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Chapter 1

Introduction

1.1 The development of the Swedish power system

The Swedish power system started to develop around a number of hydro power stations,
Porjus in Norrland, Alvkarleby in eastern Svealand, Motala in the middle of Svealand and
Trollhattan in Gotaland, at the time of the first world war. Later on, coal fired power
plants located at larger cities as Stockholm, Goteborg, Malmo and Visteras came into oper-
ation. At the time for the second world war, a comprehensive proposal was made concerning
exploitation of the rivers in the northern part of Sweden. To transmit this power to the
middle and south parts of Sweden, where the heavy metal industry were located, a 220 kV
transmission system was planned.

Today, the transmission system is well developed with a nominal voltage of 220 or 400 kV.
In rough outline, the transmission system consists of lines, transformers and sub-stations.

A power plant can have an installed capacity of more than 1000 MW, e.g. the nuclear power
plants Forsmark 3 and Oskarshamn 3, whereas an ordinary private consumer can have an
electric power need of some kW. This implies that electric power can be generated at some
few locations but the consumption, which shows large variations at single consumers, can be
spread all over the country.
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Figure 1.1. Electricity supply in Sweden 1944-2013

In Figure 1.1, the electricity supply in Sweden between 1944 and 2013 is given. The hydro
power was in the beginning of this period the dominating source of electricity until the
middle of the 1960s when some conventional thermal power plants (oil fired power plants,
industrial back pressure, etc.) were taken into service. In the beginning of the 1970s, the
first nuclear power plants were taken into operation and this power source has ever after
being the one showing the largest increase in generated electric energy. Since around 1990,
the trend showing a continuous high increase in electric power consumption has been broken.

1



In Table 1.1, the electricity supply in Sweden during 2014 is given.

Source of power Energy generation | Installed capacity 14-12-31
TWh = 10° kWh MW

Hydro 64.2 16 155
Nuclear 62.2 9 528
Industrial back pressure 5.9 1 375
Combined heat and power 6.9 3 681
Oil fired condensing power 0.5 1748
Gas turbine 0.01 1 563
Solar power 0.05 79
Wind power 11.5 54 20
Total 151.2 39 549

Table 1.1. Electricity supply in Sweden 2014

The total consumption of electricity is usually grouped into different categories. In Figure
1.2, the consumption from 1946-2013 is given for different grouns.
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As shown in the figure, the major increase in energy need has earlier been dominated by the
industry. When the nuclear power was introduced in the early 1970s, the electric space heat-
ing increased significantly. Before 1965, the electric space heating was only marginal. Com-
munication, i.e. trains, trams and subway, has increased its consumption from 1.4 TWh/year

in 1950 to 2.8 TWh/year in 2013.

In proportion to the total electricity consumption, the communication group has decreased
from 8.5 % to 1.9 % during the same period. The losses on the transmission and distribution
systems have during the period 1946-2013 decreased from around 14 % of total consumption

to approximately 7.5 %.



1.2 The structure of the electric power system

A power system consists of generation sources which via power lines and transformers trans-
mits the electric power to the end consumers.

The power system between the generation sources and end consumers is divided into different
parts according to Figure 1.3.

Transmission network
400 - 200 kV
(Svenska Kraftnét)

Sub-transmission network
130 - 40 kV

Distribution network
primary part
40 -10kV

Distribution network
secondary part
low voltage 230/400 V

Figure 1.3. The structure of the electric power system

The transmaission network, connects the main power sources and transmits a large amount
of electric energy. The Swedish transmission system consists of approximately 15327 km
power lines, and there are 16 interconnections to other countries. In Figure 1.4, a general
map of the transmission system in Sweden and neighboring countries is given. The primary
task for the transmission system is to transmit energy from generation areas to load areas.
To achieve a high degree of efficiency and reliability, different aspects must be taken into
account. The transmission system should for instance make it possible to optimize the
generation within the country and also support trading with electricity with neighboring
countries. It is also necessary to withstand different disturbances such as disconnection of
transmission lines, lightning storms, outage of power plants as well as unexpected growth
in power demand without reducing the quality of the electricity services. As shown in
Figure 1.4, the transmission system is meshed, i.e. there are a number of closed loops in the
transmission system.

