (SST), have been developed to
gather knowledge about the space debris and satellites surrounding Earth. The
orbit of a satellite can be determined by acquiring images of the satellite using a
telescope and a sensor. During this thesis, a tool has been programmed in Python.
This tool can simulate these types of images of satellite passes, at a given time
and location. The simulator takes the system parameters of the telescope and
camera sensor into account, together with several different types of disturbances
which affect these images. The project has been carried out at the Swedish Space
Corporation (SSC), which recently launched an SSA initiative. They plan to use
these images to learn more about their upcoming observations, and possibly to test
an orbit determination software.

Keywords: SST, SSA, Satellite, Telescope, CMOS, TLE, Image Simulator,
Space Imagery, Space Debris, Tracklet

iii



Sammanfattning

Rymdskrot är ett allt mer p̊atagligt hot mot den framtida användningen av om-
loppsbanor i rymden. För att motverka detta hot har det blivit viktigt att kartlägga
rymdlägesbilden och de objekt som ligger i omloppsbana runt jorden. Detta görs
genom att observera, identifiera och banbestämma satelliter. En satellits omlopps-
bana kan bestämmas genom att ta bilder av satelliten med hjälp av ett teleskop
och en sensor. Under detta examensarbete har ett verktyg för att kunna simulera
s̊adana bilder utvecklats. Simuleringsverktyget har programmerats i Python och
kan simulera bilder av satellitpass vid en given tidpunkt och fr̊an en given plats.
Verktyget tar hänsyn till systemparametrarna för teleskopet och kamerasensorn,
samt effekterna av ett flertal olika typer av störningar som p̊averkar dessa bilder.
Projektet har genomförts hos företaget Swedish Space Corporation (SSC), som ny-
ligen lanserade ett initiativ för att bättre först̊a rymdlägesbilden. De planerar att
använda dessa bilder för att lära sig mer om deras kommande observationer, samt
att eventuellt testa en programvara för att bestämma banparametrar.

Nyckelord: Rymdlägesbild, satellit, teleskop, CMOS, TLE, bildsimulator, rymd-
bilder, rymdskrot, satellitpass.
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Preface

This master’s thesis is my final work at the Royal Institute of Technology in Stock-
holm, Sweden. With it, I will have completed the degree programme in Engineering
Physics, which awards the Swedish title civilingenjör. It is also the last part of the
master’s programme in Aerospace Engineering, where I have specialised in Space
Technology.

Space has been a major interest of mine for more than ten years. It is an area
of science I find fascinating in many ways, as well as an area that many people
have some kind of relation to. The combination of innovation, exploration, public
engagement, and setting new boundaries for what is possible is something I have
not yet witnessed in any other field of science. Thanks to this interest for space
exploration, I have had the opportunity to visit some of the best telescopes in the
world in Chile, and on La Palma, Spain. I have also had the pleasure to visit
multiple satellite stations. It has therefore been a very interesting project to model
many of the complicated technologies associated with these areas of exploration.

Today, many people use satellite technologies daily without being aware of it.
The services provided by satellites have become crucial to the modern society.
However, space debris is becoming an increased threat towards the future use of
orbits, and therefore also satellites. This threat requires a great deal of work to
be able to ensure sustainable usage of space orbits in the future. I hope that this
thesis might serve as a contribution to this important work.
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Chapter 1

Introduction

1.1 Space Situational Awareness and its
sub-fields

In 1957, the Russian satellite Sputnik 1 was launched and the space age commenced.
Since then, more than 10,000 satellites have been placed into orbit around Earth,
and of these 6,250 satellites still remain there [1]. However, today only 3,600 satel-
lites in Earth orbit remain functional while the rest of the satellites have become
space debris. The definition of space debris is a non-functional, man-made object
in space [2]. Besides non-functional satellites, the space debris also includes large
resident space objects such as spent upper rocket stages, down to small objects from
explosions and collisions such as paint flakes and fragments. The Space Surveillance
Network regularly tracks 28,210 space debris objects of different sizes [1]. Many of
these objects are populating the same regions in space as operational satellites, with
altitudes ranging between 300 to 40,000 km [2]. The current space debris in orbit
thus pose a risk of causing new collisions, increasing the number of debris objects
even further. The worst case would be a scenario where the Kessler syndrome is
triggered, meaning an exponential increase of space debris by a chain reaction of
collisions and explosions [3]. This could make spaceflight too dangerous to continue
pursuing, and it is therefore in the interest of all space stakeholders to avoid these
types of scenarios.

In February 2009, a collision between an active Iridium communication satellite
and a non-functional Russian satellite occurred unexpectedly. This was the spark of
what has become known as Space Situational Awareness (SSA)[4]. The definition
of SSA varies, but according to Kennewell and Vo (2013), SSA is in its broadest
sense defined as the knowledge of the energy and particle fluxes in the near-Earth
space environment, together with the natural and artificial objects passing through
or orbiting within this space. It also includes the past, present and future state of
these particles and objects.

1
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Figure 1.1: Division of SSA into different sub-fields.

The European Space Agency (ESA) has divided their SSA Programme into
three main areas: Space Weather, Near-Earth Objects, and Space Surveillance and
Tracking (SST) which is defined as watching for active and inactive satellites, dis-
carded launch stages and fragmentation debris orbiting Earth [5]. SST information
therefore provides the ability to detect and predict the movement of space debris
in orbit around Earth, and can be used by spacecraft operators to avoid collisions.
This information is provided by data acquisition and processing, and is stored in a
database referred to as a catalogue. The division of SSA into different sub-fields is
illustrated in Figure 1.1.

Raw data of resident space objects is acquired by having sensors scanning large
areas of the sky for moving objects. Different types of sensors can be used for this
purpose, but radar and optical sensors are common. Optical data is collected at
an optical observatory, which consists of a telescope, a camera, a telescope mount,
and a dome. The data is then processed into a tracklet which is a fragment of
the track followed by the object, examples of tracklets can be seen in Figure 1.2.
The tracklet is converted into an ephemeris consisting of the position and velocity
of the object, which is catalogued. Data is used for catalogue build-up, meaning
detection of new objects without any prior information. Usually, a single tracklet
is not reliable enough to estimate the orbit of the object, meaning track association
becomes mandatory [6]. New data measurements are continuously required in order
to maintain the catalogue and keep it updated.
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1.2 Optical observations and orbital extraction

Both radar and optical sensors can be used to to detect space debris, but optical
sensors benefit of higher sensitivity for the detection of objects at large distances [2].
For optical observations to be possible, the sky must be dark while the object is
illuminated. For objects orbiting Earth in Low Earth Orbit (LEO), this happens
around 1-2 hours after sunset and before sunrise, depending on the latitude and
the season. Images can be taken by either using sidereal or satellite tracking. If
the telescope uses sidereal tracking it tracks the background stars on the sky and
the satellite is shown as a tracklet on the resulting image. When using satellite
tracking for observing known satellites, the stars instead are shown as tracklets.
The difference between these modes are shown in Figure 1.2. The length of the
tracklets depend on the exposure time and object’s orbital speed.

(a) Sidereal tracking showing the
tracklet from Tiangong-1.

(b) Satellite tracking of two geostationary
satellites marked by arrows.

Figure 1.2: Sidereal tracking versus satellite tracking. By tracking the stars the
satellite is shown as a tracklet in the resulting image, and vice versa for satellite
tracking [7].

The images are then processed and undergo a noise removal procedure. The
process of extracting the orbital parameters of the satellite vary, but one approach
is described in S. H. Hossein et al. (2020), where an image captured by sidereal
tracking is analysed [8]. After image noise removal, the sky survey algorithm uses
the Canny edge identification algorithm and identifies different objects in the image
as stars or tracklets by analysing each pixel. The inertial moments of these objects
are calculated together with the center of mass light curves, which are used to
identify stars. An example of target and star identification is seen in Figure 1.3a
and Figure 1.3b. If stars are found, the algorithm proceeds with computing the
center of mass of the stars, together with the image and a catalogue of triangles
index. An example of the resulting triangles is seen in Figure 1.3c. The triangles
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are matched to a catalogue which allows for retrieval of the celestial coordinates.
It is then possible to extract the orbital parameters of the satellite trajectory in a
format called a Two-Line Element set (TLE).

(a) Identified targets. (b) Identified stars.

(c) Identified triangles. (d) Analysis of the tracklet luminosity.

Figure 1.3: The different steps when processing an image for orbit and attitude
determination [7].

The orbital determination estimation can be improved by multiple observations,
but these images can also be used for attitude determination [8]. This is done by
identifying the variation of light flux of the identified satellite, which is used to
predict the attitude with respect to the velocity vector direction. An example of a
light curve generated from a tracklet luminosity analysis is seen in Figure 1.3d.

1.3 Optical system properties and disturbances

The imagery described in the previous section can be affected by several factors,
such as telescope properties and external disturbances. These can diminish the
accuracy and precision of the object’s orbit estimation. It is therefore important
to examine in detail how these factors affect the imagery.

An optical system has different abilities depending on its properties such as
aperture, focal length, field of view and exposure time for example. These will
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determine how much of the sky the telescope can see, and also how faint objects
the telescope can discern.

The images are taken via a sensor, usually either a charge-coupled device (CCD)
or a complementary metal-oxide semiconductor (CMOS). Some examples of sensor
properties affecting the image is shutter type, read out times, duty cycle, quan-
tum efficiency, and full-well capacity [9]. These sensors are also prone to certain
disturbances such as read noise, dark currents, and dark and hot pixels.

The imagery can also be affected by a number of external disturbances, for
instance vibrations due to passing vehicles close to the observation site. Other
examples are mounting vibrations, moonglow, skyglow and atmospheric effects.
Operational parameters such as binning may also have effects on the imagery and
subsequent orbit determination.

1.4 Purpose and objectives

The Swedish Space Corporation (SSC), formerly known as Rymdbolaget, is a
mainly commercial space company owned by the Swedish government. SSC op-
erates Esrange Space Center in northern Sweden where they carry out sounding
rocket and balloon missions. The company also provides science and launch ser-
vices, as well as satellite ground network services. Currently, SSC is deploying an
optical SST station to build capabilities as part of an SSA initiative.

The objective of this thesis is to design and develop a tool that SSC can use
to simulate images of satellite passes in the night sky, at a given time and location
provided by coordinates, as detected from a professional optical telescope system.
This will help determining several feasible observational scenarios that will be used
to define the telescope operations. It will also allow SSC to investigate how system
properties and external disturbances affect the image quality of an optical SST
telescope. The satellite orbits are obtained by propagating a TLE, in order to
simulate satellite tracklets on the simulated sky. However, the tool should also
provide the possibility to switch between sidereal and satellite tracking depending
on the user’s needs. The simulator shall also be able to model some disturbances,
i.e. atmospheric effects, and these effects shall be applied to the simulated image.
SSC also plans to use these images to train and test an orbit determination software.

The implementation of the simulation tool is done by designing, programming,
and testing a tool based in Python. When suitable, pre-existing tools, libraries,
and packages should be used.

1.5 Delimitations

This thesis aims at developing a space imagery simulation tool, and in order to
make this feasible within the given time period an important strategic decision has
been to make use of already existing code libraries when possible. Developing code
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to model i.e. the propagation of satellite trajectories, is therefore not included in
the scope of the project. Where preexisting code modules are not found to exist
already, necessary code will be developed.

In reality, there are many types of disturbances that might affect the images
to be simulated. This thesis work does not include modelling minor effects such
as those from gamma rays or vibrations caused by external events, such as nearby
vehicles for example. The type of disturbances the images are prone to are often
complicated phenomena, and simplifications are therefore applied where necessary.

TLEs will be used to simulate the satellite orbits on the simulated sky, but this
thesis does not include the inverse modelling of extracting TLEs from the simulated
images. This process is complex, and extensive work has already been performed
by others.

The visibility of a satellite depends on many factors, i.e. area, albedo, geo-
metric shape, spin rate and solar phase angle to mention some of them. These
many factors make the modelling of satellite magnitude quite complicated, and
thus simplifications are used in this process.

1.6 Structure of the thesis

Chapter 2 presents the relevant background information of optical systems, cameras
and detectors, satellites, orbits, and coordinate systems. It also familiarises the
reader with different types of disturbances which affects SST images.

Chapter 3 presents the system requirements and system architecture of the tool.
It then describes the process of developing the simulation tool, and the different
problems encountered during the development. The chapter also presents different
assumptions used in the modelling of the images, and gives the motivations behind
different choices of modelling and estimations.

Chapter 4 presents the results from running the simulation tool. These results
are based on trying two reconstruct two real SST images. The chapter also sum-
marises which packages the tool depends on, evaluates the initial requirements, and
summarises possible future work.

Chapter 5 summarises the report and presents the conclusion from the work. It
also summarises the limitations of the simulation tool.



Chapter 2

Background

This chapter describes the background information of optical systems, cameras
and detectors, sensor imaging, visibility of satellites, the night sky, orbits and the
sources of different image disturbances. Current software tools used in astronomy
and orbital determination are also outlined. The chapter also gives the necessary
theory and terminology crucial for the understanding the work. The equations
presented in this section are used in the simulation tool to calculate optical system
properties and other parameters.

2.1 Optical systems

In 1609, the Italian physicist and astronomer Galileo Galilei became the first per-
son to build a telescope and use it for astronomical observations [10]. Since then
the telescope has undergone major development in order to enable observations of
fainter objects. Unlike other areas of science, astronomy is limited to observations
and the purpose of an optical telescope is to collect as much light as possible. In
this section the function of a telescope is described and properties of a telescope
are explained.

2.1.1 Different types of telescopes

An optical telescope gathers light by either a lens or a mirror, and this difference
classifies the telescope as either a refractor (lens) seen in Figure 2.1a, or a reflector
(mirror) seen in Figure 2.1b [11]. They are used for the same main purpose: gather
light from a large area to study faint sources, but the difference in the geometrical
optics result in different areas of usability.

7
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Refractors

A refractor uses a lens called an objective to collect incoming light. The refractor
can also be equipped with an eyepiece and the distance between it and the focal
plane is adjusted to get the image into focus. A glass lens refracts different colours
differently, which means the colours do not meet at the same focal plane. This is
known as chromatic aberration and is corrected by using multiple lenses and differ-
ent glasses. The size of the glass lens limits the possible aperture, and refractors
are limited by a small field of view and a long structure. However, they are still
used for some applications such as solar telescopes for example.

(a) Schematic of a refractor telescope.

(b) Schematic of a reflector telescope.

Figure 2.1: Schematics of two telescope types [12].

Reflectors

A reflector telescope uses a mirror to gather incoming light, and reflectors are the
most commonly used telescope type for research purposes. The mirror is usually
coated with a thin layer of aluminium and is of concave shape which allows it to
focus all incoming light into the same focal point. Thus, reflectors do not suffer
from chromatic aberrations [11]. However, the reflector can suffer from aberrations
such as spherical aberration and coma due to that the light rays do not converge
at the same point in the focal plane [10].

Reflectors are divided into different types depending on its focus. The first
reflector was a Newton focus telescope which guides the light from the primary
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mirror by using a secondary small, flat mirror [11]. Such a reflector is seen is
in Figure 2.2a. The second type of reflector is called Cassegrain focus. In such
a telescope the primary mirror is parabolic and the rays are then reflected by a
secondary small, hyperbolic mirror through a hole in the main mirror [11]. A
telescope of Cassegrain type is seen in Figure 2.2b.

(a) Newtonian telescope. [13] (b) Cassegrain telescope. [14].

Figure 2.2: Path of light through two different telescopes of reflector type.

A variant of the Cassegrain telescope is the Ritchey-Crétien telescope where
both mirrors are hyperbolic in order to eliminate coma [11]. Many large telescopes
such as the Hubble Space Telescope is of the Ritchey-Crétien type. Another variant
is the Corrected Dall-Kirkham telescope where also both mirrors are hyperbolic, but
it also utilizes corrector lenses along the optical path [15].

2.1.2 Telescope properties

A telescope has a large field of application which varies depending on its properties.
In this subsection these properties are explained.

Aperture

In an optical system, an aperture is the size of the first optical element, such as
the diameter of the main lens or mirror [10]. The aperture diameter is the simplest
measure of how much light the telescope can gather. A larger aperture means
a greater number of photons are intercepted by the telescope, thereby increasing
the sensitivity of the optical system. The apertures of a refractor and a reflector
telescopes has been marked in Figure 2.1.

Coatings and interference filters

Refractive optics use anti-reflection coatings to eliminate reflections between dif-
ferent components in the telescope [16]. The thickness of the layer is dependent
on wavelength, and therefore limits the perfect functionality of the telescope to a
certain wavelength. For other wavelengths, losses will occur due to transmission
and reflectance factors.
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Diffraction limit

When a light wave encounters an obstacle or an opening, the light ”bends around
the corner” and deviates from rectilinear propagation [10]. This phenomenon is a
characteristic of the wave nature of light. The theoretical limit for the resolution
of the telescope is set by the diffraction of light [11].

The diffraction limit, θ, is the finest detail an aberration-free optical system
can distinguish when atmospheric turbulence is not present [10]. It is therefore the
limit of the maximum achievable resolution of the telescope, beyond this limit the
image becomes blurry. Incoming light gets diffracted when passing the aperture,
and the limit is therefore a function of the size and shape of the aperture and the
wavelength of the incoming light. It can be calculated as

θ “
1.220ˆ λ

D
[rad] (2.1)

where λ is the wavelength of the incoming light and D is the diameter of the
telescope [17].

Diffraction pattern from a circular aperture; the Airy disk

A star seen from Earth is a point source of light. When a point source is observed
by a long exposure, the light will be ”smeared” by the effects of the telescope
optics, the atmosphere, and other disturbances [18]. Assuming the optics are free
from aberrations, the light will be distributed by the characteristic Point Spread
Function (PSF) which describes the variation of the intensity with distance from
the center of an image of a point source created by the optical system [10]. The
contribution to the PSF from an optical system with a circular aperture is called
the Airy disk, and it is illustrated in Figure 2.3. The circular aperture diffracts the
image of the point source into a very bright central spot, surrounded by concentric
bright rings, whose brightness decreases with the distance from the center [19]. The
angular radius of the first dark ring is equal to the diffraction limit θ, in accordance
with Rayleigh’s criterion for the resolution of a mirror or lens [17].

Figure 2.3: The Airy disk, showing the bright central spot surrounded by
concentric bright rings [20].
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Diffraction spikes

Reflecting telescopes require a secondary mirror that needs to be attached and sup-
ported by the telescope. This is done by using stiff, supporting vanes that can
be arranged in a few different strut arrangements. Some possible arrangements are
illustrated in Figure 2.4, together with their diffraction patterns which happens due
to the vanes diffracting the light [10]. These patterns can be seen as “spikes” in stel-
lar images. Each straight obstruction in the beam produces two diffraction spikes
180˝ apart in the direction perpendicular to the direction of the vane. Diffraction
spikes also contribute to the PSF of the optical system.

Figure 2.4: Comparison of diffraction spikes for various strut arrangements of a
reflecting telescope. The inner circle represents the secondary mirror which is
supported by vanes [21].

Focal length

The focal length of an optical system is the distance from the point where light rays
converge to form a sharp image of an object to the digital sensor or focal plane,
when the lens is focused at infinity [22]. The focal length is important for the field
of view of the optical system. A longer focal length means a narrower field of view
with an equivalent sensor size, and similarly a shorter focal length indicates a wider
field of view. The focal length of a refractor telescope is highlighted in Figure 2.1a.

Focal ratio and focal number

The focal ratio (f -ratio) is the ratio of the effective focal length of an optical system
to the diameter of the aperture [10]. It is a useful parameter to classify and compare
different telescopes, and it is calculated as

f{N “
L

D
(2.2)

where N is the focal number, L is the focal length and D the aperture diameter.
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Field of view

The field of view (FOV) describes how much of the sky the telescope can see in one
frame. It is related to the instantaneous field of view (IFOV) which describes the
solid angle through which a pixel can receive electromagnetic radiation. For SST
purposes, the optical system is combined of a telescope and an imaging sensor. The
IFOV for a pixel can be calculated as

IFOVpixel “ 2 arctan
´ p

2ND

¯

rrads (2.3)

where p is the pixel size, N is the focal number and D the aperture diameter [23].
The equation is originally given with the unit in steradian, but since equation (20)
in [23] is for IFOV2

pixel, and equation (2.3) is for IFOVpixel, the unit becomes radians.
The FOV for the imaging sensor can then be calculated as

FOVsensor “ npIFOVpixel “ 2np arctan
´ p

2ND

¯

rrads (2.4)

where np is the number of pixels in one side of the sensor. If the sensor is not a
square sensor it is therefore necessary to calculate two FOVs to fully understand
what the system can observe.

