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Multimodal Traffic Management
• Research targets

– Better understanding of multimodal travel patterns
– New methods for multimodal demand estimation and 

prediction
– New methods for predicting route and mode choice
– Synergies of multimodal traffic management

• Incident decision support
– State prediction during incidents (including effects on route 

and mode choice)
– Which traveller flows are affected most by the incident (and 

affect the incident the most)?
– Which multimodal rerouting altenatives are available for these

traveller flows?
– How does the rerouting affect the future traffic state?



Overview of computational modules

Explorative analysis of
multimodal data

Data-driven route and 
mode choice modeling

Mul:modal demand
es:ma:on

Scenario evaluation
and analytics

MMTM



Stockholm Dataset
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GPS trips Public transport tickets Mobile network data

Portal data Link counts



Data-driven route choice modeling
Anna Danielsson 



Data-driven route choice modeling
• Route choice modeling for traffic management

– Estimate and predict traffic state
– Estimate and predict traffic demand
– Give relevant and targeted traveler information

• First approach using GPS probe data for estimation of a  
Logit-based discrete choice model
– Which features xik affects the route choice? 

• Travel time, distance, capacity, #turns, #traffic lights…



Data-driven route set
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• Choice set (set or routes 
considered by the 
traveller) constructed 
from the set of all 
observed alternatives

• The first two weeks 
constritutes a training 
data set (blue) and the 
next two weeks a test data 
set (orange).



Route attribute statistics



Route choice modeling
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• Attribute selection
– p_major_roads, numlinks, p_city and rlength are the 

most important attributes.

• Model estimation
– Weighting attributes against each other. 

• Model evaluation
– Comparison of estimated and observed route choices.

• Understanding model
– Analysis of example OD-pairs.



Conclusions so far
• A good route choice model can give important insights for traffic 

management.

• Insights from the experiments
– Dataset promising for network-wide analysis and modeling of route 

choice
– Route sets in training and test data are similar, thus building up the 

choice set of the historically observed routes is promising.
– Attributes seems sufficient for some OD-pairs



Data-driven route choice modeling
Public Transport

Matej Cebecauer



Public transport
OD - routes
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• Data
Anonymized individual 
travel diaries inferred 
from smart-card data

• Result
Dynamic OD matrices 
from 2015 – 2022 
considering routes

• Next
Data-driven PT route 
choice modeling

Map background: OpeenStreetMap.org



Explorative analysis of multimodal 
demand data
Matej Cebecauer



Multimodal day-types
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Day-types:
– Representative typical days

How we reveal representative day-types:
1. Clustering / pattern recognition

• that groups the days based on their similarities, such
– Minimize the variance/distance/dissimilarity among days in each cluster
– Maximize the variance/distance/dissimilarity to days in other clusters

2. Representative of the cluster is the recognized day-type
– Could be an average day of the cluster



Multimodal day-types
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MCS sensors PT dynamic OD matrices

49 – zones (2,400 OD pairs)
38 – 30 minutes intervals

499 – sensors
66 – 15 minutes intervals

Map background: OpeenStreetMap.org



17Multimodal day-types
Day-type similarity – calendar evaluation

– Clusttering using year 2017
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• Similarity in short-term 
prediction application 
performance
– Historical mean prediction 

model
• Day-types recognized in 2017

• Predicting for all days in 2018

• 1 hour into future

• Past hour to classify day-type 
for prediction

– Mean Absolute Error (MAE)
– Mean Percentage Absolute 

Error ignoring 0 (MAPE0)

Multimodal day-types
Day-type similarity – external evaluation



What next?



What next?
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• Adding more data sources
• Reveal multimodal day-types

– Is the robustness of day-types sufficient for traffic management?

• Route choice modeling
– Route set generation needs to be added to the process to provide better estimates 

for unseen situations
– A mode choice component will be added to analyze multimodal traffic management

• Scenario evaluation
– Simulation Model
– Support for dynamic changes in network, demand and supply