A state utility, Svenska Kraftnit, manages the national transmission system and foreign
links in operation at date. Svenska Kraftnat owns all 400 kV lines, all transformers between
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Figure 1.4. Transmission system in north-western Europe

400 and 220 kV and the major part of the 220 kV lines in Sweden.

Sub-transmission network, in Sweden also called regional network, has in each load region the
same or partly the same purpose as the transmission network. The amount of energy trans-
mitted and the transmission distance are smaller compared with the transmission network
which gives that technical-economical constraints implies lower system voltages. Regional
networks are usually connected to the transmission network at two locations.

Distribution network, transmits and distributes the electric power that is taken from the sub-
stations in the sub-transmission network and delivers it to the end users. The distribution
network is in normal operation a radial network, i.e. there is only one path from the sub-
transmission sub-station to the end user.

The electric power need of different end users varies a lot as well as the voltage level where



the end user is connected. Generally, the higher power need the end user has, the higher
voltage level is the user connected to.

The nominal voltage levels (Root Mean Square (RMS) value for tree-phase line-to-line (LL)
voltages) used in distribution of high voltage electric power is normally lower compared with
the voltage levels used in transmission. In Figure 1.5, the voltage levels used in Sweden are
given. In special industry networks, except for levels given in Figure 1.5, also the voltage
660 V as well as the non-standard voltage 500 V are used. Distribution of low voltage electric
power to end users is usually performed in three-phase lines with a zero conductor, which
gives the voltage levels 400/230 V (line-to-line (LL)/line-to-neutral (LN) voltage).

Nominal

Notation
@ voltage
kv ultra high
1000 | voltage (UHV)
gj&jﬁfsm 800 800
400 400 extra high
220 200 voltage (EHV)
sub-transmission 132 130
network 66 70
45 50
S high voltage
distribution network 33 30
. 22 20
high voltage
11 10 .
industry network
@ 6.6 6 only
33 3
distribution network
_l low voltage 400/230 V low voltage

Figure 1.5. Standard voltage level for transmission and distribution. In Sweden,
400 kV is the maximum voltage






Chapter 2
Alternating current circuits

In this chapter, instantaneous and also complex power in an alternating current (AC) circuit
is discussed. Also, the fundamental properties of AC voltage, current and power in a balanced
(or symmetrical) three-phase circuit are presented.

2.1 Single-phase circuit

Assume that an AC voltage source with a sinusoidal voltage supplies a load as shown in
Figure 2.1.

i(2)
=

u(?) +(~> Load
|

Figure 2.1. A sinusoidal voltage source supplies a load.

Let the instantaneous voltage and current be given by

u(t) = Upy cos(wt + 6)

2.1
i(t) = Iy cos(wt + ) 21)
where,
Uy is  the peak value of the voltage,
Iy is the peak value of the current,
is the the phase angle of the voltage,
~v is the the phase angle of the current,
w = 27r f, and fis the frequency of the voltage source.
The single-phase instantaneous power consumed by the load is given by
p(t) =u(t) - i(t) = Uplps cos(wt + 0) cos(wt + ) =
1
= —UpIps [cos(0 — ) + cos(2wt + 0 + )] =
2 (2.2)

_ Unlu
V22
= P(1 + cos(2wt + 26)) + @ sin(2wt + 20)

[(1 4 cos(2wt + 26)) cos ¢ + sin(2wt + 26) sin ¢] =

7



where
¢ = 00—y
 UnmIu
V2V
0 - Unr I

V22

cos @ = U I cos ¢ = active power

sin ¢ = U I sin ¢ = reactive power

U and I are the Root Mean Square (RMS) value of the voltage and current, respectively.

The RMS-values are defined as

With sinusoidal voltage and current,

values are given by

_ % /0 L2t (2.3)

_ % /0 Lzt (2.4)

according to equation (2.1), the corresponding RMS-

_ s 4 cos cos (2wt + 26) _%
U \/ /U cos?(wt 4 0) = UM\/ / 5 7 (2.5)

I = \/T/o I3, cos (wt+7)—ﬁ (2.6)

As shown in equation (2.2), the instantaneous power has been decomposed into two com-

ponents. The first component has a

mean value P, and pulsates with the double frequency.