2.1.3 Telescope Mounting

There are two principal ways of mounting a telescope: equatorial and altazimuthal
mounting. These types of mountings are based on two different coordinate systems
which are further described in Section 2.4.2. A telescope is required to be mounted
on a steady support and be able to rotate smoothly in order to prevent shaking and
causing disturbances during observation, as well as to provide precise and accurate
pointing [11]. An example of the zigzagged tracklet produced by mount vibration
disturbances is seen in Figure 2.5.

Figure 2.5: Example of mount vibrations disturbance in a satellite tracking
image [24]. Mount vibrations cause the star tracklet to look zigzagged.
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Equatorial mounting

Equatorial mounting, seen in Figure 2.6, compensates for Earth’s rotation by having
one axis called the polar axis or hour axis directed towards the celestial pole [11].
This axis is therefore parallel to the axis of the Earth, and turning the telescope
around it at a constant rate compensates for the apparent rotation of the sky.
The other axis is parallel to the hour axis and is called the declination axis. The
equatorial mounting can cause heavy loads on the bearings of the telescope.

Figure 2.6: Equatorial and altazimuthal mount of a telescope [25].

Altazimuthal mounting

When a telescope is mounted using altazimuthal mounting, one axis is vertical and
the other horizontal [11]. This is also illustrated in Figure 2.6. To be able to follow
the apparent rotation of the sky the telescope must be turned about both axes with
changing velocities. This makes the controlling of it more complicated and usually
requires a computer to handle. Altazimuthal mounting is easier to construct than
equatorial mounting, and is more stable for large telescopes. Close to zenith there
is a small forbidden region where the telescope cannot observe since it would cause
a quick change of the azimuth by 180˝.

2.2 Cameras and detectors

To capture the image the telescope produces it is necessary to use a detector.
The role of the detector is to detect, as noiselessly and efficiently as possible, each
precious photon collected by the telescope and instrument [10]. In the optical range
it is most common to use a detector based on semiconductor technology. The two
types that are in use today are the CCD and CMOS sensors.

This section covers the functionality of imaging sensors and the different param-
eters that categorise them. It also presents the operational parameters, and why
one detector is preferred for observing orbital debris. It then continues with how
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images from the sensors are stored digitally, before finishing with discussing how to
determine the visibility based on signal noise ratio from the detector.

2.2.1 CCD detectors

A CCD is a two-dimensional array of p/n junctions made of silicon. Incident light
on the semiconductor that falls within the bandgap of the photosensitive material
produces electron-hole pairs [9]. The electrons are then trapped in potential wells
produced by numerous small electrodes, and there they accumulate until their total
number is read out by charge coupling the detecting electrodes to a single read-
out electrode [17]. This means that the electron-hole pairs are converted to digital
counts by some sequence of amplifiers and analog-to-digital circuitry (ADC) [9].
The process of charge coupling consists of cycling the voltage of the electrodes
and transfer the charge between them [17]. The charge is transferred through the
whole structure of electrodes by continuous cycling until it is brought to the output
electrode from where the charge value can be determined.

Until the readout process of the CCD begins, the photoelectrons generated on
the sensor are restricted to specific spatial locations due to the bias placed on
the surrounding readout electrodes [9]. The charge is then read vertically through
adjacent pixels into a row, before being read horizontally to the amplifier and
ADC, as seen to the left in Figure 2.7. Due to serially reading of the pixels, this
process can give raise to unwanted artifacts and long readout times for large CCDs.
An example of an artifact is blooming, which occurs when the charge in a pixel
exceeds the saturation level and starts to fill adjacent pixels [26]. CCD sensors
are typically designed to allow easy vertical shifting of the charge while potential
barriers are created to reduce flow into horizontal pixels. The result is that excess
charge prefers flowing into the nearest vertical neighbours, and blooming therefore
produces a vertical streak in the resulting image.

The front side of the CCD is partially obscured by metal electrodes [10]. This
implies that although the CCDs can be illuminated from either side it is preferred
in astronomical applications to use backside illumination. The placement of the
electric wiring then allows for more electrons to reach the sensor. The disadvantage
of backside illumination is that it can result in poor sensitivity to some wavelengths.

2.2.2 CMOS detectors

The CMOS detector technology shares many of the same detection principles with
the more traditional CCD technology. The main difference is that CMOS technol-
ogy places the readout circuitry predominantly on each pixel [9]. This difference
is illustrated in Figure 2.7. This is accomplished by having each pixel indepen-
dent from adjacent pixels, instead each pixel converts its charge into an amplified
voltage. This type of readout process decreases readout times substantially.
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Figure 2.7: Readout architectures of a CCD and a CMOS sensor [9].

2.2.3 Detector parameters

Image sensors are assessed and compared by several parameters. The most im-
portant parameters are summarised in Table 2.1, and some of them are further
elaborated upon.

Dark and hot pixels

Dark pixels (black pixels) are individual pixels or small clusters of pixels of the
sensor which have significantly lower response than their neighbours (less than
75% the response of the average pixel) [28]. They usually form over time due to
contamination of the sensor, but their effects on the image can be removed by
applying a flat field reference or post processing interpolation.

Hot pixels are the opposite of dark pixels, these are pixels with a much higher
dark current than their neighbours (50 times higher than specification) [28]. Sim-
ilarly as for dark pixels they form due to contamination. Their effects can be
removed by taking a background image with the shutter closed, a process which is
called dark calibration.

Dark current

Dark current is the current measured when no light is falling on the detector [10].
This is due to the fact that the sensor cannot distinguish between photons from light
or photons generated by heat [27]. The dark current signal increases linearly with
exposure time, but can be measured by taking exposures with the shutter closed.
Subtracting the dark current from the observed image then gives the real number
of electrons due to incident light [11]. Individual pixels may vary in sensitivity,
but this can be corrected for by taking a flat-field which is an image of an evenly
illuminated field where the stars are not visible. Observations are then divided
by the flat-field to remove the error caused by different pixels. Dark current is
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Table 2.1: Parameters used for assessment and comparison of detectors.

Parameter Explanation

λm The wavelength for which the detectivity is maximum [17].
Dark and hot pixels Non-functional pixels.
Dark current The current measured from the detector when it is unillu-

minated [10]. Measured in electrons per second.
Dynamic range Ratio of the largest to the smallest signal level a circuit

or detector can handle [10]. Determines the range over
which the sensor can simultaneously record very low and
very bright signals [27].

Fill factor Ratio of light sensitive area to the total area of the sensor.
Max. frame rate The maximal rate of how often the sensor can capture an

image, usually expressed as frames per second (FPS).
Pixel count Number of pixels in the sensor.
Pixel size Lengths of the sides of a pixel.
Quantum efficiency Ratio of the actual number of photons that are detected

to the number of incident photons [17]. Usually given as
a percentage.

Read noise The noise produced at each pixel when the sensor is read,
expressed in number of electrons.

Shutter type Global or rolling for electronic shutters.
Well depth The limit on the number of electrons a pixel can hold be-

fore saturation [27].

temperature dependent and can therefore also be partly avoided by cooling the
sensor to very low temperatures.

Pixel size

Pixel size is the length of the sides of a pixel and it is measured in meter. For
observations it is important to know how much of the sky each pixel covers, and
this can be adjusted by changing the optics on the telescope and camera [10]. The
pixel size can affect other parameters such as the optical system resolution, dark
current, readout noise, blooming, dynamic range, and sensitivity to cosmic rays.

Quantum efficiency curve

Quantum efficiency (Qeff) is defined as the ratio or percentage of photons converted
into a signal [27]. The sensor is characterised by a quantum efficiency curve which
describes the necessary amount of electrons to generate a detectable signal at dif-
ferent wavelengths. To make the best use of the sensor the optics must be adapted
for the wavelengths with highest quantum efficiency.



2.2. Cameras and detectors 17

Readout noise

When the signal collected on CCD pixels is transferred, amplified, and converted
to a digital value, noise is introduced at each step of the process [10]. Reading the
voltage at the output node has an associated noise level which is independent of
the actual number of electrons, including the case of no electrons [27]. This noise,
which is added from each pixel during signal readout, is called readout noise. The
readout noise is independent of exposure time [18].

The CCD readout noise can be described by a single readout noise value since all
pixels pass through a common architecture and are subjected to the same sources
of noise during the readout process [29]. In the CMOS on the other hand, each
pixel has its own amplifier circuit resulting in slightly different read noise values
resulting in a noise distribution. The noise level for the CMOS sensor is therefore
usually given as a median value.

Shutter type

The shutter of the detector can be either mechanical or electronic. There are two
types of electronic shutters: rolling and global. The rolling shutter exposure time
is defined as the exposure time per row [9]. This means that the exposure of each
row is offset from the adjacent row leading to pixels being read at different times
which can cause spatial distortion of fast moving objects. They are therefore not
optimal for observing space debris due to the required accurate timing. Using a
global shutter means that every pixel on the sensor is exposed and read at the same
time, and with the same exposure time. However, this mode can decrease the frame
rate compared to rolling shutters and allows for higher read noise [29].

In a CMOS camera the electronic shutters can operate in overlapping modes [9].
This means that the readout of the previous frame is performed during the exposure
of the current frame, and duty cycles of 100% is therefore possible.

2.2.4 Operational parameters

The image sensors are also affected by how they are operated. These operational
parameters are summarised in Table 2.2 and some of them are elaborated upon
further.

Exposure time

The exposure time affects the amount of light captured by the detector. The signal
and noise grow with increasing exposure time [18]. Depending on the purpose of
the observation and equipment, the exposure time can range between milliseconds
and hours, or even days [10, 17].
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Table 2.2: Operational parameters for detectors.

Parameter Explanation

Duty cycle Percentage of how much of a time period the system is
active.

Exposure time The time for which the detector collects light.
Frame rate How often the sensor captures an image, expressed in FPS.
Pixel binning Combining multiple pixel charges in both the horizontal

and vertical direction to form a single larger charge or
super pixel [27].

Pixel binning

Pixel binning, or just binning, is the process of combining multiple pixels in both
the horizontal and vertical direction to form a single super pixel [27]. This super
pixel represents the area of all the pixels which are contributing to the charge. A
binning where the signal arises from a single pixel is denoted by 1 ˆ 1, as seen in
Figure 2.8. Similarly, a binning consisting of four adjacent pixels is denoted by 2ˆ2
which increases the area and the sensitivity to light by a factor of four. Binning
will lower the resolution of the image, but will decrease the amount of data to be
saved.

Figure 2.8: Illustration showing how the binning process combines adjacent
pixels into a super pixel [27].

2.2.5 CMOS detectors for orbital detection

CCDs have previously dominated the field of scientific imaging due to many of the
advantages they had over CMOS imaging technology [9]. However, development of
the CMOS detector has lead to a decreased usage of CCDs. To capture the faint,
small and fast-moving space debris objects it becomes important to use a detector
with low readout noise and low dark noise [9]. Other important parameters are
short read out times, high well capacity, high quantum efficiency and a low number
of dark and hot pixels. With respect to these requirements, the CMOS offer a broad
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range of advantages in comparison to CCDs due to their fast imaging and fast read
out capabilities in combination with low noise characteristics.

2.2.6 Storing the captured image

In an image sensor the photon image on the detector is converted to a charge image
in the pixels [16]. The px, yq location of the charge in the image then mimics the
location of the arriving photons. The readout process converts each charge packet
to a voltage and digitize it in order to associate a number to each pixel location.
These numbers are stored in a two-dimensional array such that the correct intensity
is associated with the appropriate px, yq pixel, this array is the digital image. There
are various ways of storing the resulting images in electronic forms. Each of the
many ways to organise the parameter and pixel data inside the file is called a
format [30].

A common file format used for astronomical images is the Flexible Image Trans-
port System (FITS) [17]. Various versions of FITS exist, but they all consist of
a header, the image in binary form and an end section. The header can contain
various information such as the number of bits representing the data in the im-
age, the observed object, the telescope used, details of the observation, and other
comments.

2.2.7 Determining detectability by Signal Noise Ratio

The ratio of signal amplitude to the root mean square (RMS) amplitude of the
background fluctuation is called Signal Noise Ratio (SNR) [10]. SNR is a way of
measuring the detectability of a signal. As mentioned in Section 2.2.3, the detector
collects photons but also unwanted noise from various sources. The total noise
is formed by noise from four independent noise sources: background noise, object
noise, thermal signal, and readout noise.

The random fluctuation in a signal has a Poisson distribution and is referred to
as Poisson noise or shot noise [10]. The Poisson distribution describes the random
fluctuation in a signal with a constant average, i.e. the arrival rate of photons from
a source. The probability ppn, tq of n photons falling on a given area of a detector
in a time t is given by

ppn, tq “ pNtqn
e´Nt

n
(2.5)

where N is the average flux (photons per unit time)[10]. For the Poisson distribu-
tion, the RMS fluctuation in the average flux N is equal to

?
N . This means that

the standard deviation σSD of the individual measurements from the true signal S
can be estimated as

σSD “
?
S (2.6)
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where S is the signal, and σSD the corresponding noise level [18]. This allows the
total noise to be calculated as

σSD “

b

σ2
B ` σ

2
S ` σ

2
T ` σ

2
R (2.7)

where σSD is the total noise, σB is the background noise, σS is the object noise, σT

is the thermal signal, and σR is the readout noise. Using this noise equation, the
SNR can be calculated as [18]

SNR “
S

σSD
. (2.8)

By combining equations (2.6), (2.7), and (2.8) it is possible to calculate the SNR
in one pixel in the detector as

SNRpixel “
S

a

S `B ` T ` σ2
R

(2.9)

where S is the signal from the object collected in the pixel, B the signal from the
sky background, T the thermal signal collected by the pixel, respectively, and σ2

R

is the readout noise for one pixel [18]. This equation can be used to calculate the
peak SNR from the brightest pixel in the image.

2.3 Visibility of objects

In order to visually observe a satellite it must be visible from the location on Earth
and in sunlight. In this section the requirements to observe satellites and how to
model their visibility are discussed, together with how the brightness of stars is
measured.

2.3.1 Magnitudes

Apparent magnitude

The brightness of an object observed from Earth is measured by apparent magni-
tude m. Measuring m is called photometry. To calculate the magnitude of an object
it is necessary to determine that magnitude 0 corresponds to some pre-selected flux
density F0 [Wm´2], and all other magnitudes are then calculated as

m “ ´2.5 log10

F

F0
(2.10)

where F is the the observed flux density [11]. This equation implies that the brighter
an object is, the lower its magnitude number is. By convention, at all wavelengths
magnitude 0, and thereby F0, has been attributed to the bright star Vega [10]. This
implies that all objects brighter than Vega have negative magnitudes.
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Equation (2.10) can be used to show that the relation between two objects of
magnitude m1 and m2 is

m1 ´m2 “ ´2.5 log10

F1

F2
. (2.11)

A difference of 1.0 in magnitude corresponds to a star which is 2.512 times brighter.

The UBV and the Gaia G magnitude scales

Magnitude can be complicated since light is not monochromatic and therefore cov-
ers many wavelengths. Accurate photometry is accomplished with photoelectric
and solid-state devices and filters that accept only certain wavelength bands [10].
The combined effect of the filter, any prisms, the transmission, the optical path,
and the detector quantum efficiency, as a function of wavelength, defines the pass-
band which needs to be calibrated for the specific instrument [31]. To account for
these differences, many different photometric systems have emerged. It should be
noted that they differ in central wavelength and bandwidth, which also depend on
instrumental responses particular to each observatory [10]. A common photometric
system is the UBV system which also covers bands in the red and infrared spec-
trum. When magnitude is given without specifying the band further, it is usually
the normal magnitude in the V (”visual”) band with the midpoint λ “ 550 nm that
is referred to.

It happens that passbands need to be re-calibrated for the same instruments
during the lifetime of the instrument. This is true for the ESA space observatory
Gaia which was launched on December 19 in 2013, and whose mission is to measure
the positions, distances, motions and photometry of stars [32]. The mission data is
made available to the public in different releases, and due to this cyclic processing
of the Gaia data leading to the publication of better and more complete releases,
the internal average instrument generated at each cycle is different [31]. Gaia has
one passband per instrument; the white light G-band p330 ´ 1050 nmq, the blue
GBP -band p330´ 680 nmq and the red GRP -band p640´ 1050 nmq band [33].

Converting magnitudes to electrons

Star catalogues usually provides the magnitude of the star, but the detector mea-
sures photons and converts this to electrons. In order to understand what the
detector actually measures it is necessary to be able to convert from a given magni-
tude to the resulting number of electrons in the detector. The flux of the star can
be calculated by solving equation (2.10) for the flux F which results in the equation

F “ F010´m{2.5 rWm´2
s (2.12)

where F0, as previously mentioned, is the pre-selected total flux density correspond-
ing to Vega which has been defined as the magnitude 0 reference star. Flux can
be given in different units depending on whether if it refers to the flux at a certain
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wavelength or to the total density. In equation (2.12) the flux F is the total flux
density. Flux at a certain wavelength is denoted by Fλ [Wm´3].

The energy of a single photon of wavelength λ equals hc{λ [J], where h “
6.62607015 ˆ 10´34 [Jm] is Planck’s constant and c “ 2.99792458 ˆ 108 [m/s] is
the speed of light. The number of electrons Spλq detected by a telescope with area
Atel in a wavelength interval ∆λ, transmitted by an optical system of efficiency τ
onto a detector of quantum efficiency Qeff, during an exposure time texp can then
be calculated by

Spλq “
λ

hc
τQeffAtel∆λFλtexp relectronss (2.13)

where Fλ depends on the wavelength and can be calculated from equation (2.12) [16].
The efficiency τ is the product of all present transmission or reflectance factors in
the system and will therefore depend on the used setup and on the observed wave-
length.

2.3.2 Observer-geometry

Observing a satellite in daylight is difficult because the sky is very bright and
the satellites are dim due to the reduced reflected solar flux at large phase angles
[34]. The phase angle, φ, is the Sun-satellite-Earth angle whose vertex is at the
satellite, and it is illustrated in Figure 2.9. The phase angle varies from 0 to 180˝,

Figure 2.9: Phase angle geometry [34]. The shown geometry is for daytime.

and observations of satellites in GEO are routinely performed by optical sensors at
night when the phase angle is less than about 85˝ [34].

In order for sunlight to reach the satellite it must be outside the Earth shadow.
The main two regions of the shadow are called umbra and penumbra. Umbra is the
central, completely dark part of the shadow, while penumbra is the portion of the
shadow within which part of the disk of the Sun is still visible [10].
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2.3.3 Albedo

The definition of the term albedo, denoted by a0, is the ability of a body to reflect
light [11]. Bodies in the solar system reflect sunlight, and the brightness of a body
depends on its distance from the Sun and Earth, and on the albedo of its surface.

When doing optical observation of space debris the apparent brightness is mea-
sured [2]. If the observation geometry is known, the apparent magnitude may be
converted to absolute magnitude, but this requires some assumption about the
albedo which is most of the time unknown. The National Aeronautics and Space
Administration (NASA) has conducted optical measurements in LEO to derive the
albedo of known small-size debris, and first results indicated a mean albedo value
between 0.1 and 0.2, an estimate which is based on assumptions about the shape
and scattering properties of the debris [2]. When modelling the magnitude of satel-
lites in geostationary orbit (GEO), albedo values from 0.175 to 0.2 have been used
for the satellite bus [35].

The Earth albedo varies from about 0.02 to 0.8 depending on the region and
angle of incidence, but it is common to use an average value of 0.3 [35]. This value is
important when calculating the eartshine, which is the fraction of sunlight reflected
from the Earth to the satellite location.

2.3.4 Reflecting area of an object

A large reflecting area makes a satellite easier to detect since it reflects more light.
The reflecting area of a satellite is often approximated by its radar cross-section
(RCS) which is denoted by σ. The RCS of a target in a radar beam is the projected
area of a metal sphere that would scatter the same power in the same direction that
the target does [36]. This is not true for Earth observers who see the reflected light
on the satellite from the Sun, but it is a decent assumption in order to make an
estimation about the magnitude of the satellite. RCS can be calculated by

σ “ 4πR2Ps
Pi

rm2s (2.14)

where R is the distance to the target which is assumed to be far away, Ps is the
scattered power density, and Pi is the incident power density at the scattering
target [36]. Ps and Pi are measured in W/m2. The RCS depends on many dif-
ferent aspects and is a function of, for example, position of the transmitter and
receiver relative to the target, the target geometry and material, wavelength, and
polarisation.

