

BACKGROUND

We want more people cycling!

- PhD project on bicycle traffic simulation.
 - Need for traffic modelling support for bicycle traffic.
 - A microscopic traffic simulation approach .
 - · High heterogeneity in bicycle traffic.
- lı.U

Scope: off-street bicycle path segments.

Purpose of the PhD project: to investigate, develop, and evaluate microscopic traffic models for simulating the behavior of cyclists.

PURPOSE

- To investigate the connection between gradient and the power output in a population of cyclists.
- Towards developing a power-based modelling approach to simulate free-riding on path segments, considering:
 - The impact of gradient.
 - The heterogeneity of bicycle traffic.

DATA COLLECTION

Kung Oskars bro, Lund

FINDING FREE CYCLISTS

Free cyclist:

A cyclist who at no point have a headway < 2 s.

Other criteria:

- Riding on bicycle path
- Riding straight through (no turnings)

Travel direction	All	Free cyclists
Westbound (uphill)	135	65
Eastbound (downhill)	86	42

Total = 107

SPEED

A POWER-BASED MODEL

Martin et al (1998) – To estimate power output considering bicycle dynamics

Free-riding on flat segments

Free-riding on non-flat segments

COMPUTATION OF RELATIVE POWER OUTPUT

Properties equal for all cyclists

Total mass = weight of cyclist + weight of bicycle

Mechanical properties of the bicycle: frictional losses in the drive chain and wheel bearing systems.

Rolling resistance: coefficient of rolling resistance.

Aerodynamics: air density, drag coefficient, wind speed and direction, etc.

POWER OUTPUT

POWER OUTPUT VS GRADIENT

Vti

POWER OUTPUT VS GRADIENT (INDIVIDUAL)

MODEL ESTIMATION

• Estimate relative power output as a function of gradient (γ) , at current wind speed $(v_a = 5 \text{ m/s})$

$$p_{pedal} = p_0 + p_1 \gamma$$

- p_0 : desired power output
 - power necessary to maintain v_o when $\gamma = 0$
- p_1 : desire (or ability) to ride (or compensate) for the uphill/downhill
- Estimate an individual linear model for each cyclist, with parameters p_0 and p_1

SIMULATION ALGORITHM

1. Compute changes in the kinetic energy (P_k) (conservation of energy)

$$P_k = p_{pedal} - p_{grad} - \sum_{j \in I} p_j$$

Where:

- p_{grad} represents changes in the potential energy, $\gamma(x_i)$
- J is the set of types of losses in power, namely
 - · aerodynamic resistance,
 - · rolling resistance, and
 - wheel bearing friction

- 2. Compute speed (v_i) based on kinetic energy equation
- 3. Update position (x_i)

SIMULATION

Cyclists with a high R-Squared model.

SIMULATION

Cyclists with a low R-Squared model.

ESTIMATION ERROR IN SPEED PROFILES

Based on maximum (proportional) deviation between observed and simulated speed profiles

CONCLUSIONS

- Power is not constant in free-riding on non-flat paths
 - Cyclists adapt to cope with the uphill/downhill
- A linear model of power output as a function of gradient fits well on the uphill
 - ... and to some extent on the downhill.
- The impact of gradient may vary greatly among bicyclists.
 - Uncertainties remain due to assumptions to estimate power output.
- A power-based model approach seems suitable for simulating bicycle traffic.

FUTURE RESEARCH

- Domain of applicability of the presented linear model
 - Magnitude and length of the non-flat segment.
- Coasting and braking behavioral patterns.
- Transitions between uphill/downhill (tactical behavior).
- Relation power and energy expenditure (effort).
 - Trade-offs between time/speed and effort.
- Adding other elements of infrastructure/environment in connection to free-riding.
 - Aerodynamic resistance, horizontal curvature, etc.

■ Thanks

guillermo.perez.castro@vti.se

guillermo.perez.castro@liu.se