The second component also pulsates with double frequency with a amplitude @), but it has
a zero mean value. In Figure 2.2, the instantaneous voltage, current and power are shown.

~ i time (t)

Ulsind

Figure 2.2. Voltage, current and power versus time.



Example 2.1 A resistor of 1210 €2 is fed by an AC voltage source with frequency 50 Hz and
voltage 220 V (RMS). Find the mean value power (i.e. the active power) consumed by the
resistor.

Solution

The consumed mean value power over one period can be calculated as

1t I 17wt 11 /*
P = — = — . 2 = — = — 2
T/o p(t) dt T/o R-=(t)dt T/o R IE dt RT/O u”(t)dt

which can be rewritten according to equation (2.3) as

1 2202
P=_U?=
RU 1210

=40 W

2.1.1 Complex power

The complex method is a powerful tool for calculation of electrical power, and can offer
solutions in an elegant manner.

The single-phase phasor voltage and current are expressed by
(2.7)

where, U is the magnitude (RMS-value) of the voltage phasor, and 6 is its phase angle. Also,
I is the magnitude (RMS-value) of the current phasor, and -~ is its phase angle.

The complex power (5) is expressed by
S=8=P+jQ=UT =UI =UIe’® = Ul(cos ¢ + jsin ¢) (2.8)
which implies that

P =Scos¢p=UlIcos ¢

Q= Ssing =Ulsin¢ (29)

where, P is called active power, () is called reactive power and cos ¢ is called power factor.

Example 2.2 Calculate the complex power consumed by an inductor with the inductance
of 3.85 H which is fed by an AC voltage source with the phasor U = U/0 = 220/0 V. The
circuit frequency is 50 Hz.

Solution
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The impedance is given by
Z =jwL=3-2-7-50-3.85= 751210
Next, the phasor current through the impedance can be calculated as

U 220 -
— = —— = —40.1818 A =0.1818¢77z A
Z = 71210 50.1818 0.1818 ¢ 72

T =
Thus, the complex power is given by

S = UI =01 =yrel?)
= 220(0.1818) ¢/(**2) = 220(;0.1818) = 540 VA

ie. P=0W, Q=40 VAr.

Example 2.3 Two series connected impedances are fed by an AC voltage source with the
phasor Uy = 1/0 V as shown in Figure 2.3.

1 Z, =0.14+j0.2 Q 2
u=1r U,=U,26,

~il

Z,=0.7+,02 Q

Figure 2.3. Network used in Example 2.3.

a) Calculate the power consumed by Z5 as well as the power factor (cos¢) at bus 1 and 2
where ¢y, is the phase angle between the voltage and the current at bus k.

b) Calculate the magnitude Uy when Z is capacitive : Zy = 0.7 — j0.5

Solution

a)

_ - U
Uy =Uy0; =1/0V and T=——"— =]/vy=1118/—2657° A
Z1+ Zy
Thus, ¢1 = 60, — v = 26.57°, and cos ¢; = 0.8944 lagging, since the current lags the voltage.

Furthermore,

Ug == 72 : 7 - UQZHQ == 0814[ - 10620
Thus, ¢o = 6y — 7 = —10.62° + 26.57° = 15.95°, and cos ¢ = 0.9615, lagging. The equation

above can be written on polar form as

U2 - ZQI

6, = arg(Zs) +7



Figure 2.4. Solution to Example 2.3 a).

ie. o =arg(Zy) = arctan‘;{f—j = 15.95°

The power consumption in Z, can be calculated as

Sy = Py+jQy = Zy- I> = (0.7+ j0.2)1.118% = 0.875 + j0.25 VA

or
Sy =Py+ jQo =Usl =UsI /¢ =0.814-1.118/15.95° = 0.875 + j0.25 VA
_ 1 Z, =0.1+j0.2 Q 2
U=1v U,=U,Z0,
7 [e—
Z,=0.7-j0.5 Q
Figure 2.5. Network used in Example 2.3 b).
b)
Z 0.7 — j0.5 0.49 +0.25 0.74
Uf'% L= 072505 V095025 VO.TL 7y
71+ Z, 0.8 —;0.3]  0.64+0.09 +0.73

Conclusions from this example are that

e a capacitance increases the voltage - so called phase compensation,
e active power can be transmitted towards higher voltage magnitude,
e the power factor cos ¢ may be different in different ends of a line,

e the line impedances are < load impedances.