2.3.5 Modelling apparent visual magnitude of a satellite

To model the photometric signature of a satellite it is common to assume the
satellite is a sphere with a Lambertian surface [35]. A Lambertian surface is defined
as an absolutely white, diffuse surface which reflects all radiation [11]. Using this
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assumption, the phase function Fdiff which describes the fraction of incident solar
flux reflected by the spherical satellite as a function of the phase angle φ, can be
calculated as

Fdiffpa0, rsat, φq “ a0
2

3

r2
sat

πR2
psinφ` pπ ´ φq cosφq (2.15)

where a0 is the satellite’s albedo, rsat is the radius of the satellite, R is the range
between the satellite and the observer, and φ is the phase angle [35, 37]. By
assuming that the optical cross section of the sphere is the same as the RCS, the
satellite’s radius can be calculated by

rsat “

c

σ

π
(2.16)

where σ is the RCS given in square meters [35]. Equation (2.15) can then be written
as

Fdiffpa0, R, φ, σq “ a0
2

3

σ

pπRq2
psinφ` pπ ´ φq cosφq. (2.17)

Using equation (2.11), the apparent visual magnitude of the Lambertian sphere is
then calculated as

msatpφ,Rq “ m@ ´ 2.5 log10pFdiffq (2.18)

where the apparent visual magnitude of the sun m@ “ ´26.74 [35].

2.4 The night sky

A satellite is observed on the night sky. Different aspects of the night sky, such as
for example different coordinate systems and the influence of the atmosphere, are
discussed in this section.

2.4.1 Time

There are many different ways to define time, and there are several different time
scales in use. Some of them, such as solar and sidereal times, are are based on the
rotation of the Earth, while other scales such as dynamical and atomic time are
based on different processes [11, 38]. In this section, some fundamental concepts
which are related to time and used in astronomy are presented.

Coordinated Universal Time

The most commonly used time system is Coordinated Universal Time (UTC) which
is derived from atomic clocks and which divides time into days, hours, minutes and
seconds [38]. UTC makes use of leap seconds which are regulated by the U.S. Naval
Observatory. UTC does not change for daylight saving time.
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Epoch

The epoch is a particular instant of time which is used as reference in the determi-
nation or measurement of celestial object positions [10]. Positions are given for an
epoch, and to obtain positions at some other epoch, the effects of proper motion,
nutation, and stellar aberration must be included in the calculations.

Julian date

In astronomy it is common to use the Julian Date (JD), which is the number of
days and fraction of days since noon on 1 January 4713 BCE [10]. Other epochs
exists, such as the truncated JD which instead uses midnight on May 24, 1968 [39].
Currently, the most used epoch is noon of January 1, 2000 [11]. This is denoted as
the J2000 epoch and represents the JD 2,451,545.0.

2.4.2 Coordinate systems

On Earth, the terrestrial parameters latitude and longitude are used to describe
different locations. To locate celestial objects, there are a few different coordinate
systems in use. In this subsection, the two most important systems are introduced:
the equatorial coordinate system and the horizontal coordinate system. These
coordinate systems are summarised in Table 2.3.

Table 2.3: Summary of the two most common coordinate systems [10].

Coordinate
system

Reference
plane

Reference direc-
tion

Latitude
coordinate

Longitude coordi-
nate

Equatorial Celestial
equator

Vernal equinox,
γ

Declination,
δ/DEC

Right Ascension,
α/RA

Horizontal Horizon North Altitude, h Azimuth, A

Equatorial coordinate system

The equatorial coordinate, seen in Figure 2.10a, is the most common coordinate
system in astronomy [39]. The system projects the equator of the Earth onto
the celestial sphere to form the celestial equator, and uses this as reference plane.
The reference direction is taken as the vernal equinox which is the point on the
celestial sphere where the ecliptic (apparent path of the Sun on the sky) ascends
and intersects the celestial equator [10].

The angular distance eastwards, along the celestial equator, between the object
and the vernal equinox (denoted by γ in Figure 2.10a) is known as the object’s
right ascension and is denoted by α or RA [39]. RA is typically measured in hours,
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minutes, and seconds. The angular separation between the celestial equator and
the object is known as the object’s declination and it is denoted by δ or DEC.
Objects above the celestial equator have a positive declination, and objects below
have a negative declination. The declination is measured in degrees, minutes, and
seconds. However, both RA and DEC can be given in decimal degrees.

(a) Equatorial coordinate system [10]. (b) Horizontal coordinate system [40].

Figure 2.10: Two of the most common coordinate systems. Different angles and
symbols are explained in the text.

Horizontal coordinate system

The horizontal coordinate system (also known as the AltAz system), seen in Fig-
ure 2.10b, is the simplest coordinate system [39]. The reference plane is the the
tangent plane of the Earth passing through the observer [11]. This horizontal plane
intersects the celestial sphere along the horizon. The point located straight above
the observer is called zenith, while the point straight below the observer is called
nadir. Circles that pass through these two points are called verticals and are per-
pendicular to the horizon.

Coordinates are given by altitude/elevation and azimuth. The altitude, h, is
measured from the horizon along the vertical that passes through the object. The
altitude ranges from ´90˝ to 90˝ with negative angles for objects below the horizon,
and positive values for objects above the horizon. The second coordinate azimuth,
A, is the angular distance of the object’s vertical from a fixed direction. This
direction varies, but is usually either from the north or south. Direction is usually
clockwise, but not always. Values lie in the range from 0˝ to 360˝, or from ´180˝

to 180˝. In Figure 2.10b, the azimuth is measured eastward from north.

2.4.3 The atmosphere

Ground-based telescopes observe light coming through the atmosphere which causes
many problems. The foremost problems are that it absorbs light from targets,
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and scatters light into the telescope from non-targets [17]. Phenomena in the at-
mosphere such as rain, clouds and snow are also highly inconvenient for obser-
vations. The atmosphere therefore has a major impact on image quality due to
turbulence [16]. The atmosphere disturbs the incoming waves which limits the
ability of the telescope to reach its ultimate angular resolution. Transmission and
absorption also happens in the atmosphere, and different wavelengths are absorbed
differently. The number of electrons Spλq, presented in equation (2.13), is therefore
further reduced by a transmission factor which depends on wavelength and varies
from 0 to 1.

Turbulence and inhomogeneity in the atmosphere also cause scintillation and
seeing [17]. Scintillation is seen as the twinkling of the stars due to the rapid change
in the brightness of a stellar image when more or less light from the incoming point
source is scattered by irregularities in the atmosphere. Seeing is when the stellar
image slightly moves away from its true position due to refraction at boundaries be-
tween different layers within the atmosphere. Both of these phenomena change with
time and images obtained with exposures longer than around 0.01 s will therefore
be blurred into the seeing disk which contributes to the PSF. Some of the ways to
reduce these phenomena are to use adaptive optics or to observe at high altitudes,
or even in space.

2.4.4 Sky glow and the sky background

The night sky is never completely dark, and on the ground at visible and near-
infrared wavelengths the atmosphere contributes light from several sources: air-
glow, scattered sunlight, starlight, and moonlight, and scattered artificial light [19].
Light scattered by dust and molecules causes the sky background to have a certain
intrinsic brightness [17]. This phenomena imposes a limit upon the faintest object
that is detectable through the telescope. The main source of scattered light is arti-
ficial light, specifically street lighting. Observational sites are therefore preferably
located far away from urban areas. Apart from artificial light sources, the Moon
also has a major impact on the night sky which varies with the lunar cycle.

Airglow is caused by light that is emitted by excited atmospheric molecules [11].
However, most of the radiation is in the infrared domain and therefore less prob-
lematic for optical observations.

2.4.5 Star catalogues

The first star catalogue was published in the second century, but today there exist
several catalogues which to varied extensions cover different magnitudes, positions
and properties [11]. Some of the most important ones in use today have been sum-
marised in Table 2.4. Catalogues can broadly be divided into stellar and nonstellar,
but some are mixed [39]. These catalogues contain subdivisions based on whether
data is observed visually, photographically or digitally. Another parameter of star
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catalogues is their completeness which is the number of detected objects compared
to the number of expected detected objects from current computer models.

The first astrometric satellite Hipparcos was launched in 1989 by ESA [11].
The satellite measured exact positions of more than a hundred thousand stars and
resulted in the Hipparcos catalogue which contains astrometric and photometric
data of 118,000 stars down to a precision of milliarcseconds. Observations were
made in the B and V bands, with a limiting magnitude of 12.4 in the V band [39].
The satellite measurements also resulted in data for the Tycho-1 and Tycho-2 cat-
alogues which are less precise than the Hipparcos catalogue, but contain data for
about one million respectively 2.5 million stars. These cover stars down to limiting
V magnitude of about 11.5.

Another catalogue is the U.S. Naval Observatory USNO-B1.0 Catalog which
contains data for 1,024,618,261 stars and galaxies down to magnitude 21 [11, 39].
The data is based on images from several photographic sky surveys and consists of
right ascension and declination, proper motion, and magnitude estimates.

In 2013, the satellite Gaia was launched by ESA [11]. The satellite is a successor
to the Hipparcos satellite and has improved the accuracy to about 10´5 seconds of
arc, while also providing an order of magnitude more objects in more bands and to
fainter magnitudes [11, 39]. Gaia has photometric uncertainties in the millimagni-
tude range and positional uncertainties in the range of hundredths of milliarcseconds
[39]. The magnitudes range from 3 to 21 in the G band, and the current latest data
release Gaia Early Data Release 3 (GEDR3) contains 1,811,709,771 sources and is
essentially complete for G magnitudes between 12 and 17 [41]. This makes it the
most extensive star catalogue so far.

Multiple catalogues can be composed to a larger database to be cross-matched
with relative ease. The most important online database is the Set of Identifica-
tions, Measurements, and Bibliography for Astronomical Data (SIMBAD), which
is formed from the concatenation of a large number of astronomical catalogues [39].
SIMBAD contains data for about 5,800,000 stars, and additionally data about
5,500,000 nonstellar objects [42].

Table 2.4: Summary of different star catalogues used today.

Catalogue name Limiting magnitude Number of objects Comment

Gaia EDR3 3 - 21 1,811,709,771
Hipparcos 12.4 118,000
SIMBAD - 5,800,000 Concatenation
Tycho-2 11.5 2,500,000
USNO-B1.0 21 1,024,618,261 Includes galaxies
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2.4.6 Available astronomy software tools

There exists quite many different astronomical observatory softwares used to dis-
play the night sky at a given time. Some prominent examples are Stellarium [43],
Cartes du Ciel [44], and Google Sky [45]. A similar tool is HeavensAbove which
provides detailed star charts where trajectories of passing satellites are shown [46].
Python also has a collection of software packages called Astropy which contains
many different functions applicable to astronomy [47]. One noteworthy package
is astroquery which is used for querying online databases such as the Gaia cata-
logue [48]. Another Python package useful for modelling telescope optics is Poppy,
which includes a system for modelling a complete optical instrument, including
optical propagation and PSFs [49].

ESA is currently working on a project called Pyxel which is a general detector
simulation framework [50]. The goal is to simulate a variety of imaging detector
effects combined on images made by CCD or CMOS-based detectors. The tool is
still under development, but a beta version is available.

2.5 Orbits

In order to observe a specific satellite it is critical to understand its orbit. This
section describes the classical orbital parameters, how satellites’ orbital parameters
are distributed, and how to propagate an orbit from known data.

2.5.1 Keplerian elements

In order to define the state of a satellite in space, six quantities are required [38].
The classical orbital elements are the Keplerian elements, which are illustrated in
Figure 2.11.

The first two Keplerian elements describe the shape and size of the ellipse in
which the satellite travels:

1. Semimajor axis (a) - the sum of the distance between the extreme points of
the orbit (periapsis and apoapsis) divided by two.

2. Eccentricity (e) - describes how elliptical the orbit is. If e “ 0 the orbit is a
perfect circle.

The second two parameters defines the orbital plane of the ellipse:

3. Inclination (i) - describes the tilt of the orbital plane from the reference plane
and ranges from 0˝ to 180˝.

4. Longitude of the ascending node (Ω) - The angle in the reference plane from
the reference direction to the ascending node, it varies from 0˝ to 360˝. For
geocentric orbits where the reference plane is the equatorial plane, and the
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Figure 2.11: Orbital parameters [51].

vernal equinox is used as reference direction, the longitude of the ascending
node is called the right ascension of the ascending node (RAAN).

The last two parameters are:

5. Argument of periapsis (ω) - the angle measured from the ascending node in
the direction of the satellite’s motion to the closest point of the orbit (the
periapsis). It varies from 0˝ to 360˝.

6. True anomaly (ν) - varies from 0˝ to 360˝ and determines the satellite’s po-
sition relative to the location of periapsis at some specific epoch.

2.5.2 Two-Line Element Sets

The classical orbital elements are widely used, but it is also common to use a Two-
line element set (TLE) to describe the satellite’s orbit at a certain epoch [38]. It
is based on UTC and consists of two lines which are presented in Tables 2.5 and
2.6, the set may additionally have a line 0 containing the common name for the
object based on information from the satellite catalogue [52]. TLEs are publicly
available through the websites www.space-track.org and www.celestrak.com/

NORAD/elements/.

The satellite catalogue number is assigned to the object by the US Space Force
and is assigned sequentially as objects are catalogued [52]. The mean anomaly
(line 2, field 7) is not a Keplerian element but is a way of indicating where the
satellite would be if it was moving in a circular orbit of radius a [11]. The mean

www.space-track.org
www.celestrak.com/NORAD/elements/
www.celestrak.com/NORAD/elements/
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motion (line 2, field 8) is the mean angular velocity given in revolutions per day,
and it is often used to replace the semimajor axis a using Kepler’s laws [38].

TLEs are only valid for a short time and rapidly go out of date [53]. It is
therefore important to pay attention to the epoch of the TLE which informs about
the date on which the TLE is the most accurate. Typically, TLEs elements are
only useful for about one to two weeks before and after the epoch. Historical
TLEs can be requested from www.celestrak.com/NORAD/archives/request.php

for example. The maximum accuracy of a TLE is limited by the number of decimal
places in each field, and in general TLE data is accurate to about a kilometer or so
at epoch before quickly degrading [54].

Table 2.5: The TLE elements in the first line [52].

Line 1
Field Columns Element Example
1 1 Line number 1
2 3-7 Satellite catalogue number 25544
3 8 Classification (U=Unclassified, C=Classified,

S=Secret)
U

4 10-11 International Designator (last two digits of
launch year)

98

5 12-14 International Designator (launch number of
the year)

067

6 15-17 International Designator (piece of the launch) A
7 19-20 Epoch Year (last two digits of year) 08
8 21-32 Epoch (day of the year and fractional portion

of the day)
264.51782

9 34-43 First Derivative of Mean Motion (Ballistic
Coefficient)

.00020137

10 45-52 Second Derivative of Mean Motion (decimal
point assumed)

00000-0

11 54-61 Drag Term (decimal point assumed) 16538-3
12 63 Element Set Type (always zero in distributed

TLE data)
0

13 65-68 Element set number. Incremented when a
new TLE is generated.

292

14 69 Checksum (modulo 10) 7

www.celestrak.com/NORAD/archives/request.php
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Table 2.6: The TLE elements in the second line [52].

Line 2
Field Columns Element Example
1 1 Line Number 2
2 3-7 Satellite catalogue number 25544
3 9-16 Inclination (degrees) 51.6335
4 18-25 RAAN (degrees) 344.7760
5 27-33 Eccentricity (decimal point assumed) 0007976
6 35-42 Argument of Perigee (degrees) 126.2523
7 44-51 Mean Anomaly (degrees) 325.9359
8 53-63 Mean Motion (revolutions per day) 15.7212
9 64-68 Revolution Number at Epoch (revolutions) 32890
10 69 Checksum (modulo 10) 6

2.5.3 Orbit propagation

Orbit propagation is done to examine how the effect of perturbations on the satellite
will affect the orbital elements [38]. General perturbation techniques replace the
original equations of motion with an analytical approximation that captures the
essential character of the motion. This approximation is valid over some limited
time interval. A table of predicted positions of a body in the solar system or of a
spacecraft is called an ephemeris [10].

The most classical approach to orbital propagation is to use Keplerian motion
and two-body equations which provide exact solution to the equations of motion
for two mutually attracting bodies [38]. However, these equations only consider
the force of gravity and no other perturbations. They will therefore not provide
reliable results for satellites over time.

In order to take perturbations such as Earth oblateness, lunar and solar gravita-
tional effects, gravitational resonance effects and drag into account, the Simplified
General Perturbations (SGP4) was developed to propagate TLEs for near-Earth
satellites [38, 55]. Near-Earth objects were defined as space objects with a period
less than 225 minutes, and objects with a period greater than or equal to 225 min-
utes were defined as deep-space objects [55]. Later, the SGP8 model was developed
to handle deficiencies of SGP4 for the special cases of orbital decay and reentry [38].
These models have later been improved by various contributors. The most recent
update was by Vallado et al. who released an updated and combined set of code,
test cases, results and analysis for the SGP4 routine in 2006 [54].

There are many versions of the basic satellite prediction algorithms, and perfect
agreement between two different prediction softwares should not be expected [53].
The satellite’s orbit should be expected to constantly change as the SGP4 propa-
gation routine models effects like atmospheric drag and the Moon’s gravity. This is
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particularly true for the true anomaly parameter which can swing wildly for satel-
lites with nearly circular orbits since the satellite’s perigee can be moved by even
slight perturbations to the orbit.

2.5.4 Available software tools for working with orbits

TLEs are distributed by websites such as Space-Track [56] and CelesTrak [57],
which continuously update their TLEs. These websites can also provide additional
information about the satellites, i.e. an estimated RCS.

The Python package Skyfield [58, 59] provides positions for the stars, planets,
and satellites in orbit around the Earth, together with a large range of different
functions such as orbital propagation. Similar functions are provided by the low
level space dynamics library Orekit, which aims at providing accurate and efficient
low level components for the development of flight dynamics applications [60]. The
library is written in Java, but a Python wrapper is available. Another software tool
which is used by many space organisations is Systems Tool Kit (STK) [61]. STK
includes extensive functions for orbit determination and visualisation.





Chapter 3

Development of the
simulation tool

This chapter describes the process of developing the simulator, the different meth-
ods applied, and assumptions made in the process. It starts with defining the
requirements for the simulator tool which were to be fulfilled, and continues by
presenting the final system architecture of the tool. Then the process of imple-
menting the requirements is discussed.

3.1 The requirement matrix

The first step in developing the tool was to decide on the requirements to be fulfilled
by the finished simulation tool. The requirements were prioritised and divided into
hard and soft requirements. The hard requirements are identified by the word
”shall” which indicates that they must be implemented. The soft requirements
are identified by the word ”should” and indicates they should be implemented if
times allow once the hard requirements are fulfilled. Each requirement also has a
verification method showing how to verify whether the requirement is fulfilled or
not. Some of the requirements also have a rationale where such is relevant.

The full concatenated requirement matrix is seen in Appendix A in Table A.2,
together with the requirement matrix legend in Table A.1. The following subsec-
tions present the different subgroups of requirements and the reasons behind them.
The word system is used for the combination of a specific telescope and a specific
camera. The word camera is synonymous to the word sensor and refers to the
CMOS sensor chosen for the simulation.

35
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3.1.1 Requirement group 1: Basic properties

The first group of requirements presents the basic properties of the tool, and they
are seen in Table 3.1. These requirements are the most fundamental and represent
some of the basic objectives of the simulation tool.

Table 3.1: Requirement group 1: Basic properties requirements

Requirement B-1 is a hard requirement given by SSC, and one of the main
reasons behind it is to facilitate the use of the many preexisting libraries written
for Python. Python code is also very readable which facilitates for other developers
to read and modify the code. Besides that, Python is easy to run on different
operating systems which makes it very portable.

Requirements B-3 to B-4 are also hard requirements and represent basic objec-
tives of the tool in order to be able to use it for its intended purpose: investigate
feasible observational scenarios. To be able to see how the stars are affected by
different disturbances it must be possible to know which stars are observable in
perfect conditions. This is the reason behind requirement B-2. Requirement B-3 is
also a fundamental objective. It should be noted that when using satellite tracking
this requirement would be applicable to star tracklets. Requirement B-4 is also a
fundamental objective. Different observational systems have different abilities de-
pending on the combination of camera and telescope. It is therefore necessary to
be able to simulate the images as they would look like from different systems.

Requirement B-5 is listed as a soft requirement since the tool does not require
a graphical user interface (GUI) to run, but that it would be beneficial to have in
order to facilitate the user interaction with the simulation tool.

3.1.2 Requirement group 2: Input parameters

The second requirement group is the required input parameters to the tool, and
they are listed in Table 3.2. These are necessary in order to fulfil the basic properties
and other requirements. All the input parameters requirements were identified as
hard requirements necessary to fulfil the tool purpose.

Requirements I-1 and I-2 are related to the location where the observation is
taking place, which is chosen by the user. In order to be able to simulate the stars
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Table 3.2: Requirement group 2: Input parameters requirements

and satellite from a given location it is necessary to know the coordinates of it.
The altitude of the location is also important to have an idea about the achievable
seeing at the location. The next requirement, I-3, represents the starting time of the
observation. It is fundamental to understand the position of the satellite relative to
the observer and which stars that are visible during the observation. Requirement
I-4 was chosen in order to be able to switch between satellite and sidereal tracking
by the telescope since both were feasible scenarios according to SSC. Requirement
I-5 represents for how long the telescope should observe, and this parameter will
affect both the length of the tracklets but also how many photons the telescope
have time to gather from the targets.

To understand how the satellite tracklet will look like it is necessary to have some
orbital information about the satellite, and this was the reason behind requirement
I-6. The idea was that the tool should be able to import and read a text file
containing the orbital information in form of a TLE. The following requirement,
I-7, is related to requirement B-4 which needs this input in order to be fulfilled.
Requirement I-8 allows the user to choose to use binning, and requirement I-9 lets
the user choose how to save the resulting image from the simulated observation.

3.1.3 Requirement group 3: System properties

Requirement group three contains the requirements related to the system proper-
ties, and they are presented in Table 3.3. Requirement P-1 is a hard requirement
and reinforces that the resulting image should take parameters specific to the chosen
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camera into account. Some examples of these parameters are sensor size, pixel size,
read noise and dark current. Requirement P-2 is also a hard requirement and very
similar to P-1 but for the telescope. Some examples of telescope parameters to ap-
ply when modelling the image is the aperture of the telescope, its focal length, any
mirror obstruction, and the efficiency of the telescope for the observed wavelength.

Requirement P-3 is a soft requirement since this is a more complicated process
and not fundamental to be able to use the simulator for its purpose.

Table 3.3: Requirement group 3: System properties requirements

3.1.4 Requirement group 4: Disturbances

The fourth requirement group consists of the disturbances requirements. Require-
ment D-1 is a hard requirement and deals with the thermal noise. Requirements
D-2 to D-3 are the disturbances that should be modelled if possible. These include
the atmospheric effects from winds and clouds, mount disturbances, the effect from
moon and sky glow, and dead pixels (both dark and hot). These are soft require-
ments since some of them are more complicated to model, but also because the
final images will still be useful even without these disturbances.

Table 3.4: Requirement group 4: Disturbances requirements
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3.1.5 Requirement group 5: Satellite observation properties

The last group of requirements contains the requirements related to satellite ob-
servation properties. These are all soft requirements since some of these properties
are hard to find information about and predict. It was also believed that modelling
of them might be more complicated compared to other requirements. Summarising
these requirement will influence how visible the satellite is from the observation
location, meaning they will affect the apparent magnitude of the satellite.

Table 3.5: Requirement group 5: Satellite observation properties requirements

Requirement S-1 states that the tool should take the albedo into account, and a
high albedo will result in more reflected sunlight from the satellite. The following
requirement, S-2, is also related to the reflected sunlight since a large area may be
able to reflect more light from the sun towards the observer. The last requirement,
S-3, states that the observation geometry should be used in the modelling. This
refers to the geometry between the observation location on Earth, the satellite
location, and the sun which will determine whether the satellite is sunlit or not.

3.2 System Architecture

The second step of the development of the simulation tool was to define an initial
system architecture. This was done in order to start planning how the tool would
work, what type of code that was necessary to write, identify which packages that
might be useful, and to have a map of which functions the tool would consist of.
The system architecture was expanded and reworked during the coding phase, and
the final version of it is seen in Figure 3.1. The system architecture also serves as
an introduction to the tool before going into detail about the implementation of
the different functions.

The functions have been numbered in order to facilitate the reading of it. The
simulation begins with all the inputs being read and handled to the tool core, this
has been marked with the number one to indicate this is the first process. The
processes then occur counterclockwise, with the second process being responsible
for handling information about the observing location to the observation location
function, which returns the observation location object.
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Figure 3.1: System architecture of the simulation tool. The processes happens
in the numbered order, with inputs delivered to the tool core being the first
process, and displaying the outputs being the last process.
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The processes then continue sequentially in the numbered order. The last pro-
cess is outputting the simulated sensor and additional information. The simulated
sensor is also saved as a FITS file and/or a Portable Network Graphics (PNG)
file depending on what the user inputted. The different functions, their inputs
and outputs, and their Python module dependencies are explained in the following
section.

3.3 Implementation of the tool functions

This section explains the decisions and assumptions made when developing the
functions for the simulation tool. It also explains what inputs are required to the
functions, what they output, and which modules and libraries the functions depend
on.

3.3.1 Initial modelling

The simulation tool can be divided into three parts: modelling the sky correctly,
modelling the satellite tracklet, and modelling the optics of the observation system.
Proper modelling of the sky is an essential part to work in order to be able to
evaluate the other two parts, and this was therefore the chosen starting point.
When searching for a way to do this, the Python package Skyfield [58, 59] was
encountered. The package website included some example code and corresponding
plots, out of which one depicted the position of the Comet NEOWISE during a
few days in July 2020 [62]. This plot is seen in Figure 3.2. The code merged four
different types of data sources: a planetary ephemeris, a comet orbit database, a
large star catalogue, and constellation diagrams. The code was also able to correctly
depict an object in orbit onto the star background, while taking the FOV of the
observer into account.

After some investigation, Skyfield was selected because of its many useful
functions that was expected to benefit the code development. The package de-
ploys functions to deal with time and positions, it could easily calculate sunsets
and sunrises for different locations, check whether a satellite was sunlit, import
ephemeris files, import the Hipparcos star catalogue, and it could also work with
TLEs. Additionally, the package was open source and the code was uploaded to
GitHub.

Skyfield generates a barycentric position measured from the gravitational center
of the solar system. All vectors therefore originate at the gravitational center of
the solar system. The package also includes the function to ask for an astrometric
position relative to a specific observation location, and this position is adjusted for
light-time delay. This astrometric position can also be given in the equatorial or
the horizontal coordinate system.

The ephemeris files for the positions of the Sun, planets and their moons are
provided by NASA’s Jet Propulsion Laboratory (JPL) which offers high accuracy
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Figure 3.2: Example plot generated by Python package Skyfield [62]. The plot
shows the course of the Comet NEOWISE across the sky from July 17 to July 26,
2020.

tables of positions for time spans ranging from decades to centuries [63]. After
looking through the different options from JPL available through Skyfield the
short ephemeris de440s issued in 2020 was chosen for the simulator. The file was
small enough to be able to handle easily, included effects not taken into regard in
the long files, and was also the latest released which means it is believed to be the
most accurate ephemeris.

Skyfield also includes functions related to projections, and to build the chart
seen in Figure 3.2 a stereographic projection was used. When projecting a sphere
onto a plane, it is impossible to conserve both area, shapes and angles simultane-
ously. The stereographic projection is a projection method that preserves angles,
and it has long been used for making maps [64].

Prediction of Earth satellites by TLEs is also possible to do using Skyfield

which runs them through the SGP4 satellite propagation routine [53]. The module
documentation about Earth satellites offered an example of how to load a TLE
for the International Space Station (ISS) from CelesTrak and propagate it. By
implementing this example and merging it with the example used to generate the
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plot in Figure 3.2, changing the colours of the sky and the constellations lines,
changing the marker of the satellite trajectory, removing the dates, and adding a
marker to indicate the start position of the satellite tracklet, the plot seen in Figure
3.3 was produced. This plot shows the trajectory of ISS as seen from Stockholm,
with a FOV of 5˝ ˆ 5˝, with an exposure time of 3 seconds. The size of the star
markers depend on the magnitude of the star, and the chosen limiting magnitude.

Figure 3.3: An initial plot showing the trajectory of ISS as seen from
Stockholm. The exposure time is 3 seconds, and the FOV 5˝ ˆ 5˝.

3.3.2 Initial decisions

To proceed, some fundamental decisions regarding design and the simulator lim-
itations were taken. These decisions are explained in this subsection and their
respective outcomes are discussed.

Time

An early question about the inputs to the simulator regarded time. Working with
different time zones can be confusing, and the concept of daylight saving can cause
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further confusion. It was therefore concluded that the best way would be to only
work with times in UTC. This is an important point in terms of the inputs to the
simulation tool; the starting time must be given in UTC. It is up to the user to
input the corresponding time in UTC if the satellite pass is given in local time, for
example by checking passes using www.heavens-above.com.

Two other inputs also refers to time: the exposure time, and the ∆t. The expo-
sure time is straight forward, this is how long the simulated telescope is gathering
photons, and the exposure time should always be given in seconds. The ∆t is the
time step and determines how often the different positions of the satellite should
be calculated and plotted. Having a too small ∆t will cause the tracklet to appear
as individual dots, instead of as a coherent tracklet. The effect of varying the ∆t
is further discussed in Section 3.3.5.

Observation location object

The second process in the system architecture is where the data about the obser-
vation location is sent to the observer class, which returns an observation location
object. This object has five attributes: name, short name, latitude, longitude, and
elevation in meters above sea level (MSL). A function to the class which prints
the name of the current observation location is also available. An example of an
observation location object’s attributes is seen in Table 3.6.

Table 3.6: Example of the attributes of an observation location object.

Name Acronym Latitude Longitude Elevation

Stockholm Sthlm 59.33 N 18.07 E 28 MSL

The observation class was the first class written for the simulator. It is useful
to create objects in order to decrease the amount of variables that needs to be
inputted to different scripts and functions.

The observation location data is inputted through a text file which is read by
the simulator. When using the tool, it is important to provide the information in
the correct format. This format is illustrated in Section 4.1.1, Figure 4.2. It is
especially important that the data is given on the fifth line in the presented order,
and that the different data points are separated by a comma and a space.

The long name is used when saving information about the simulated sensor,
but the short name is used in the title on the plot that is outputted from the
simulator in order to save some space when having long names. The latitude and
longitudes are inputted as numbers, and the elevation of the location is inputted in
meters. The elevation parameter is used to build the stereographic projection and
to calculate the distance to the satellite. The altitude information could be used
in the future to calculate the expected seeing conditions at the location, which is a
consideration for future iterations of the code.

www.heavens-above.com
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Centering the image on the satellite

When using sidereal tracking the satellite positions are calculated for each time step,
but the star positions are only calculated once. The time for the stars calculation
was chosen as the middle time of the satellite times. This time is later used when
calculating the stereographical projection and means that the resulting image will
be centered on the middle of the satellite tracklet.

When instead using satellite tracking, the same range of satellite times is calcu-
lated but only the first point of time is plotted, see Section 3.3.5 for details. This
initial point of time is used to calculate initial star positions, and this means that
the image will be centered around this point. The satellite position will therefore
be in the middle of the image.

Excluding the planets, the Moon, and Earth

The positions of the planets are not calculated or shown in the simulator images.
The positions can be calculated easily, but the their appearance in the image is
more complicated and this work was therefore de-prioritised and is left as future
work.

A similar approach is used to neglect the implementation of the Moon. The
effects and size of the moon depends on when in the lunar cycle the images are
simulated, and therefore implicates an even more complicated modelling process
which was de-prioritised in favor of developing more important functions. However,
the Moon will also contribute to the amount of sky glow. A parameter to adjust
the amount of sky background noise has been implemented and is discussed further
in Section 3.3.10. This parameter can be increased if the observer knows that the
Moon will present during the observation, but the function does not include the
possibility to simulate a gradient sky background in this iteration.

To observe a satellite in real life it needs to be positioned above the horizon,
otherwise the Earth is blocking the view. The tool gives a warning if the altitude
of the satellite is less than 0˝ during the simulated time period. This warning is
further discussed in Section 3.3.6. Additionally, observing a satellite close to the
horizon is not ideal due to the large amount of air between the satellite and the
observer which causes disturbances. A function to simulate atmospheric smoothing
has been implemented and can be increased if the user is aware of the satellite being
close to the horizon. The details of this function is discussed in Section 3.3.10.

3.3.3 Choosing star catalogues

As discussed in Section 2.4.5, there are several star catalogues in use in the field of
astronomy. Choosing the catalogue to be used for the simulator therefore required
some considerations. The result is a combination of two catalogues: Hipparcos and
GAIA EDR3. This choice and the result of it is motivated in this section, together
with how the catalogues are implemented.
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Combining the Hipparcos and GAIA EDR3 catalogues

Since the Hipparcos catalogue was used for the initial example this was easy to
implement in the simulation tool. However, the Hipparcos catalogue only includes
stars to magnitude 12.4, and this was deemed as insufficient since observations are
planned to take place at locations with very good seeing conditions where much
fainter stars should be visible. To accommodate for this, the GAIA EDR3 catalogue
was implemented in the simulation tool. This catalogue was chosen due it being the
most extensive and its data being the latest. The catalogue could also be queried
easily by using Astronomical Data Query Language (ADQL) which is implemented
in the astroquery module.

The GAIA EDR3 catalogue has a lower limiting magnitude of 3, and the final
star catalogue used in the simulator consists of both Hipparcos stars and stars
from GAIA EDR3 since they complement each other. This means that there is an
overlap between the catalogues for the bright stars. Ideally, this should not cause
much problems since the coordinates should be similar enough to plot the star in
the same position, but this has not been investigated extensively. The GAIA EDR3
catalogue is incomplete for magnitudes below 12, and the method to investigate the
exact overlap between the catalogues is not straight forward. Practically, this means
that some bright stars might appear as a double star or as a brighter star than it
should. However, this should be case for quite few stars and the investigation of
this is left as future work. Using the Hipparcos catalogue is also necessary to be
able to draw the constellation lines which were seen in green in Figure 3.3.

Choosing the GAIA EDR3 magnitude passband and its consequences

In Section 2.3.1 the different passbands of the Gaia instruments were discussed.
In order to use these magnitudes it was necessary to choose one of the passbands.
Evaluation of one of the specifications of one of the sensors to be used by SSC
concluded that the wavelengths with Qeff ě 50% were in the range from „425 nm to
„775 nm. The decision was therefore to use theG-band p330´1050 nmqmagnitudes
since these sensor wavelengths were a subset of the wavelength range of the G-
band. It is important to notice that this choice implicates that the observational
wavelength is hard coded in the simulation tool to 700 nm, which is roughly the
middle of the GAIA passband. The width of the passband can be chosen by the
user as an input, but the center of the passband can not. This is a limitation of
the tool which was deemed reasonable for the scope of the project. This limitation
could be re-evaluated in the future for a new iteration of the code.

Accessing GAIA EDR3

Accessing the GAIA EDR3 catalogue is, as mentioned previously, done by writing
queries in ADQL. Queries include the catalogue name, the data categories to be
fetched, and other limitations. The catalogue can also be queried for a certain
position given in right ascension and declination, with a given radius. However,
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running these queries are very time consuming and Gaia users are limited to a run
time of 120 minutes. The whole catalogue is also of considerable size, the com-
plete catalogue is 616 GB [65]. Queering the catalogue for each simulation size was
therefore not an option due to the long run times. Instead, the catalogue has been
queried for varying magnitude ranges and later merged into complete catalogues.
The data columns included in these catalogues are: source id, right ascension [de-
grees], declination [degrees], magnitude and epoch year. Additionally, a column
with right ascension in hours has been calculated and added to accommodate the
information Skyfield requires for the stereographical projection.

In total, data for 157,645,865 stars with a magnitude less than or equal to 17
has been fetched. These have been divided into three catalogues. The sizes and
coverage of the catalogues, together with the Hipparcos catalogue, are presented in
Table 3.7.

Table 3.7: Magnitude ranges and sizes for the star catalogues used in the
simulation tool.

Catalogue name Magnitude range Number of stars Size

stars HIP ď 14.08 118,218 8.11 MB
GAIA maglim 12 ď 12 3,087,828 129 MB
GAIA maglim 15 ď 15 36,908,086 1.51 GB
GAIA maglim 16 ď 16 77,936,605 3.19 GB

The choice of dividing the stars into different catalogues is related to run time.
The number of stars that needs to be evaluated is one of the main contributors to an
increased run time. Running the simulator using sidereal tracking, with a limiting
magnitude of for example 10, takes roughly half a minute, obviously depending on
other parameters and the capabilities of the computer used to process the code.
Increasing the limiting magnitude to, for example, 15.5 increases the run time
by another 5 minutes, leaving all other parameters equal. Notice that even though
additional data for magnitudes between 16 and 17 has been fetched, this has not yet
been merged into a single catalogue. This data consists of another 79,709,260 stars
of size 3.27 GB, and results in a run time which is too long for currently acceptable
limits, and may also cause the memory to run out. The limit of magnitude 16 has
been deemed acceptable, it is nonetheless straightforward to create and implement
a more extensive catalogue.

Working with a large database

The resulting catalogues have been saved as pickle files [66] which are stored in
the same directory as the code. When the simulation tool runs, it unpickles the
relevant catalogue depending on the limiting magnitude specified by the user. The
tool makes a first reduction of the data by removing all stars from the catalogue
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which is less than or equal to the limiting magnitude. Coordinates for each star
is then calculated from the stereographic projection, and only the stars within the
limits set by the FOV are kept. The file containing all the original data is then
deleted from the memory in order to not risk a memory overflow.

3.3.4 Retrieving, importing, and propagating TLEs

TLEs are read and imported in two ways by the simulator: from a text file, or
directly from CelesTrak. The user specifies which way to input the TLE by a
True / False parameter. If the TLE is to be read from a file the user needs to
specify further the local url to the file directory, and the name of the text file. The
text file should contain the name of the satellite in the first line, then the first
TLE line, and lastly the second TLE line. An example of this format is seen in
Figure 3.4. TLEs can be fetched and requested from, for example, www.celestrak.
com/NORAD/elements/, or from www.space-track.org.

Figure 3.4: Example of input format when the user specifies the TLE in a file.

If the TLE is to be read directly from CelesTrak, the user needs to specify the
name of the satellite exactly spelled as in www.celestrak.com/NORAD/elements/

active.txt. The satellites in this website are the currently active satellites, and
also indicates which satellites the user can choose from. The TLEs are updated
continuously, and the user can choose whether to reload the latest version or to
use the already fetched file in the directory. If the TLE file is to be reloaded, the
progress of downloading it is indicated by a progress bar in the console.

It was also investigated whether the simulation tool should be able to run a
query directly to Space-Track to fetch TLEs, and what this implementation would
look like. The investigation deemed this possible, but the implementation of it
was de-prioritised in favour of more urgent tasks since requirement I-6 was already
fulfilled by the existing import modes. The benefit of implementing this function
is, for example, that Space-Track can provide an indication of the RCS of the
satellite directly, instead of requiring the user to input the RCS in square meters.

Skyfield used the SPG4 propagation routine to predict the positions of Earth
satellites from TLEs [53]. The package has implemented the corrected and updated
version of the algorithm that was released in 2006 [54].

3.3.5 Implementation of satellite tracking

Requirement I-4 stated that the user should be able to choose between sidereal
and satellite tracking, and the difference between these modes was illustrated in

www.celestrak.com/NORAD/elements/
www.celestrak.com/NORAD/elements/
www.space-track.org
www.celestrak.com/NORAD/elements/active.txt
www.celestrak.com/NORAD/elements/active.txt
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Figure 1.2. This requirement has has been implemented by a True / False parame-
ter, where True means satellite tracking, and False indicates sidereal tracking. The
implementation of satellite tracking is derived from the satellite tracklet calculated
when using sidereal tracking. If the telescope was to track a satellite along this
trajectory, the star tracklets would have the same tilt as the satellite tracklet, but
in the opposite direction. This means, that for each coordinate pair in the satellite
tracklet, a corresponding pair needs to be calculated for each star visible in the
FOV. Only the first coordinate pair is then plotted for the satellite to indicate the
tracking of it.