11
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2.2 Balanced three-phase circuit

In a balanced (or symmetrical) three-phase circuit, a three-phase voltage source consists of
three AC voltage sources (one for each phase) which are equal in amplitude (or magnitude)
and displaced in phase by 120°. Furthermore, each phase is equally loaded.

Let the instantaneous phase (also termed as line-to-neutral (LN)) voltages be given by

uq(t) = U cos(wt +6)
2w

up(t) = UMcos(wt+9—?) (2.10)
uc(t) = UMcos(wt+9+2§)

Variations of the three voltages versus time are shown in Figure 2.6.

| | | | | | |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

T T

T T T T T

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Figure 2.6. u,(t), up(t), uc(t) and uqp(t) versus time with f = 50 Hz, Upy; = 1 and 6 = 0.

For analysis of a balanced three-phase system, it is very common to use the voltage between
two phases. This voltage is termed as line-to-line (LL) voltage. The line-to-line voltage .
is given by

2T

Uap(t) = ua(t) — up(t) = Ups cos(wt + 0) — Upy cos(wt + 0 — §> = (2.11)

= \/gUMcos(wt+9+%)

As shown in equation (2.11), in a balanced three-phase circuit the line-to-line voltage leads
the line-to-neutral voltage by 30°, and is v/3 times larger in amplitude (or magnitude, see
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equation (2.5)). For instance, at a three-phase power outlet the magnitude of a phase is 230
V, but the magnitude of a line-to-line voltage is v/3 - 230 = 400 V, i.e. Uy = v/3Upn. The

line-to-line voltage ug, is shown at the bottom of Figure 2.6.

Next, assume that the voltages given in equation (2.10) supply a balanced (or symmetrical)

three-phase load whose phase currents are

io(t) = Ipcos(wt+ )
2
ip(t) = Ipcos(wt+y— %)

2T
i.(t) = IMcos(wt+7+§)

Then, the total instantaneous power is given by

p3(t) = pa(t) + pb(t) +pc(t) = ua(t)ia(t) + ub(t)zb(t) + uc(t)zc(t) =

_ Unm Iy [(1+ cos2(wt + 0)) cos ¢ + sin 2(wt + 0) sin ¢] +

V22
Un Iy

+ [(1+ cos2(wt + 6 — %))cos¢+sm2(wt+«9— %)snuﬁ]

V23

1 2
+ il M[(1+C082(wt+«9+ 3))cos¢+sin2(wt+9+

V2V2

UMM

2T, . B
E)Sln@ =

(2.12)

(2.13)

2 2
= 3— [cosqﬁ + (cos2(wt +6) + cos 2wt + 6 — g] + cos 2wt + 0 + g]) +

V22

J/

-~

=0

+ (sin2(wt +60) +sin 2wt + 0 — %ﬂ] + sin 2[wt 4+ 0 + %ﬂ])}

(. J/
-~

=0

Un I
= 3\/]\{\% cos¢ =3Urn I cos ¢

Note that the total instantaneous power is equal to three times the active power of a single
phase, and it is constant. This is one of the main reasons why three-phase systems have

been used.

2.2.1 Complex power

The corresponding phasor voltages are defined as:

ULNZQ
= Upni (68— 120°)
o = Upn/(6+120°)

S]

SE=ic

(2.14)

Figure 2.7 shows the phasor diagram of the three balanced line-to-neutral voltages, and also

the phasor diagram of the line-to-line voltages.
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Figure 2.7. Phasor diagram of the line-to-neutral and line-to-line voltages.

The phasor of the line-to-line voltages can be determined as follows

U =Us — Uy = V3ULNZ(0+30°) =+/3T, "
Uy =Uy — U, = V3Un/ (0 —90°) = /3T, e (2.15)
Upo =U, — U, = V3UnZ (6 +150°) = V3T,

Obviously, the line-to-line voltages are also balanced. Equation (2.15) also shows that the

line-to-line phasor voltage leads the line-to-neutral phasor voltage by 30°, and it is v/3 times
the line-to-neutral phasor voltage.