The first step in the simulator when calculating the corresponding star coordi-
nates is to know which stars that will be visible in the final image. For sidereal
tracking this was simply done by checking which stars are in the FOV, but when
tracking the satellite stars outside the original FOV might enter the image during
the exposure. This is done by calculating the length of the satellite tracklet by
using the Pythagorean Theorem. This length is the maximal distance travelled by
the satellite during the exposure, and by adding this distance to the FOV limits
when reducing the star catalogue it is possible to know which stars might enter the
image.

The second step for calculating the star coordinates is to to off-set the origin.
In the original px, yq´coordinates calculated by the stereographic projection, the
origin is located in the middle of the image. This might cause complications, and to
simplify the calculations all coordinates are offset by the FOV-limits. This causes
the origin to be located in the lower left corner of the image and all coordinates are
then located in the first quadrant and therefore positive.

Calculating the additional star coordinates is then carried out by looping over
the satellite coordinates. For each coordinate pair in the satellite tracklet, a ∆xsat

and ∆ysat is calculated. A new star coordinate pair pxj,star, yj,starq is then calculated
for each star by

xj,star “ xi,star ´∆xsat (3.1)

yj,star “ yi,star ´∆ysat (3.2)

where pxi,star, yi,starq is the previous coordinate pair. An example of the resulting
image when using satellite tracking is seen in Figure 3.5.

The run time when using satellite tracking is heavily influenced by the number
of coordinates that are required to be calculated. This is influenced by the distance
travelled by the satellite, the exposure time, the chosen ∆t, the FOV, and the
limiting magnitude. If the satellite is observed closer to the horizon, the tracklet
looks shorter compared to an observation closer to zenith relative to the observer.
This is because the satellite is much further away from the observer when being close
to the horizon. A longer exposure time will also result in a longer tracklet. A longer
tracklet requires a smaller ∆t parameter in order to look like a smooth tracklet,
instead of individual dots, and the number of coordinates that are calculated for the
satellite equals the exposure time divided by ∆t. The number of stars that require
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Figure 3.5: Example of the implementation of satellite tracking.

calculation of additional coordinate pairs depends on how long the satellite tracklet
is since more stars can enter into the image, but also on the limiting magnitude
which can drastically increase the number of stars visible in the FOV. A larger FOV
will also include more stars than a small FOV. All combined, these parameters can
cause the run time to vary from seconds to several minutes. A recommendation
to the user would therefore be to start simulating with a lower limiting magnitude
and larger ∆t to have an idea what the image will look like. Once the user is
pleased with the result, the parameters can be adjusted to allow for a more realistic
observation scenario.

3.3.6 Visibility of the satellite

Up to this point in the development of the simulation tool, the user could simply
input the magnitude of the satellite manually. In order to accommodate require-
ments S-1 to S-3, a more sophisticated way of calculating the apparent magnitude
of the satellite was required.

Implementing the satellite apparent magnitude equations

Calculating the apparent magnitude of a satellite was discussed in detail in Sec-
tion 2.3.5. The user inputs the albedo and an estimated RCS in square meters,
the distance to the satellite is calculated by Skyfield, and the required missing
parameter to implement equations (2.17) and (2.18) is then the phase angle φ. As
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explained in Section 2.3.2, and illustrated in Figure 2.9, the phase angle is the angle
between the Sun and the observer as seen from the satellite. Skyfield includes a
function which returns the angle between two different positions [67], and this was
used to calculate the phase angle for each time step. Implementing equations (2.17)
and (2.18) was then straightforward. The result is a calculated apparent magnitude
of the satellite for each time step.

It is important to note that the calculated apparent magnitude should only
be taken as a rough estimate. The real apparent magnitude also depends on the
orientation and tumbling of the satellite, for example. Since the Earth shadow has
been neglected from the modelling, the apparent magnitude will be incorrect for
the time periods the satellite spends in eclipse. The result is also very influenced
by the choice of albedo and RCS, and it can be difficult to find accurate values for
these parameters.

Warnings related to satellite visibility

Observation of a satellite usually requires that the satellite is sunlit, that the sky at
the observation location is dark enough, and that the satellite is above the horizon.
The sky background parameter can be increased to simulate a brighter sky, but
these factors are otherwise not included in the modelling of the tracklet image.
However, the simulation tool does warn the user if one of these conditions is not
fulfilled during the observation period.

Skyfield has a function to calculate whether an object is sunlit or not, and
this function returns a list of True / False corresponding to each time step [68].
The tool goes through this list, and if a False is found the tool prints, for example,
”WARNING: At 2021/06/09 21:56:30 UTC the satellite is in shadow” where the
time is the corresponding time step where the False was found.

A similar approach is used to check whether the sun is up or not at the obser-
vation location by using one of Skyfield’s built-in functions [69]. This function
uses the official definition of sunrise and sunset from the United States Naval Ob-
servatory, which defines them as the moment when the center of the sun is 0.8333
degrees below the horizon. Using this function another list of True / False is gen-
erated where True corresponds to that the sun is up. The simulation tool goes
through this list, and if a True is found it prints the warning ”WARNING: At
2021/06/09 08:20:30 UTC the sun is up”.

To check whether the satellite is above the horizon, the tool goes through the
altitude coordinates of the satellite during the observation period. The altitude
coordinate is relative to the observer, and altitude = 0˝ is defined as the horizontal
plane. The tool therefore looks for any negative altitude coordinates, and if one is
found it prints ”WARNING: At 2021/06/09 08:20:30 UTC the satellite is below the
horizon”. It should be noted that in reality observations close to the horizon are
not performed due to the amount of disturbances by the atmosphere. If another
value than 0˝ is better suited to the user, this warning is easy to change.
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For a more accurate modelling it would be beneficial for the project to consider
switching to implement functions from the Orekit package, which can provide
trigger warnings for these types of events.

3.3.7 Modelling the system properties

Up to this point in the tool development, the FOV to use for the simulated obser-
vations was directly inputted by the user. However, in reality the FOV depends
on the combination of sensor and telescope as was presented in Section 2.1.2. A
first step to implement the system properties was therefore to calculate the FOV
the system would result in. This was done by implementing equation (2.4), which
requires the user to input the number of pixels in each side of the sensor, the size
of the pixel, and the diameter of the telescope. The equation also requires the
focal number N which is calculated by dividing the focal length by the aperture
diameter. The focal length is also provided by the the user, and the simulation tool
then calculates the focal number before calculating the FOV. The FOV will consist
of two angles, one for each side of the sensor. The FOV is later re-calculated as a
limit in stereographic coordinates to be able to use as a delimiter for reducing the
star catalogue.

The diffraction limit is also a system property which depends on the observed
wavelength and the telescope diameter, as was seen in equation (2.1). The tool
calculates this parameter using the wavelength hard coded into the tool, 700 nm,
and the aperture diameter specified by the user.

Similarly as for the observation location, a class was written to have the system
parameters as an object with different attributes. The attributes are:

• Sensor width and height in number of pixels

• Individual pixel width and height in meter

• Sensor well depth

• Approximate quantum efficiency for 700 nm

• Sensor read noise data

• Sensor dark current data

• Dark and hot pixel seeds

• Telescope diameter

• Telescope focal number

• Telescope effective area

• Wavelength
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• Passband width

• Diffraction limit

• FOV in degrees

The dark and hot pixels seeds are explained in Section 3.3.10. The effective area
is the telescope area used to collect photons. This is calculated by the tool based
on the aperture diameter provided by the user, and the obscuration by the sec-
ondary mirror which is inputted by the user as a fraction of the aperture diameter.
Examples of these inputs are seen in Section 4.1.1.

3.3.8 Simulating the CMOS sensor

At this stage of the development, the modelling of the star and satellite tracklets
were working well. However, the optics of the system had still not been considered
much and the images were not very similar to real images taken from a professional
telescope. After some discussion, it was found that the best way to tackle these
issues and the modelling of the disturbances would be to move away from the
plotting strategy and on to simulating the CMOS sensor itself. The idea was that
this would allow easier implementation of the remaining system parameters, and
that it would make it easier to model the disturbances.

The initial plot has, however, been kept as a possible output called helper image
in the simulation tool. If the user chooses to output the helper image, the corre-
sponding plot of the sensor is shown. The helper image contains the constellation
lines and starting point of the satellite tracklet. This has been showed to sometimes
be helpful to orient the image and compare the result with other sources, such as
the plots produced by the website www.heavens-above.com for example.

Transforming magnitudes to number of electrons

The simulated sensor is modelled as a matrix by the simulation tool, and the number
of columns and rows of the matrix correspond to the number of pixels in each side
of the sensor. Each element of the matrix therefore corresponds to the value of a
pixel in the sensor. After long discussions about what these values would represent,
it was decided that each simulated pixel would have a value that corresponds to
the number of electrons the pixel contains before the read out process. When the
matrix is created it only contains zeroes which corresponds to that no electrons
have yet accumulated in the sensor.

Each star and the satellite has an apparent magnitude, and to be able to know
how many electrons each pixel will have these magnitudes needed to be trans-
formed into electrons. Searching for a method to do this resulted in equation (2.13)

www.heavens-above.com
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which was presented in Section 2.3.1. Using λ “ 700 nm, this equation has been
implemented as

S “
700ˆ 10´9

hc
Aeffective∆λFλtexpτsystem relectronss (3.3)

where h is Planck’s constant, c the speed of light, Aeffective is the calculated effective
area, and ∆λ and texp has been chosen by the user. The efficiency parameter τsystem

represents the efficiency of the whole system and is calculated as

τsystem “ Qeff ˆ τoptics ˆ τatmosphere (3.4)

where Qeff is the quantum efficiency for the detector at λ “ 700 nm, as inputted
by the user. The parameter τoptics is the optical transmission efficiency for the
whole optical system and depends on the simulated telescope. It is also inputted
by the user and should be a product of the transmission of the mirror, transmission
by the coating of the lenses, and the internal transmittance of the lenses. The
parameter τatmosphere is inputted by the user as well, and is meant to represent a
general transmission by the atmosphere. This depends partly on the wavelength,
but lowering this efficiency can be a way of simulating clouds for example.

Equation (3.3) still requires the wavelength dependent flux Fλ to be inputted.
Studying the literature it was found that the absolute flux Fλ0 at λ “ 700 nm,
corresponds to Fλ0 “ 1.76ˆ10´12 [W cm´2µm´1] [16]. This value can be converted
to Fλ0 “ 1.76 ˆ 10´2 [W m´3], and inputting this into equation (2.12) the flux
corresponding to each magnitude can be calculated as

Fλ “ 1.76ˆ 10´2 ˆ 10´m{2.5 rW m´3
s (3.5)

where m is the apparent magnitude of the star or the satellite. Inserting this into
equation (3.3), each magnitude can be converted to a number of electrons which
gather in the sensor pixels during the exposure time.

Calculating electrons per time step

The calculated electrons need to be added to the simulated sensor. The first step
of this process is to calculate the number of electrons captured by the sensor in
each time step. The total number of electrons which has been calculated for each
star and satellite is for the whole exposure time, but if the object has a tracklet
appearance this total number of electrons needs to be divided by the number of
time steps to simulate the electrons formed during each step in the movement.
The satellite electrons and star electrons are added to the sensor in two separate
functions in the sensor simulation, but each function starts with checking whether
satellite or sidereal tracking is used for the current simulation scenario. If satellite
tracking is used, all star electrons are divided by the number of time steps used in
the simulation. If sidereal tracking is used, the satellite electrons are divided by
the number of time steps instead.
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The division of electrons may cause errors when the ∆t is large, and therefore less
time steps are used. The simulation assumes the observation is continuous during
the whole exposure time, but if too few time steps are used the object will look
as discrete points instead of like a continuous tracklet, the difference is illustrated
in Figure 3.6. It is therefore important to find a fine enough ∆t depending on the
observational scenario and system parameters, and to use this when generating the
images that are wished to be kept.

(a) ∆t = 0.001 s, resulting in a
continuous tracklet.

(b) ∆t = 0.1 s, resulting in a discrete
tracklet.

Figure 3.6: Example of a continuous versus a discrete tracklet. These examples
were generated using an exposure time of two seconds, leaving all other
parameters unchanged except the ∆t. The axis numbering is the pixel indices, and
the colours have been scaled to the number of electrons in the pixels. It can be
seen that the continuous tracklet is much fainter compared to the discrete points.

Adding electrons to the sensor

The process of adding electrons to the sensor utilizes the stereographic projection
coordinates. As explained previously, the stereographic projection of the celestial
sphere and satellite resulted in a set of px, yq-coordinates which were offset to be
strictly positive. These coordinates are transformed to match the pixel indices by
calculating the width and height of the pixels in the stereographic coordinates, and
then dividing the px, yq-coordinates by these numbers. This results in that each
coordinate pair is matched into a corresponding pixel position in the sensor.

As discussed in Section 3.3.5, a larger limit than simply the FOV was used
to reduce the star catalogue when using satellite tracking to account for the fact
that some stars might enter the image as the satellite is moving. This means that
some of the newly calculated pixel indices might be out of range of the sensor size,
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indicating they should not be visible in the resulting image. Each index is therefore
checked if it is in the range of the number of pixels in the sensor before moving
further. If this check results in that the electron number corresponding to the pixel
index should be added to the sensor, the pixel value is updated to equal the sum
of its previous number of electrons and the new number of electrons.

In a first iteration of development, this step included a check of whether the new
pixel value would exceed the pixel well depth or not. If the new value exceeded the
well depth, the pixel value was simply updated to equal the well depth instead to
indicate saturation of the pixel. This was later changed, and the current iteration
of the code checks the well depth of the sensor in a later step. The reasons behind
this decisions are explained in Section 3.3.10.

3.3.9 Modelling the seeing and point spread function

In reality the sensor electrons would spread to more than one pixel due to the
atmosphere and the diffraction by the telescope. In the original plot this had been
approximated by calculating the marker size of the star and satellites by using the
chosen limiting magnitude. This quite naive approach worked decently for most
cases for the plot, but a better strategy is required for the simulated sensor.

The photon spread process due to the atmosphere and telescope is a complex
problem, and a lot of effort has been put into investigating how to model this pro-
cess in the simulation tool. This is due to the modelling of seeing being dependent
on many factors such as the exposure time and system parameters for example.
Different types of telescopes are either more limited by the diffraction of the tele-
scope, or the disturbances by the atmosphere, depending on their specifications
and the observational conditions. The resulting PSF from the telescope depends
on many parameters such as the aperture for example, but also on the obscuration
and placement of the secondary mirror if such is used. This section goes through
the modelling process and motivates the current modelling used in the simulation
tool.

Initial modelling of the point spread function

When first examining modelling the PSF of the telescope, the Astropy package
Photutils [70] was considered. However, Photutils is based upon building an
effective PSF from images containing already spread light sources, and then re-
constructing the PSF function. This did not apply to the simulation tool and
Photutils was therefore abandoned in favour of examining the Astropy package
Poppy [49]. Initial examples from the Poppy documentation describes how the PSF
is built up by having the user define a sensor and telescope, resulting in a PSF
with effects from the aperture type and telescope obstruction. It is also possible to
include diffraction spikes from the vanes holding the secondary mirror [71].

The method used by Poppy, and later also in the simulation tool, is based
on finding a matrix called the kernel which represents the PSF. The simulated
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sensor is then convolved with the kernel to apply the PSF spread of the electrons.
Astropy includes two functions for convolution where one is implemented as a direct
convolution algorithm [72], and the other uses a fast Fourier transform (FFT) [73].
According to Astropy, direct convolution is better for small kernels, while the FFT
is much more efficient for larger kernels [74].

The implementation of Poppy was unsuccessful. The resulting kernel from using
the parameters of the telescope as input to the function is illustrated in Figure 3.7.
Applying this kernel to the sensor caused the original centered satellite tracklet
to multiple into four separate tracklets located in each corner. This was deemed
unacceptable and another approach was therefore examined.

Figure 3.7: Example of the generated Airy disk by the Astropy package Poppy.
The telescope inputs lead to the Airy disk becoming a grid, which resulted in the
convolved sensor displaying four tracklets located in the corners instead of one
centered tracklet.

Modelling the point spread function with Astropy kernels

The method used for implementing the PSF is based on the Astropy packet which
includes a function to generate an Airy disk kernel in 2D [75]. The function takes
a few different arguments, where the mandatory argument is the radius of the Airy
disk kernel, which is measured from the centre of the Airy disk to the the first dark
ring. When reading the documentation of the kernel function it was not obvious
what this radius should be or what unit it should be given in. Literature stated,
as mentioned in Section 2.1.2, that the radius to the first dark ring is equal to the
diffraction limit θ. This limit was calculated in equation (2.1), where the unit is
radians. It is also common to calculate this limit in arcseconds. Both these options
were considered for the input, but the example given in the kernel documentation
seemed to imply that the radius should be given in number of pixels instead. This
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was implemented by first calculating the number of radians per pixel by dividing
the FOV by the number of pixels in the sensor side. The radius in pixels is then
calculated by dividing the diffraction limit in radians by the number of radians per
pixel. This final number is used as input to the kernel function. The simulation tool
then calculates the kernel matrix, and performs the convolution between the PSF
function and the sensor by using FFT convolution. The FFT method was chosen
since it is not dependent on the dimensions of the kernel, and since large kernel
matrices might be used for the simulations. The result of the PSF convolution is
that the pixel electrons are spread out to nearby pixels, where the spread depends
on the diffraction limit of the telescope.

The Airy disk kernel function does not include modelling of diffraction spikes,
and therefore the current iteration of the code does not include this phenomena.
This was deemed acceptable for the scope of the project, but this could be of
interest to revisit in the future since diffraction spikes can be difficult to handle by
the software extracting satellite orbital data from the tracklets.

Using the Airy disk kernel is a simplified version of the PSF the telescope gives
rise to. In reality, the secondary mirror in a reflector telescope and the vanes
holding it would heavily impact the Airy disk pattern. However, these effects are
not too visible on dim objects and the current iteration is still valuable for modelling
observations with short exposure times or objects at relatively low magnitude.

Modelling the seeing with Astropy kernels

Next step is to model the spread and smoothing of the signal by the atmosphere.
One way to model this phenomena is by applying a second convolution to the
sensor with a Gaussian function. Similarly as for the Airy disk, Astropy includes a
function to build a Gaussian 2D kernel [76]. The function takes several arguments,
where the mandatory argument is the standard deviation of the Gaussian function,
in number of pixels. In the simulation tool this parameter has been implemented
as a user input called sigma after the standard notation of the standard deviation.
The user chooses sigma, and a larger sigma models a more turbulent atmosphere
with worse seeing compared to a case with a smaller sigma.

The Gaussian kernel function uses the sigma parameter to calculate the kernel
matrix, and again convolution by FFT is used to apply it to the simulated sensor.
The result is that the star and satellite electrons are further spread to nearby pixels.
Since, in reality, the spread by the atmosphere takes place before the photons enter
the telescope, this process has been placed before convolution with the Airy disk
function in the simulation tool. Performing two convolutions can be quite time
consuming, so if further work on the simulation tool would focus on optimising the
tool performance this process could be re-evaluated.
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Kernel sizes

Both the Gaussian and Airy disk Astropy functions take an optional argument
which defines the size of the kernel matrix in the x- and y-directions. If no ar-
guments are given, the default option is to use a kernel which has the number of
rows and columns that corresponds to eight times the input parameter (sigma or
radius in number of pixels). The size of the kernel affects how far the electrons
can spread. For most stars this is not a problem, but for sources that give raise to
many electrons, such as the satellite when satellite tracking is used, the electrons
appear to ”saturate” the kernel. The result is that the satellite appears as a square
that does not blend smoothly with the background. This has been illustrated in
Figure 3.8, which shows what the satellite looks like after the Airy disk and Gaus-
sian smoothing with sigma = 1 have been applied. The figure has been created by
opening the resulting FITS file in ESA/ESO/NASA FITS Liberator, zooming in on
the satellite, and adjusting the black and white levels to enhance the saturation
effect.

Figure 3.8: Example of the saturation effect which depends on the kernel size.
This figure shows the simulated electrons from a satellite, spread by the Airy disk
and Gaussian smoothing. In this simulation satellite tracking was used, and the
apparent magnitude of the satellite was calculated to 0.014.

In the specific simulation used to generate Figure 3.8, the apparent magnitude
of the satellite was calculated to 0.014. The size of the Gaussian kernel matrix
was left at default, but the size of the Airy disk kernel has been increased to
100ˆradius, which in this example is equal to 46. The artefacts seen in each corner
of the square is a product of using a too large kernel for the Airy disk. Using a
large kernel might result in boundary effects since the convolution process needs to
handle the boundary cases. How to handle the boundaries can be specified by an



60 Chapter 3. Development of the simulation tool

argument to the FFT convolution function, and in the simulation tool the argument
has been set to wrap which indicates a periodic boundary [73].

It is still rather unclear what exactly a ”good” kernel size is since the effects
depend on how many electrons the pixel to be spread contains, and the different
system parameters such as the size of the sensor. The kernel sizes might need to be
adjusted for different simulated systems, but in the current version of the simulation
tool the Gaussian kernel size has been left at default, and the Airy disk size has
been set to 50ˆradius. It might be that the most realistic kernel size should equal
the sensor size. In the way the current iteration of the simulation tool, this size
would result in boundary artefacts. One way to mitigate this issue could be to
simulate a much larger image than what the telescope actually sees, perform the
convolutions, and then only keep the actual part of the image seen by the telescope.
However, this would increase the run time. Investigating this method further has
been left as potential future work.

The Moffat kernel

As seen in the previous discussion, uncertainties still remain for the process of
modelling the PSF and seeing. One possible alternative would be to use the Moffat
kernel to model the seeing. The Moffat distribution models better the wings of the
function than the Gaussian function. This especially applies for images dominated
by seeing [19].

Astropy does include a kernel function for the Moffat distribution which re-
quires two arguments called gamma and alpha [77]. These parameters describe the
shape of the Moffat distribution, and it was suggested to find a suitable value for
alpha and hard code it in the simulator, and then allow the user to choose gamma
similarly to the strategy used for sigma when implementing the Gaussian kernel.
However, finding a good value for alpha requires more investigation, and the effects
of changing gamma needs to be examined further. Investing the implementation
of the Moffat distribution kernel has therefore been left as potential future work
as well, and the current version of the code applies the Airy disk and Gaussian
kernels. The functions to use the Moffat kernel and also the functions from Poppy

have been left in the simulation tool and can be called upon if these functions would
be desired in future versions of the simulation tool.

3.3.10 Modelling the disturbances

The sensor has now been filled with electrons spread over several pixels. However,
there are additional disturbances that will effect the final image. This section
explains how the additional disturbances have been implemented in the simulation
tool. Some of these implementations were inspired by the examples found in the
CCD Data Reduction Guide [78].
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Dark current

As explained in Section 2.2.3, the dark current is the current which is measured
when no light is falling on the detector due to the photons generated by heat.
Dark current is temperature dependent, and the user therefore needs to provide
dark current data for the sensor which corresponds to the expected operational
temperature. This number is usually found in the sensor data sheet in the unit
[electrons/pixel/second], at a specific temperature.

The dark current increases linearly with the exposure time, and the simula-
tion tool therefore calculates the total current by multiplying the dark current
with the exposure time which results in the number of dark current electrons per
pixel. This type of noise process which is the result of independent events, such
as photon arrival occurring at a constant rate, can be described by Poisson statis-
tics [10]. The Poisson distribution was discussed in Section 2.2.7, and was pre-
sented in equation (2.5). Drawing samples from a Poisson distribution is a function
implemented by Python’s numerical programming library NumPy, which uses equa-
tion (2.5) rewritten as

fpk;λq “
λke´λ

k!
, (3.6)

which describes the probability of k events occurring within the observed interval
λ, for events with an expected separation λ [79]. The function takes λ as argument,
and for the dark current case λ is the calculated dark current electrons per pixel.
The result is a matrix of the same size as the sensor, filled with dark current noise.
This dark current matrix is added to the simulated sensor meaning the noise is
added to the signal data.

Sky background

The sky background was introduced in Section 2.4.4 and consists of several different
sources. Sky background is proportional to the exposure time [78], and in the sim-
ulation tool the user inputs the desired amount of sky counts, which is the expected
number of generated electrons per second per pixel from the sky background. A
higher sky count therefore signifies a noisier sky, and this parameter can be adjusted
by the user to simulate a brighter Moon or more light pollution for example.

The sky background also follows a Poisson distribution [10], and the implemen-
tation of it is therefore very similar to to the implementation of the dark current.
The same Poisson function from NumPy is used to draw samples from the Poisson
distribution, and the corresponding λ is calculated as sky counts times exposure
time, which equals to the total number of generated electrons per pixel from the
sky background. The result is a matrix filled with noise from the sky background,
which is added to the simulated sensor data.
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Read noise

Read noise was introduced in Section 2.2.3 and arises during the electronic readout
process of the sensor due to the electronic amplification of the signal. As for the
dark current, read noise data is found in the sensor data sheet as a number of
electrons and this parameter is inputted by the user. Read noise has a Gaussian
distribution, and the standard deviation of the Gaussian is the read noise divided
by the gain of the sensor. Gain controls the amplification of the electronic signal,
but this parameter has not been implemented in the simulation tool. Instead, the
read noise is directly used as the standard deviation of the Gaussian distribution
which implies that gain = 1 is assumed.

Similarly as for the previous disturbances, the drawing of samples was imple-
mented by using a NumPy function which describes the probability density for the
Gaussian distribution as

ppxq “
1

?
2πσ2

e´
px´µq2

2σ2 , (3.7)

where µ is the mean and σ the standard deviation [80]. The function takes σ as
argument, which is inputted as equal to the read noise parameter. The result is a
matrix filled with read noise, which is added to the the simulated sensor data.

A noteworthy point is that while the Poisson distribution only provides positive
values, the Gaussian distribution provides both positive and negative values. This
means the value of a pixel could be updated to equal a negative value, which does
not make physical sense since these values represent a number of electrons. This
has been corrected and is implemented once all disturbances have been added to
the simulator.

Dark and hot pixels

Dark and hot pixels were introduced in Section 2.2.3, and as explained dark pixels
are pixels which have a significantly lower response than their neighbours, less than
75% the response of the average pixel. Hot pixels instead have a much higher dark
current than their neighbours, around 50 times higher than specified.

Dark pixels have been implemented by first allowing the user to specify the
number of dark pixels to be used. This number is either known, or must be es-
timated. The dark pixel function then generates random numbers using a NumPy

function [81], which corresponds to the x´ and y-coordinates of the dark pixels.
In a real sensor, the locations of the dark pixels will not change, and the random
numbers are therefore generated using a seed which makes sure the same indices
are generated, but appears randomly distributed. The user is therefore required
to provide a seed number for the sensor which can be any integer, but the same
integer should be used if simulating the same sensor between different runs. Once
the indices of the dark pixels have been generated, their values are decreased by
50% to simulate the low response.
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The indices of the hot pixels are generated using the same strategy as for the
dark pixels, but a different random generator seed is required which is inputted by
the user. To know what to update the hot pixel values with, the dark current is
calculated as earlier by multiplying the dark current number by the exposure time.
This number is then multiplied by 50 to simulate the hot response of the pixel,
in accordance with the theory presented in Section 2.2.3. This value, called hot
current, is then added to the previous values of the hot pixels.

Checking the minimum and maximum sensor value

A final step is required to complete the modelling. Since the Gaussian function
used to simulate the read noise may provide both positive and negative values, it
is possible that some pixels have acquired negative values during the simulation
which does not make physical sense. The simulation tool therefore checks all the
values in the sensor, and if any negative value is found it updates the value to zero.

A similar check is performed for the maximum possible value of a pixel which is
the well depth. The sensor again checks all the values of the sensor, and if a value
larger than the well depth of the sensor is found it updates it to equal the well
depth that was inputted by the user. If this step had been implemented when first
adding the electron values to the sensor, the resulting sensor would contain too few
electrons in total. This is due to the fact that the spreading by the atmosphere and
telescope, which lowers the amount of electrons in the original pixel, is implemented
afterwards in the simulator. In reality, the photons which give raise to electrons
would have been spread already upon arrival to the sensor.

3.3.11 Modelling binning

In Section 2.2.4, the operational parameter binning was discussed which was further
illustrated in Figure 2.8. When binning is used in the simulation, the user provides
the binning parameter which denotes the number of pixels in one side of the super
pixel. Providing a binning parameter that equals one therefore means that binning
should not be used at all.

If binning is to be applied, the sensor is sent to the binning function in the
simulation tool. The function starts by checking whether the number of pixels in
one side of the sensor is divisible by the binning parameter. If the sensor side is
not divisible, the function removes the corresponding number of rows or columns
required to make the side divisible. The function then forms a 4D matrix (a matrix
of matrices) where each sub-matrix corresponds to a super pixel. Each sub-matrix
is then summarised to one pixel, and the function returns the binned sensor.
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3.3.12 Defining the outputs of the sensor

The last step of the simulation process is to output and save the results. Several
different types of outputs are generated, and these are described in this section.
Full examples of the outputs can be seen in Section 4.1.2.

Outputs in the console

Some helpful information is outputted directly in the console and are printed as
the simulation process runs. The first output is a message about which observation
location is used, and the second output prints out which object is being observed.
This is followed by important information about the satellite at the starting time
of the observation: altitude, azimuth, distance, right ascension, and declination.
If any of the warning messages discussed in Section 3.3.6 are triggered, they are
printed next. The last print message informs the user about how many seconds it
took to run the simulation.

Outputted figures

Two figures are outputted directly when the simulator has finished. The first out-
putted figure is the simulated sensor. This figure has tick marks along the axes to
indicate the pixel indices, and a colour bar to see what electron values the different
colours correspond to. The title contains information about how many pixels the
sensor has (this is not equal to the user input if binning has been applied), the
binning parameter, FOV, limiting magnitude chosen by the user, exposure time,
and time step. Additionally, the satellite name, observation location, and start-
ing time of the observation are also included in the title. This figure is not saved
automatically, but the user can obviously choose to save it manually.

It should be noted that for most observational cases it is difficult to see anything
in the sensor figure except the satellite on a black background. This is since the
satellite is often the brightest object in the figure. The stars are visible if the user
zooms in on them, and this process can be facilitated by first looking at the help
image to know where to look. If the user wants to examine fine details of the image
the black and white levels need to be adjusted. Depending on how the images and
outputs from the simulator are to be used, this might want to be examined further
in the future.

If the user chose to see the help figure, this is outputted as the second figure.
The title of the figure contains information about which object is observed, at which
time the observation takes place, which location the observation is from, and the
altitude, azimuth, and distance to the satellite. Additionally, the title also includes
the FOV, the magnitude limit that was chosen by the user, the exposure time, and
the time step. As for the sensor image, this figure is not saved automatically but
can be saved manually.
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Saving the simulated sensor as a FITS file

The FITS format was discussed in Section 2.2.6 and is a way of storing the sensor
data without compressing it. This has been implemented in the simulation tool by
using functions from AstroPy [82]. If the users enables FITS storing, the sensor
in a FITS file where the sensor data is stored in binary form, and the header
contains all the information the user inputted and additionally some calculated
values, as the FOV for example. The FITS file can be opened and examined using,
for example, the free software program ESA/ESO/NASA FITS Liberator [83]. This
software allows adjustment of the white and dark levels for example, which can be
used to examine different details of the image.

Saving the simulated sensor as a PNG file

If the user enables saving the file in PNG format, the data as it was seen in the
outputted figure is saved in a PNG file. This file only contains the sensor data
image itself, without tick marks, title, or the colour bar. However, knowing which
inputs that were used to generate the image is still valuable information to the user,
and to accommodate this need all the information which was stored in the FITS
header is outputted in an additional text file called PNG log file.





Chapter 4

Results and discussion

4.1 Reconstruction of a real image

The simulated images were verified in different scenarios by comparing them to
real imagery provided by the Small Aperture Robotic Telescope Network (SMART-
net™) [24, 84]. Inputs from these images are provided to the simulation tool which
performs forward modelling to generate the expected observation outcome.

SMARTnet™has been set up by the German Space Operation Center (GSOC),
together with the Astronomical Institute of the University of Bern (AIUB). The
main objective of the network is the free exchange of all gathered information
within the involved partners. This information mainly consists of tracklet obser-
vations. SMARTnet™is currently operating two telescope stations, where one is
located in Zimmerwald in Switzerland, and the second station in Sutherland in
South Africa [84].

The real image which will be attempted to be replicated is seen in Figure 4.1.
This image has been created by opening the original FITS file in ESA/ESO/NASA

FITS Liberator, and saving it as a Tag Image File Format (TIFF) file which
applies some automatic scaling. The observation was performed by using satellite
tracking, and the satellite is seen as a small dot at the mid-left of the image,
indicated by an orange arrow. Some star tracklets are clearly seen in the image
as well. One known difference is that the position of the satellite will differ in the
images. This is since the satellite in the real image is located far to the left, while
the tool simulates the observed object as the center of the image. However, an
overlap is expected between the images and the star tracklets in this overlap will be
compared, as well as the coordinates in the equatorial system, in order to evaluate
the resemblance of the images.

67
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Figure 4.1: A real image taken by using satellite tracking. The orange arrow
indicated the satellite, seen as a small dot. This image was provided by
SMARTnet™.

4.1.1 Inputs

In order to replicate the image, several different inputs are required. Information
about these inputs are gathered from several different sources. Some inputs can be
taken directly from these sources, but some need to be estimated and the corre-
sponding assumptions motivated.

Observation location data

The observation location of the real image was the telescope station in Sutherland,
South Africa. This station is placed at the South African Astronomical Observatory
(SAAO), where the latitude equals -32.38072˝ and the longitude equals 20.81078˝.
The elevation of the location is 1761 MSL. These inputs are provided to the simula-
tion tool by a text file containing all the relevant information. The name of the file
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Figure 4.2: Input format of the observation location data. The name of the file
is provided as input to the simulation tool.

is then given as input, and the tool uses this information to create the observation
location name. The input file is seen in Figure 4.2.

Time

The real image was provided in the FITS format, and by examining the FITS
header the input data regarding time is found. The header informs that the date of
observation was the 22nd of February, and that the time was 18:04:40.780. It is not
formally stated that the time is given in UTC, but this is assumed. South Africa
does not apply daylight saving, and the local time zone is UTC+2 [85]. The sunset
on the 22nd of February occurred at 19:30 local time (17:30 UTC), and since the
observation is assumed to be during the night it is reasonable that the provided
time is in UTC. Additionally, the header also states that the exposure time was
5.074937 seconds.

The simulation tool also requires the time step (∆t) to be inputted. A fine
enough time step can be found by running some test simulations, but by studying
the image in Figure 4.2 it is seen that the tracklets are not too long, and no too
many stars are visible in the frame. The time step is therefore set to 0.005, which
means around 1000 coordinate pairs will be calculated for each visible star. This
was proven to be more than enough to ensure continuous star tracklets, while still
keeping the run time within practical limits.

Sensor parameters

The FITS header states that the camera used in the observation is called FLI16803,
which is assumed to be the FLI ProLine CCD camera KAF-16803. The data sheet
for this camera [86] gives that the CCD sensor consists of 4096ˆ 4096 pixels, with
a pixel size of 9 µm (assuming square pixels), and a full well capacity of 100,000
electrons.

The FITS header says that the temperature of the chip during the observation
was -20.00˝ C, and the data sheet says that the corresponding dark current is
ă 0.005 electrons per second. The simulation tool requires the dark current input
to be in electrons per pixel per seconds. The dark current is therefore re-calculated
as 0.005{p4096 ˆ 4096q « 2.98 ˆ 10´10 electrons/second/pixel. The read noise is
given by the data sheet to be 10 electrons for the CCD camera.

Examining the quantum efficiency curve in the sensor data sheet, it is found
that the Qeff « 0.4 at a wavelength equal to 700 nm, and the passband is very
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roughly approximated to be 200 nm. The wavelength and passband used in the real
observations are not known. The peak Qeff of the sensor is 0.6, and the passband
with Qeff ą 0.5 is around 200 nm.

Telescope parameters

The FITS header states that the telescope is the CDK20. According to the data
sheet, this telescope has an aperture of 508 mm and a focal length of 3454 mm [87].
This means that the focal number is 6.8, but the simulator tool will calculate this
itself. The data sheet also states that the central obscuration is 39% of the central
mirror. The efficiency of the telescope at 700 nm is not known. However, the data
sheet states that the coatings of both the primary and secondary mirror are 96%.
The total efficiency is therefore assumed to be 0.96ˆ 0.96 « 0.92.

Similarly as for the observation location data, both the sensor and telescope
parameters are saved in a file. The file name is then provided as input to the
simulation tool. An example of the input file is seen in Figure 4.3. Also here, it
is important to write the data in the specified order and on the specified line, and
also to separate the data by a comma and a space.

Figure 4.3: Input format for the sensor and telescope parameters. The name of
the file is provided as input to the simulation tool.

At this stage, the seeds for the dark and hot pixels are also defined and inputted
by loading them from the file. The values of the seeds do not matter, they can be
any integers as long as they are not identical.

Satellite data and orbital information

Examining the FITS header further, it is found that the observed object name is
10022A. This seems to be a shortened version of the International Designator which
was introduced in Table 2.5. Number 10 indicates that the satellite was launched
in 2010, number 22 that it was the 22nd launch in 2010 and the letter that the
sequential id is A. By searching on the number it is found that this satellite is the
NAVSTAR 65, which is also called USA 213 or GPS 25, and has the NORAD ID
36585 [88]. It was launched on the 28th of May 2010, and its maximum distance to
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Earth is 20,446.0 km. The estimated RCS is 6.4686 square meters, which is used
as an input parameter directly in the simulation tool.

Since the simulated observational date is the 22nd of February, a TLE with an
epoch close to this date is required. Historical TLEs can be requested from http:

//celestrak.com/norad/archives/request.php, and by doing so, all TLEs from
February 2021 are provided. February 22nd is the 53rd day of the year, and the
epoch therefore corresponds to 21053 in accordance with the definition which was
also given in Table 2.5. Out of all the TLEs from February, the closest to this epoch
is found to be 21052.23067455, meaning around 06:00 0n the 21st of February 2021.
This is a likely epoch to use to simulate upcoming observations, and therefore this
TLE is chosen as input to the simulation tool. The complete input file of the TLE
and satellite name is seen in Figure 4.4. As for the previous cases, the file name is
then provided as input to the simulation tool which loads the TLE data.

Figure 4.4: The inputted TLE data for the satellite NAVSTAR 65.

Having these data, the only remaining satellite parameter to input is the albedo
of the satellite. In Section 2.3.3, it was stated that albedo values from 0.175 to
0.2 have been used when modelling GEO satellites. The albedo is therefore, quite
arbitrarily, chosen to equal 0.2.

Disturbances

The next step is to choose the disturbances to include in the simulation. Dark cur-
rent and read noise are inevitable when doing a real observation, and are therefore
included in the simulation. Some sky background counts is also to be expected,
but the number of counts can be hard to predict. SAAO is a professional obser-
vation location, and little sky glow should therefore be expected. According to
www.lightpollutionmap.info, the sky quality at SAAO is around 22 magnitudes
per square arcsecond. By then estimating the sky background electron rate using
www.tools.sharpcap.co.uk, it is estimated that the sky background should give
raise to around 1.58 electrons/pixel/second. However, on the 22nd of February
2021 the Moon was up, and the full Moon occurred no later than five days after
the observation date [85]. According to the FITS header, the observation started
at coordinates RA = 120.041343˝, and DEC = -3.092003˝. Computing the corre-
sponding coordinates of the Moon at this time by using Skyfield, it is found that
RA = 97.986˝, and DEC = 25.808˝ which is not too far away from the observed
location. The sky background count should therefore be increased by quite a lot,
and is therefore set to 20 electrons/pixel/second.

The atmospheric efficiency also needs to be estimated. We assume that this was
a cloud free night, but the light transmission through the atmosphere also depends

http://celestrak.com/norad/archives/request.php
http://celestrak.com/norad/archives/request.php
www.lightpollutionmap.info
www.tools.sharpcap.co.uk
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on the observed wavelength. For an observation of 700 nm, the transmittance is
about 0.8 [89], which therefore is the number used for the atmospheric efficiency
input.

Examining the real image further in ESA/ESO/NASA FITS Liberator, it is seen
that it contains hot pixels which are seen as brighter spots in Figure 4.5 and are
marked by orange squares. The image is a zoomed in and cropped version of
Figure 4.1, the satellite is seen in the upper left corner. It is also seen that the hot
pixels vary in brightness, where the two pixels to the right are brighter than the
other two pixels.

Figure 4.5: Example of hot pixels in the real SMARTnet™image. The hot pixels
are marked by orange squares, and can be seen to vary in brightness.