Next, let the balanced phasor currents be defined as

I, = I/v
I, = I/(y—120° (2.16)
I. = I/(y+120°

Then, the total three-phase power (Ssg) is given by :
Sso =Sa+Sp+ S, =Uul, +U,I, +UI, =
ZBULN[COS¢+j3ULN[SiH¢: (217)
=3 ULN I 6j¢

Obviously, for a balanced three-phase system S, = S, = S, and S36 = 3515, where S is
the complex power of a single phase.

Example 2.4 The student Elektra lives in a house situated 2 km from a transformer having
a completely symmetrical three-phase voltage (U, = 220V /0°,U, = 220V / — 120°,U,. =
220V /120° ). The house is connected to this transformer via a three-phase cable (EKKJ,
Ix 16 mm? + 16 mm?). A cold day, Elektra switches on two electrical radiators to each
phase, each radiator is rated 1000 W (at 220 V with cosp = 0.995 lagging (inductive)).
Assume that the cable can be modeled as four impedances connected in parallel (Z, = 1.15 +
70.08 Q /phase,km, Zrg = 1.15 + j0.015 Q2 /km) and that the radiators also can be considered
as impedances. Calculate the total thermal power given by the radiators.
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Figure 2.8. The network diagram in Example 2.4.

Solution

U, =220/0° V,U, = 220/ — 120° V, U, = 220/120° V
Z1, = 2(1.15+ 50.08) = 2.3 + ;j0.16

Z1o = 2(1.15 + j0.015) = 2.3 + j0.03 Q

P, = P, = P.=2000 W (at 220 V, cos ¢ = 0.995)
sin ¢ = /1 — cos? ¢ = 0.0999

Qo =Qy = Qc—581n¢—COS¢81H¢:2OO.8VAI

——*

Zo=Jy=2,= % = T = U2/S = U2/(Pa — JjQa) = 23.96 + j2.40 Q
_ U= 7 _ 00 7 _ U—T;

lo= 7,57, h=77 = 74z,

T+ T+ T, = 200 = 0o
77| 1 1 1 1 _ Ua U U,

= UO [7—L0 - Zi+Za - Z1+7Z, + Zp+Z. | Zi+Za ZL‘:ZZ; Z1+Z.

= Uy =0.0

= ], =834/ —558 A, I, =834/ — 12558 A, I, =8.34/114.42° A
The voltage at the radiators can be calculated as :

U, =Uy+ 1,2, = 200.780.15° V

U, =200.78/ — 119.85° V

U, =200.78£120.15° V

Finally, the power to the radiators can be calculated as

S.o = ZoI? = 1666 + j167 VA

S.p = ZyI} = 1666 + j167 VA

S.e = ZoI?* = 1666 + j167 VA

Thus, the total consumed power is

Saa+ S+ S, = 4998 + 7502 VA, i.e. the thermal power = 4998 W

15
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Note that since we are dealing with a balanced three-phase system, S., = S.; = S.e.

The total transmission losses are
(P R4 1)+ Zpo|la + Ty + 1.]%) = Zp(I2 + I} + I?) = 480 + j33 VA
i.e. the active losses are 480 W, which means that the efficiency is 91.2 %.

In a balanced three-phase system, I, + I, + I. = 0. Thus, no current flows in the neutral
conductor (i.e. Iy = 0), and the voltage at the neutral point is zero, i.e. Ué = 0. Therefore,
for analyzing a balanced three-phase system, it is more common to analyze only a single
phase (or more precisely only the positive-sequence network of the system, see Chapter 8).
Then, the total three-phase power can be determined as three times the power of the single
phase.

Example 2.5 Use the data in Example 2.4, but in this example the student Elektra connects
one 1000 W radiator (at 220 V with cosp = 0.995 lagging) to phase a, three radiators to
phase b and two to phase c. Calculate the total thermal power given by the radiators, as well
as the system losses.