The simulation tool requires the user to input how many hot pixels to add to the
simulated sensor. A very rough estimation from the FITS image indicates that it
contains around 200 hot pixels in total. The dark pixels are not as distinguishable
as the hot pixels, but since dark and hot pixels both form due to contamination of
the sensor it seems reasonable to assume around the same amount of dark pixels
is present in the sensor as well. Both the input parameters for the number of dark
and hot pixels are therefore set to 200.

Spread of signal

Both PSF and seeing will affect the spread of the light, and both the Airy disk and
atmosphere parameters are therefore set to True. The tool will calculate the input
radius of the Airy disk itself, but the sigma parameter is required to be inputted
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by the user. This parameter corresponds to how much the light will spread due
to the seeing at the location and the specific atmospheric conditions during the
observation time. SAAO is located at 1761 MSL which will improve the seeing,
and this means sigma should be small. For this simulation the value of 0.5 is
chosen.

Image formats

The image format inputs which formats to save the final simulated sensor in. For
this simulation both the FITS file and PNG formats are requested, and both these
parameters are therefore set to True. This will result in that the simulator auto-
matically saves the sensor to a FITS file, a PNG file, and additionally creates a
text file containing all the user inputs.

Additional inputs

Some additional inputs are left to be chosen. The satellite tracking parameter
should obviously be set to True since the real image was created by satellite tracking.
The limiting magnitude parameter is set to 16 which currently is the maximum
possible value in the simulation tool. Stars as faint as magnitude 16 will probably
not be visible in the resulting image due to the short exposure time and the use of
satellite tracking, but nevertheless this ensures full possible coverage.

By re-examining the FITS header of the real image, it is found that both the
binning in x and y were set to one during the real observation. Therefore, the
simulation tool binning parameter is also set to one. The last input is then to
decide whether to output the help image. For this example the help image is
desired, and this parameter is therefore set to True.

Summary of inputs

All inputs are now defined, and a summary of all the different parameters is pre-
sented in Table 4.1.
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Table 4.1: Summary of all the inputs used to replicate the real image.

Name Value Unit

Observation start time 2021, 2, 22, 18, 4, 40.780 Year, month, day, hour,
minute, second [UTC]

Exposure time 5.074937 Seconds
Time step 0.005 Seconds
Location name South African Astronom-

ical Observatory, SAAO
-

Latitude and longitude -32.38072, 20.81078 Degrees
CelesTrak TLE False Boolean
TLE See Figure 4.4 -
Satellite RCS 6.4686 Square meters
Satellite albedo 0.2 -
Sensor width and height 4096ˆ4096 Number of pixels
Pixel width (and height) 9ˆ 10´6 Meters
Well depth 100,000 Electrons
Quantum efficiency 0.85 -
Read noise 10 Electrons
Dark current (@-20°C) 2.98ˆ 10´10 Electrons/pixel/second
Passband for wavelength 200ˆ 10´9 Meters
Dark and hot pixel seeds 19920817, 19950820 -
Aperture diameter 0.508 Meters
Focal length 3.454 Meters
Obscuration 0.39 Fraction of diameter
Optics efficiency 0.92 -
Limiting magnitude 16 -
Satellite tracking True Boolean
Binning parameter 1 Number of pixels
Atmospheric efficiency 0.8 -
Apply dark current True Boolean
Apply read noise True Boolean
Sky background counts 20 Electrons/pixel/second
Dark pixels 200 Number of pixels
Hot pixels 200 Number of pixels
Apply Airy disk True Boolean
Apply atmosphere True Boolean
Sigma 0.5 -
Save as FITS file True Boolean
Save as PNG file True Boolean
Help image True Boolean
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4.1.2 Outputs

The defined inputs are inputted to the simulation tool, which runs the simulation.
This section presents the results and different outputs, as well as some parameters
that are calculated by the tool.

Outputs in the console

The first output consists of messages in the console, and they are presented in
Figure 4.6. As seen, the first message tells the user which observation location the
simulation tool simulated the observation from. The second message tells the user
which satellite is being observed. An attentive observer can see that that the ”/”
characters that were used in the input file shown in Figure 4.4 have been replaced
by the character ”-”. This is done by the simulation tool since the satellite name is
used to create the names of the saved files, and using the character ”/” in the file
name is not allowed.

Figure 4.6: Resulting outputs in the console window from the replication
simulation run.

Next follows information about the coordinates of the satellite at the start of
the observation. These are given in both the horizontal and equatorial coordinate
system. The distance to the satellite is also provided.

The last message in the console consists of the time it took to run the simulation.
In this particular case it was 697.72 seconds, which equals to about 11 minutes and
37 seconds. This is quite long, mostly due to the high limiting magnitude and
the fine time step which is used in the simulation. By examining the reduced star
catalogues it is seen that in total 1097 stars were considered to be able to enter the
frame. Three of these stars are from the Hipparcos catalogue, and 1094 are from the
GAIA EDR3 catalogue. A closer inspection of the reduced catalogues coordinates
implies that most likely, the three stars from Hipparcos are also included in the
GAIA EDR3, which will have resulted in a slight error which was discussed in
Section 3.3.3. In total, 1016 stereographic coordinate pairs were calculated for each
star.

It should also be noted that, as expected, none of the three warning messages
were printed for this simulation. This means that during the observation the satel-
lite was sunlit, the sun was down at the observation location, and as seen from the
altitude coordinate the satellite was above the horizon.
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Outputted figures

The next type of outputs are the outputted figures from the simulation tool. The
first one is the simulated sensor which is seen in Figure 4.7. The title contains some
of the input information such as the sensor size, limiting magnitude, exposure time,
and ∆t (plot interval), but also the FOV which has been calculated to 0.61˝ˆ0.61˝.
The third line in the title informs the user which object is shown, from which
location, and at which time the observation was initiated.

Figure 4.7: Resulting unprocessed figure of the simulated sensor. Due to the
current scaling applied by the software it is not possible to see much except from
a bright star tracklet to the right in the image.

As mentioned in Section 3.3.12, it is difficult too see much in this image besides
the very brightest parts. In this case, it is a star tracklet which can be seen to
the right in the image. By again comparing with the reduced star catalogues, it
is seen that the brightest star in the image is of magnitude 6.458889 according to
GAIA EDR3. This is one of the stars which overlaps with the Hipparcos catalogue,
which has estimated the star as being of magnitude 6.41. The star should there-
fore be about double as bright in the resulting image due to the double plotting,
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meaning it in the image corresponds to a star of around magnitude 5.68, based on
equation (2.18).

The last piece of information from the sensor image in Figure 4.7 comes from
the colour bar seen to the right. The well depth of the sensor was 100,000 electrons,
but the bar only goes up to about 30,000. This means that for this particular obser-
vation with the specified seeing and system parameters, no pixels were saturated.
When the same simulation was ran without applying any type of spread, it was
seen that some pixels did saturate. The corresponding resulting image is seen in
Section B.1, Figure B.1.

The second outputted image from the simulation tool is the help image, which
is seen in Figure 4.8. As for the sensor image, the title also contains some of the
inputted parameters and calculated parameters, including the initial coordinates of
the satellite in the horizontal coordinate system. The green line in the upper left
corner is a constellation line. The help image shows clearly all the star tracklets
which are located in the frame, while the satellite in the center can hardly be
discerned.

Figure 4.8: Resulting outputted help image from the reconstruction simulation.
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The saved PNG file and associated log file

Since one of the user input was to save the result as a PNG file, the simulation tool
does so. The PNG file itself is just a stripped version of the sensor image that was
seen in Figure 4.7, and the resulting PNG image is seen in Section B.2, Figure B.2.
An associated text log file is created and saved in addition to the PNG file. This log
file contains most of the user inputs, and the resulting file from the reconstruction
run is also seen in Section B.2, Figure B.3.

The FITS file

Since the input to save the file as a FITS file was given, the simulator tool does so
too. The FITS file header contains all the information that was given in the log
text file, and a snippet of it is seen in Section B.3, Figure B.4. The result from
opening the FITS file in ESA/ESO/NASA FITS Liberator, and saving it as a TIFF
file which applies some automatic scaling, can be seen in Figure 4.9. The satellite
is seen as a small dot in the middle of the image.

By adjusting the black and white levels of the FITS file in ESA/ESO/NASA FITS

Liberator, different details of the image can be enhanced. In Figure 4.10, the white
level has been decreased and the FITS file has been zoomed in on the satellite to
show the spread of the satellite electrons. In this image, the white level has been
lowered enough so that the noise is visible as well.

When looking at Figure 4.9, it appears as some of the star tracklets might consist
of discrete points instead of being continuous tracklet. This is not true, and arises
from the computer not being able to match the resolution of the image. When
zooming in on the tracklets, even the faintest of them are shown to be continuous.
This is further illustrated in Figure 4.11, where the white levels has been even
further decreased to show very faint tracklets. It can also be seen how some of the
faintest tracklets are almost disappearing into the background noise.
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Figure 4.9: The simulated SMARTnet™image. This image has been processed
by adjusting the black and white levels.

Figure 4.10: The resulting satellite in the simulated image. The white level of
the FITS file has been decreased to enhance the spread to the nearby pixels due
to PSF and seeing.
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Figure 4.11: When zooming in on the satellite tracklets in the simulated image
they are shown to be continuous. Here, the white level of the image has been
lowered to be able to see even the faintest star tracklets.

Summary of some calculated parameters

Some of the calculated parameters, such as the coordinates for example, have al-
ready been presented. These parameters, together with some additional parameters
calculated by the simulation tool, are summarised in Table 4.2.

Table 4.2: Summary of some parameters calculated by the simulation tool.

Name Value Unit

Airy disk radius 0.64517 Number of pixels
Altitude 45.42 Degrees
Azimuth 56.40 Degrees
RA 120.413712 Degrees
DEC -3.001932 Degrees
Diffraction limit 1.6811ˆ 10´6 Radians
Distance 21831.60 Kilometers
Effective telescope area 0.1719 Square meters
Focal number 6.799 -
FOV 0.612ˆ 0.612 Degrees
Satellite apparent magnitude 11.574 -
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4.1.3 Comparison with the real image

Having acquired the simulated outputs, it is now time to do some comparisons
between the simulated and the real images. The comparisons consist of both visual
inspections, and a comparison of the equatorial coordinates.

Side by side comparisons

In all side by side comparisons, the simulated image is located to the left, and the
real image is to the right. The first side by side comparison consists of placing the
complete images next to each other, and this comparison is seen in Figure 4.12.

Figure 4.12: Comparison of the simulated and real images. The left image is the
simulated image, and the right image is the real image.

The most noticeable difference is that the background of the real image is
brighter than the background of the simulated image. This depends partly on
how the greys of the images have been scaled, but it is more likely that the real
image had a higher sky background count than what was chosen for the simulated
image. This hypotheses is strengthened by the fact that the real image was taken
at a small angular distance from the Moon, on a night in the lunar cycle when the
Moon was five days from being full. The real image also has a gradient due to
the disuniformity in illumination. This type of background behaviour can either
be caused by the image being uncalibrated, or by internal reflection caused by the
Moon.

The next side by side comparison is shown in Figure 4.13 and also consists
of the same two images next to each other, but the images are now marked in
order to better illustrate the positions of the satellite and different star tracklets.
The satellite in each image has been marked by a red square, and corresponding
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star tracklets are marked by coloured circles. As seen, the tracklets correspond
well within the overlap of the images. Brighter tracklets in the real image are
also brighter in the simulated image, and from visual inspection no tracklet is
missing. The simulated image contains more of the faint tracklets. This is due to
the background of the real image being much brighter, which means some of the
faintest tracklets disappear into the background noise.

Figure 4.13: Marked comparison of the simulated and real images. The left
image is the simulated image, and the right image is the real image. The satellite
in each image is marked by a red square, and corresponding star tracklets are
marked by coloured circles.

It is also noticeable that the positions of the satellite in each image match very
well. As a reminder, the satellite of the position in the simulated image has been
calculated from propagating a TLE. Some difference in the positions could therefore
have been explained by how the TLEs are propagated.

By close inspection of the comparisons, it can also been seen that there is some
difference in the inclination of the star tracklets. This is assumed to be due to the
stereographic projection function from Skyfield which determines the rotation of
the FOV, which also does not take the type of telescope mounting into account.
This difference in inclination might therefore occur due to the difference in how
the projection is built versus the mounting of the telescope, which for this case is
unknown.

Figure 4.14 shows a side by side comparison zoomed in on the satellite from the
real and simulated images. The FITS files black and white levels have been scaled
to display the same levels of background brightness, in order to show the spread of
the satellite electrons among the nearby pixels.
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Figure 4.14: Side by side comparison of the satellites. The left image is the
simulated image, and the right image is the real image. The backgrounds have
been scaled to display equal levels of brightness.

As seen from Figure 4.14, the satellites are about the same size which confirms
the apparent magnitude calculation and the PSF assumptions. In the simulated
image, the satellite is symmetric which will always be the case due to how the
simulation tool has been designed. The real satellite is not symmetric, and this is
most likely due to a lens disturbance. This hypotheses is strengthened by the fact
that the satellite in the real image is located far towards the edge of the FOV where
lens disturbances are most noticeable. It can also be seen that the pattern of the
background noise looks very similar between the images.

In Figure 4.15, a side by side comparison of some tracklets is shown. The bright
star tracklet located in the bottom middle of the image is the tracklet which was
marked by a light green circle in Figure 4.13, and the exact position of this cutout
from the full image is seen in Section B.3, Figure B.5.

The images in Figure 4.15 have been scaled to display similar levels of brightness,
and it can again be seen that the real image has a background brightness gradient.
Also, as was discussed previously, the real image displays more faint star tracklets
since the background is darker compared to the real image, where faint tracklets
disappear into the background noise. The change in inclination is also further
enhanced when comparing the images in this zoomed in version. The tracklets
themselves display similar behaviours in terms of how the brighter tracklets appear
clearer than the fainter tracklets, which are more grey in colour. A noticeable
point is how the brightest tracklet appears jagged in the real image, compared to
the smoother behaviour of the corresponding simulated tracklet. This could be an
effect of mount disturbances, caused by wind for example. The same simulated star
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Figure 4.15: Side by side comparison of some star tracklets. The left image is
the simulated image, and the right image is the real image. The backgrounds have
been scaled to display similar levels of brightness.

tracklet also appears more spread out compared to the real one. This can partly
depend on the scaling of the white and black levels, but also on the estimated sigma
parameter and limitations in the PSF modelling.

In the real image, it is possible to see some hot pixels. When examining the
simulated image, no obvious hot pixels were found. This could mean that the dark
current response of the real sensor is higher than the simulated response, and this
parameter could be adjusted to more clearly simulate hot pixels.

Comparison of equatorial coordinates

The calculated equatorial coordinates for the satellite position are seen in Table 4.3,
together with the real observation coordinates found in the FITS header. As seen,
they are quite similar and the difference is about 0.37 degrees for the RA, and
0.09 degrees for the DEC. However, the coordinates from the real image most likely
correspond to the coordinates of the center of the image, and not the satellite itself.
This means the real image coordinates should correspond to a location close to the
tracklet marked by an orange circle in Figure 4.13 in the simulated image. This
offset is a possible explanation for the difference of the coordinates.

Table 4.3: Comparison of the equatorial coordinates.

Name Unit Value, simulation Value, observation ∆

RA Degrees 120.413712 120.041343 0.372369
DEC Degrees -3.001932 -3.092003 0.090071
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4.2 A second image reconstruction

In order to further evaluate the performance of the simulation tool, a second real
image is attempted to be reconstructed. This image can be seen in Figure 4.16. As
for the first reconstruction simulation, this image is also provided by SMARTnet™,
and has been taken from the same observation location in South Africa. The ob-
served object this time is the geosynchronous communications satellite INTELSAT
901.

Figure 4.16: Original SMARTnet™image used in the second reconstruction
simulation. The satellite has been marked by a red square.
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When examining the image closely, more than one satellite can be seen, which
is not too surprising considering it is the geostationary belt that has been observed.
The tracked satellite (most centered in the image), has been marked by a red square
in Figure 4.16.

4.2.1 Inputs

The methodology to find and estimate the input parameters for this reconstruction
follows the strategy in Section 4.1. Most of the parameters are found in the FITS
file header. The resulting input parameters are seen in Table 4.4.

The observed satellite is INTELSAT 901, and the RCS of this satellite has been
estimated to 15.9919 square meters [90]. The albedo of the satellite is left at 0.2 in
accordance with the discussion about albedo in Section 4.1.1.

The observation was performed from the SAAO, on the 25th of March 2020, at
01:07:49.951. Year 2020 was a leap year, and this date was therefore the 85th day
of the year. When examining the historical TLEs, it is found that the closest epoch
before this date is 20082.2951473, meaning three days before the simulation. The
complete TLE can be seen in Figure 4.17.

Figure 4.17: The TLE used to reconstruct the second image.

The sensor is the same sensor (FLI ProLine CCD camera KAF-16803) used
in the first simulation, and all the sensor parameters are therefore unchanged.
However, the telescope is different. In the FITS header the name of the telescope is
’ASA 8H’, and this is assumed to be the Astro Systeme Austria (ASA) Astrograph
8” H f 2.8 telescope. In the datasheet it is found that the aperture of the telescope
is 200 mm, and the focal length is 0.560 mm, but it provides no information about
the obstruction [91]. However, it is found that the diameter of the secondary
mirror is 100 mm, and the obstruction is therefore assumed to be 100/200=0.5. No
information about the efficiency is found, and it is therefore assumed to be 0.9.

When examining the lunar cycle, it is found that the 25th March 2020 was the
day after the new moon [92]. It is also found that at 03:07 local time, the Moon
was under the horizon. The sky background counts parameter is therefore set to
1.58 in accordance with the discussion in Section 4.1.1.

In the first reconstruction, the time step was set to 0.005 seconds. However,
when inspecting the original image in Figure 4.16, it can be seen that FOV is
much larger and the tracklets are much shorter. A larger FOV implies many more
stars will be considered, and this fact, in combination with the shorter tracklets,
motivates the decision to lower the time step. The time step is therefore set to 0.01,
which will result in about 507 coordinate pairs for each object in the FOV.
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Table 4.4: Summary of all the inputs used to replicate the second real image.

Name Value Unit

Observation start time 2020, 3, 25, 1, 7, 49.951 Year, month, day, hour,
minute, second [UTC]

Exposure time 5.069727 Seconds
Time step 0.01 Seconds
Location name South African Astronom-

ical Observatory, SAAO
-

Latitude and longitude -32.38072, 20.81078 Degrees
CelesTrak TLE False Boolean
TLE See Figure 4.17 -
Satellite RCS 15.9919 Square meters
Satellite albedo 0.2 -
Sensor width and height 4096ˆ4096 Number of pixels
Pixel width (and height) 9ˆ 10´6 Meters
Well depth 100,000 Electrons
Quantum efficiency 0.85 -
Read noise 10 Electrons
Dark current (@-20°C) 2.98ˆ 10´10 Electrons/pixel/second
Passband for wavelength 200ˆ 10´9 Meters
Dark and hot pixel seeds 19920817, 19950820 -
Aperture diameter 0.200 Meters
Focal length 0.560 Meters
Obscuration 0.5 Fraction of diameter
Optics efficiency 0.9 -
Limiting magnitude 16 -
Satellite tracking True Boolean
Binning parameter 1 Number of pixels
Atmospheric efficiency 0.8 -
Apply dark current True Boolean
Apply read noise True Boolean
Sky background counts 1.58 Electrons/pixel/second
Dark pixels 200 Number of pixels
Hot pixels 200 Number of pixels
Apply Airy disk True Boolean
Apply atmosphere True Boolean
Sigma 0.5 -
Save as FITS file True Boolean
Save as PNG file True Boolean
Help image True Boolean
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4.2.2 Outputs

The simulation tool is then run with the inputs from Table 4.4. The resulting full
scale FITS image is seen in Figure 4.18. The satellite, which is barely visible, has
been marked by a red square.

Figure 4.18: The resulting simulated image from the second reconstruction.

The corresponding output from the console is seen in Figure 4.19. As was seen
for the first reconstruction simulation and expected also for this simulation, none
of the warning messages have been triggered. The first outputted message is, as
before, the observation location name which is followed by the name of the observed
object. Then comes the observation date, and the coordinates of the satellite at the
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start of the observation. The last message is the time it took to run the simulation.
This particular case took 1154.11 seconds to run, which equals to about 19 minutes
and 14 seconds. This is a very long run time, and is mostly due to the high limiting
magnitude and the increased FOV, and therefore the increased number of stars
to consider. In total, coordinates were calculated for 4592 stars, out of which 35
stars are from the Hipparcos catalogue, and 4557 stars are from the GAIA EDR3
catalogue.

Figure 4.19: Resulting outputs in the console window from the second
replication simulation run.

The sensor image that is directly outputted from the simulation tool is seen
in Section C.1, Figure C.1. The corresponding help image, and the directly saved
PNG file, are also seen in Section C.1 in Figure C.2 and Figure C.3, respectively.
As for the first simulation, it is not possible to see much in the sensor and PNG
images except a few of the very brightest tracklets. Even in the help image, it is
hard to distinguish the satellite among all the short star tracklets. A summary of
parameters which were calculated by the simulation tool is seen in Table 4.5.

Table 4.5: Summary of some parameters calculated by the simulation tool for
the second simulation.

Name Value Unit

Airy disk radius 0.26569 Number of pixels
Altitude 27.04 Degrees
Azimuth 296.36 Degrees
RA 167.203016 Degrees
DEC 5.301359 Degrees
Diffraction limit 4.270ˆ 10´6 Radians
Distance 39340.32 Kilometers
Effective telescope area 0.0236 Square meters
Focal number 2.80 -
FOV 3.772ˆ 3.772 Degrees
Satellite apparent magnitude 11.708 -
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4.2.3 Comparison with the real image

Having acquired the simulated image, it is time to do some comparisons between
the simulated and the real images. As for the first reconstruction, the comparisons
consist of both visual inspections, and a comparison of the equatorial coordinates.

Side by side comparisons

Figure 4.20: Comparison of the simulated and real images. The left image is the
simulated image, and the right image is the real image

In Figure 4.20, the images have been placed next to each other. Due to the
large FOV and short tracklets it is difficult to see fine details. It can be seen
that the images have more similar background noise levels compared to the first
reconstruction example. Again, the images have been marked in order to facilitate
the understanding of how the images are orientated. Overlapping star tracklets have
been marked by coloured circles, and satellites by coloured squares. The marked
image is seen in Figure 4.21, where they have been places on top of each other to
display as many details as possibly. As mentioned previously, multiple satellites
were found in the original SMARTnet™image. The assumed tracked satellite has
been marked by a red square, and a secondary satellite has been marked by an
orange square.
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Figure 4.21: Marked comparison of the simulated and real images. The top
image is the simulated image, and the bottom image is the real image.
Corresponding star tracklets are marked by coloured circles, and the satellites are
marked by coloured squares.
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As seen from the marked comparison, the FOVs between the images correspond
quite well. However, there is a clear discrepancy between the positions of the
satellites that are supposed to be the same. Some discrepancy can be expected since
the simulated satellite position has been calculated by propagating a three day old
TLE, but for a geostationary satellite this is a suspiciously large discrepancy. This
leads to the idea that there might be more satellites in the real image than the two
that have been identified. When examining the original FITS file closer, no such
extra satellite was found at the expected position, but the satellites are particularly
difficult to spot in the real image due to the many star tracklets. The star tracklets
are so short that quite some zooming in is required to be able to distinguish the
satellites from the star tracklets. An additional satellite could therefore quite easily
have been missed. In order to fully understand and conclude about this discrepancy
in positions, further investigation would be required.

Figure 4.22: Comparison of the satellites. The left image is the simulated
satellite, and the middle and the right images are real satellites.

In Figure 4.22, a side by side comparison of the satellites is seen. The left image
is the simulated satellite, and the middle and right images are of the real satellites.
The middle image corresponds to the satellite marked by a red square in the real
image in Figure 4.13, and the right image corresponds to the satellite marked by an
orange square. The images have been zoomed in at the same level, and the black
and white levels have been slightly adjusted to show the same levels of brightness.
This enhances that the behaviour of the background noise is very similar between
the simulated and real image. In comparison to the first reconstruction, this real
image does not have an equally strong sky background and no obvious gradient.
This is most likely due to the difference between the lunar condition on the nights
these images were captured.

It is noticeable how little the simulated satellite has been spread out compared
to both of the real satellites. This could depend on many reasons. For example, the
apparent magnitude of the satellite was calculated to 11.708 which is quite faint
which might be due to the assumptions in the apparent magnitude model and the
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estimated albedo. It could also depend on how the PSF has been modelled, as was
seen in Table 4.5 the Airy disk radius was around 0.266 pixels which is very small.
It could be that a better PSF model would have spread out the pixels more. It
might also depend on the choice of sigma, since a higher value of sigma also would
have spread out the satellite electrons to more nearby pixels.

Figure 4.23: Side by side comparison of some star tracklets. The left image is
the simulated image, and the right image is the real image. The backgrounds have
been slightly scaled to display similar levels of brightness.

The last side by side comparison is seen in Figure 4.23, and shows the comparison
of some star tracklets. The position of these images in the corresponding full image
has been marked by a pink square in Figure C.4, which is found in Section C.2. Just
as in the satellite comparison, it is noticeable that the simulated tracklets are much
less spread out compared to the real tracklets. Also, more of the faint tracklets
are visible in the simulated image. This could also be an effect of the low spread,
since a higher spread would mean less visible tracklets. As was seen in the first
reconstruction simulation, there is a difference in the inclination of the tracklets
here as well. Some hot pixels can also be seen in the real image, and no equally
distinguished hot pixels have been found in the simulated image. This reinforces
further the theory that the dark current response parameter requires adjustment.

Comparison of equatorial coordinates

The calculated equatorial coordinates for the satellite position are seen in Table 4.6,
together with the real observation coordinates which are found in the FITS header.
The RA coordinates are very similar and the difference is about 0.18 degrees. The
difference in DEC is about 1.038 degrees, which is bigger than expected since the
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FOV is 3.772 ˆ 3.772 degrees, meaning the difference corresponds to about one
fourth of the length of the full image. Some further investigation would be required
to fully understand this discrepancy between the image coordinates.

Table 4.6: Comparison of the equatorial coordinates.

Name Unit Value, simulation Value, observation ∆

RA Degrees 167.203016 167.384988 0.181972
DEC Degrees 5.301359 6.339560 1.038201

4.2.4 Analysis by Astrometry.net

A useful tool to analyse astronomical images of the sky is Astrometry.net [93].
The tool allows the user to upload an image, and it then returns astrometric cal-
ibration meta-data, as well as which objects that fall inside the FOV. By using
Astrometry.net, both the real and simulated images from the second simulation
have been analysed. The result from the analysis with the found annotated stars,
is seen in Figure 4.24.

Figure 4.24: Analysis of the images by Astrometry.net. The simulated image
is located to the left, and the real image is to the right.

As seen, Astrometry.net managed to process both the simulated and the real
images, and both analyses were successful. This is a strong indicator of that the
simulated images can be used for analysis, and possible retrieval of the satellite
orbital parameters.
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4.3 Python packages dependencies

A pronounced strategy when developing the tool was to use already existing Python
packages whenever suitable. The final used packages, which upon the simulation
tool depends on, are:

• Skyfield - Used for loading and propagating the orbital elements, integrating
CelesTrak data, handling positional vectors, loading the ephemeris, loading
the Hipparcos catalogue, building the stereographic projection, calculating
coordinates, check whether satellite is sunlit, check whether the Sun is up,
and applying constellations lines.

• NumPy - Used for numerical calculations, building arrays and matrices, conver-
sion between radians and degrees, and several other mathematical operations.

• Pandas -Used for creating data frames for the star catalogues, storing satel-
lite coordinates and attributes, handling the large databases, and perform
operations on the data frames.

• Matplotlib - Used for plotting the figures.

• AstroPy - Used for importing constants, handling units, calculating kernels,
convolution, and conversion to the FITS file format.

Additionally, both the packages Poppy and Astroquery have been used in the
project. For now, the simulation tool is not dependent on Poppy, but code that
uses the package has been left in the simulation tool in case the usability of Poppy
is to be re-examined in the future. The package Astroquery has been used to
create the star catalogues from GAIA EDR3, but the simulation tool is currently
not dependent on the package.

4.4 Evaluation of the fulfilment of the
requirements

Section 3.1 presented the requirements which were to be fulfilled by the finished
simulation tool. In order to evaluate the simulation tool these will be evaluated in
order to see if they have been fulfilled or not.

4.4.1 Requirement group 1: Basic properties

The requirements of the basic properties of the tool were presented in Table 3.1.
The simulation tool code has indeed been written in Python, and requirement B-1
is therefore evaluated as fulfilled. Requirement B-2 is more unclear since the visual
magnitude of a telescope is not as straightforward to know as anticipated when
the requirement was written. Currently, the simulation tool can simulate stars as
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faint as magnitude 16. If required, the process of downloading a larger catalogue
and have the simulation tool loading it is straightforward. After discussion with
the supervisors, it was concluded that the limiting magnitude 17 should be more
than enough for the planned location and operations of the telescope. In the re-
construction examples it was also seen that the simulated images displayed more
faint tracklets than the real images. This requirement is therefore also evaluated
as fulfilled.

Requirement B-3 is also evaluated as fulfilled since the simulation tool can plot
both star and satellite tracklets. The simulation tool does take the camera and
telescope properties into account, and is therefore also evaluated as fulfilled. Im-
plementing a GUI was a soft requirement, and it was de-prioritised for other tasks.
Requirement B-5 is therefore not fulfilled.

4.4.2 Requirement group 2: Input parameters

The requirements regarding the input parameters were presented in Table 3.2. As
explained in Section 4.1.1, all these types of inputs have been implemented in the
simulation tool. Therefore, all requirements in the group are evaluated as fulfilled.

4.4.3 Requirement group 3: System properties

The requirements that concerned the system properties were presented in Table 3.3.
Both camera and telescope parameters are used by the simulation tool, and require-
ments P-1 and P-2 are therefore both evaluated as fulfilled. Lens deformation has
not been investigated, and the soft requirement P-3 is therefore unfulfilled.

4.4.4 Requirement group 4: Disturbances

The requirements related to the different disturbances were presented in Table 3.4.
In hindsight, the hard requirement D-1 should have been more specific. However,
dark current is a disturbance from thermal noise, and this disturbance has indeed
been implemented. This requirement is therefore evaluated as fulfilled. The def-
inition of the atmospheric effects mentioned in requirement D-2 should also have
been more specific, but the atmospheric efficiency and effect on the spread of the
electrons from seeing have indeed been implemented. This requirement is therefore
also evaluated as fulfilled.

The effects from mount disturbances have not been implemented in the tool, and
requirement D-3 is therefore not fulfilled. The effects from Moon glow can partially
be simulated by the sky background counts parameter, but the Moon often causes
a gradient of the sky background which has not been implemented. Requirement
D-4 is therefore evaluated as not fulfilled.

The sky background counts parameter is used to simulate the effects of the
sky glow, and requirement D-5 is therefore fulfilled. Requirement D-6 concerns
dead pixels, which consists of both hot and dark pixels. These have also been
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implemented, but the dark current response might need to be adjusted depending
on the simulated sensor. This is easily done and implemented in the tool, and
requirement D-6 is therefore also evaluated as fulfilled.

4.4.5 Requirement group 5: Satellite observation properties

The last requirement group regarding the satellite observation properties was pre-
sented in Table 3.5. This group contains only soft requirements. The modelling
of the apparent satellite magnitude includes both the albedo and the area of the
satellite, as well as the sun angle. The tool also outputs warnings related to the
observation geometry. All requirements in the group are therefore evaluated as
fulfilled.

4.4.6 Summary of the requirements evaluation

The fully evaluated requirement matrix can be seen in Table A.3. In summary,
all 16 hard requirements have been fulfilled, as well as six soft requirements. Out
of the in total 26 requirements, four requirements are evaluated as unfulfilled. All
unfulfilled requirements are soft requirements.





Chapter 5

Summary and conclusions

This work aimed at designing and developing a tool to simulate images of satellite
passes, as they would look like from a professional telescope. The tool allows
the user to choose the observation location, time, telescope, camera, satellite and
satellite properties, TLE, disturbances, type of tracking, limiting magnitude, and
image format. The code for the tool has been written in Python, and has made use
of several packages when suitable.

To evaluate the tool, it has been attempted to replicate two real images of
satellite passes. Both of these images were provided by SMARTnet™and obtained
by using satellite tracking. The results are that the tool manages well to implement
all the basic functions related to time, the orbital parameters, satellite propagation,
stars, and telescope and camera properties. More complex functions, such as the
seeing and PSF, have also been implemented but with simplifications. The different
parameters affects the final resulting image, and SSC should therefore be able to use
the tool to examine different observational scenarios in order to plan their upcoming
telescope operations.

One of the simulated images has also been analysed by the external software
Astrometry.net. The software managed to analyse and process the image, as
well as extract the names of some stars visible within the FOV. This is a strong
indicator that SSC should be able to use the images for training and testing their
orbit determination software.

Out of the 26 defined requirements on the tool, all 16 hard requirements were
fulfilled. Additionally, six soft requirements were also fulfilled. This concludes that
in total 22 out of the 26 requirements were fulfilled.

5.1 Limitations

An important strategic decision to finish the tool within the time limits was to use
pre-existing libraries when suitable. This method comes with some limitations, and
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as a result the rotation of the FOV is yet to be fully understood. Additionally, the
model of the seeing and PSF is simplified. This means that telescope obstruction
and diffraction spikes are not included in the images.

The current version of the tool has a highest possible limiting magnitude of 16.
Increasing the magnitude has major consequences on the run time for the tool. The
run time is further affected by the FOV, exposure time, and chosen ∆t.

5.2 Future work

If the simulation tool is to be extended and developed further, these are some areas
that can serve as starting points for the future work.

5.2.1 Visibility effects on the satellite tracklet

In the current version of the tool, the effects from eclipses and the satellite posi-
tion relative to Earth have not been modelled into the appearance of the satellite
tracklet. Instead, warnings are outputted in the console window if any of the three
visibility demands is unfulfilled during the observation period. Depending on how
the tool is to be used, this method might need to be re-evaluated.

5.2.2 Telescope mounting and rotation of FOV

The discrepancy between the rotation of the FOV between the real images and the
simulated images requires further investigation. The recommended way is to rewrite
the stereographic projection function in order to fully understand it. This would
also allow the implementation of different telescope mounts and slewing movement
of the telescope.

5.2.3 Improvement of seeing and PSF modelling

The current implementation of the seeing and PSF utilizes simplifications. The
modelling of these effects could be improved. There are also remaining uncertainties
regarding the sizes of the kernels, and the associated boundary effects. In addition,
the effects from diffraction spikes should also be implemented.

These improvements could be initiated by investigating using the Moffat dis-
tribution for the seeing kernel. Dr. Flavio Calvio, at Stockholm University, has
previously worked with modelling PSFs. He has provided access to his Python
code which is found at https://github.com/calvofl0/psftool. Due to time
constraints it was not possible to implement his code into the simulation tool. This
could therefore be a good place to start investigations of an improved PSF.

https://github.com/calvofl0/psftool
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5.2.4 Filter selection as an user input

Currently, the observed wavelength has been hard coded to 700 nm. Simplifica-
tions are also used when modelling the signal, since ideally integration should be
performed over the passband spectra. Further investigations are required to under-
stand how to expand the star catalogues to allow filter selection by the user.

5.2.5 Investigate error from overlapping star catalogues

In the current design of the simulation tool it uses two different star catalogues. This
means that there is some overlap between the catalogues, which may cause some
stars to appear brighter than expected. This overlap should be better understood,
and the Hipparcos catalogue could then be modified to decrease the overlap.

5.2.6 Implementation of SNR for advanced imaging
analysis

An idea originally intended to implemented regarded the estimation of the SNR of
the simulated image. The theory behind this was discussed in Section 2.2.7 and
resulted in equation (2.9). The idea was that if the simulation tool was to calcu-
late this parameter, it could be used to learn more about of how much noise could
be tolerated to still perform an acceptable observation. However, SNR was not
included in the requirements and was therefore de-prioritised to other functionali-
ties of the simulation tool. A longer discussion related to how the images will be
used would also be required to understand how to best implement this parameter.
Equation (2.9) presented how to calculate the SNR for a single pixel, but it could
also be interesting to calculate the SNR for the whole image which would require
additional investigation.

5.2.7 Additional and improved functions

Due to time constraints, some functions have been simplified or omitted. Examples
of omitted functions are the inclusion of planets and the Moon in the simulated
FOV, as well as using a gain parameter when modelling the sensor readout.

Another interesting function to add would be to simulate multiple satellites in
the same FOV. This function is not too complicated to implement, but has been
de-prioritised in favour of other functionalities. During the discussions with several
astronomers, it was also mentioned that it might be desirable to be able to de-focus
the telescope to perform the observations of the satellites. This is also a function
that could be implemented in the future.

Finally, it needs to be further investigated exactly how the outputs of the tool
are to be used in the future. For now, the FITS files are of greatest use to the user,
while the PNG files do not display many details. It could therefore be beneficial to
scale these images before saving them, but this requires further investigation.
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Appendix A

Complete system
requirement matrix

The requirement matrix was reviewed and discussed in Chapter 3, and each group
of requirements were presented together with their rationales. The legend of the
requirement matrix is presented in Table A.1, and the full concatenated require-
ment matrix is presented in Table A.2. Later, in Section 4.4, the fulfilment of the
requirements was discussed. The evaluated requirement matrix is seen in Table A.3.

Table A.1: Legend of the requirement matrix.
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Table A.2: The full concatenated requirement matrix.
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Table A.3: The evaluated requirement matrix.





Appendix B

Complementary results from
the first reconstruction

B.1 Resulting sensor without applied spread

In Section 4.1.2, the outputted image of the reconstruction simulation was showed
in Figure 4.7. The corresponding image from a simulation run without applying
any type of spread, is seen in Figure B.1. This time the colour bar maximum value
is 100,000, which equals the well depth of the sensor. This indicates that the image
contains saturated pixels. The star tracklet which was seen in Figure 4.7 can hardly
be discerned since the electrons are now contained to much fewer pixels in total.

B.2 Resulting PNG file

The saved PNG file of the simulated sensor is shown in Figure B.2. This is a
stripped version of the simulated sensor figure, which is directly outputted from
the simulation tool. When saving the sensor as a PNG file, an associated text log
file is created and saved too. This file is seen in Figure B.3.

B.3 Complementary FITS results

The reconstructed sensor simulation file is saved as a FITS file, where the header
contains most of the user input. A snippet of the FITS header, as presented when
viewed in ESA/ESO/NASA FITS Liberator, is seen in Figure B.4. An image zoomed
in on some of the star tracklets of the simulated sensor was presented in Figure 3.6.
The exact location of this zoomed in version, compared to the complete image, is
seen in Figure B.5.
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Figure B.1: The corresponding outputted sensor image from the reconstruction
simulation, without any spread of electrons applied. This sensor contains
saturated pixels.



B.3. Complementary FITS results 117

Figure B.2: The resulting PNG image from the reconstruction simulation. This
image is saved directly to the computer, together with an associated text log file
containing important user inputs.
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Figure B.3: The resulting text log file, which is created together with the PNG
file. It contains most of the user inputs.



B.3. Complementary FITS results 119

Figure B.4: A snippet of the FITS header, as presented when viewed in
ESA/ESO/NASA FITS Liberator.
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Figure B.5: Image showing the location of the zoomed in image in Figure 3.6.
The location is marked by the big red square.



Appendix C

Complementary results from
the second reconstruction

C.1 Complementary outputs from the second
reconstruction simulation

Section 4.2 discusses the reconstruction of an image acquired from observing the
geostationary satellite INTELSAT 901. The original SMARTnet™image was seen
in Figure 4.16. The corresponding simulated sensor, which is directly outputted
from the simulation tool, is seen in Figure C.1. The corresponding help image is
seen in Figure C.2, and the PNG image which is saved directly to the computer is
seen in Figure C.3.

C.2 Tracklets comparison cutout

In Section 4.2.3, a zoomed in image of some star tracklets were shown in Figure 4.23.
The location of the zoomed in images from the full scale image is seen in Figure C.4,
where it has been marked by a pink square.
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Figure C.1: The directly outputted sensor image from the second reconstruction
simulation.



C.2. Tracklets comparison cutout 123

Figure C.2: The outputted help image from the second reconstruction
simulation.
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Figure C.3: The resulting PNG file from the second reconstruction simulation.



C.2. Tracklets comparison cutout 125

Figure C.4: Image showing the location of the zoomed in image in Figure 4.23.
The location is marked by a pink square.
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