Solution

U, = 220/0° V,U, = 220/ — 120° V, U, = 220/120° V
Zp =2(1.15 + 50.08) = 2.3 4 j0.16

Zro = 2(1.15 + j0.015) = 2.3 + 5j0.03 Q

P, = 1000 W (at 220 V, cos ¢ = 0.995)

sin¢g = /1 — cos? ¢ = 0.0999

Q. = Ssin ¢ = C£¢sin¢ — 100.4 VAr

Z,=U%/S. =U?/(P, — jQ.,) = 47.9 + j4.81 Q

Zy = Z4/3 = 1597+ j1.60 Q

Zo=Z4/2 = 23.96 + j2.40 Q

7T 1 1 1 1 Ug U, U
— 4 = ]: U b U

AN

0| Zro ' Zp+Za ' Zip+Zy,  Zp+Ze Zi+Za | Zp+Zy ' ZptZe

= T, = 12.08/ — 155.14° V

= J, =458/ —4.39° A, I, =11.45/ —123.62° A, I, = 8.31/111.28° A
The voltages at the radiators can be calculated as :

U, =Uy+ 1.2, = 209.45/0.02° V

U, =Uy+ 1,7, = 193.60/ — 120.05° V

U =U,+ 1.7, = 200.91/129.45° V

Note that these voltages are not local phase voltages since they are calculated as U; — Ué
etc. The power to the radiators can be calculated as :

S.a = ZoI? =1004 + 5101 VA
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2 = ZplE = 2095 + j210 VA
e = ZoI2 = 1655 + j166 VA
The total amount of power consumed is

S.o+ S,y 4+ S.. = 4754 + j477 VA, i.e. the thermal power is 4754 W

S
S

The total transmission losses are
Zo(I2+ 12+ I2) + Z oI, + T, 4+ 1,]%) = 572.1 + j36 VA, ie. 5721 W
which gives an efficiency of 89.3 %.

As shown in this example, an unsymmetrical impedance load will result in unsymmetrical
phase currents, i.e. we are dealing with an unbalanced three-phase system. As a consequence,
a voltage can be detected at the neutral point (i.e. UE) # 0) which gives rise to a current
in the neutral conductor, i.e. Iy # 0. The total thermal power obtained was reduced by
approximately 5 % and the line losses increased partly due to the losses in the neutral
conductor. The efficiency of the transmission decreased. It can also be noted that the power
per radiator decreased with the number of radiators connected to the same phase. This owing
to the fact that the voltage at the neutral point will be closest to the voltage in the phase
with the lowest impedance, i.e. the phase with the largest number of radiators connected.
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Chapter 3
Models of power system components

Electric energy is transmitted from power plants to consumers via overhead lines, cables and
transformers. In the following, these components will be discussed and mathematical models
to be used in the analysis of symmetrical three-phase systems will be derived. In Chapter
8, analysis of power systems under unsymmetrical conditions will be discussed.

3.1 Electrical characteristic of an overhead line

Overhead transmission lines need large surface area and are mostly suitable to be used in
rural areas and in areas with low population density. In areas with high population density
and urban areas cables are a better alternative. For a certain amount of power transmitted,
a cable transmission system is about ten times as expensive as an overhead transmission
system.

Power lines have a resistance (r) owing to the resistivity of the conductor and a shunt con-
ductance (g) because of leakage currents in the insulation. The lines also have an inductance
(1) owing to the magnetic flux surrounding the line as well as a shunt capacitance (¢) because
of the electric field between the lines and between the lines and ground. These quantities
are given per unit length and are continuously distributed along the whole length of the line.
Resistance and inductance are in series while the conductance and capacitance are shunt
quantities.

Figure 3.1. A line with distributed quantities.

Assuming symmetrical three-phase, a line can be modeled as shown in Figure 3.1. The
quantities r, g, [, and ¢ determine the characteristics of a line. Power lines can be modeled
by simple equivalent circuits which, together with models of other system components, can
be formed to a model of a complete system or parts of it. This is important since such
models are used in power system analysis where active and reactive power flows in the
network, voltage levels, losses, power system stability and other properties at disturbances
as e.g. short circuits, are of interest.

For a more detailed derivation of the expressions of inductance and capacitance given below,
more fundamental literature in electro-magnetic theory has to be studied.
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3.1.1 Resistance

The resistance of a conductor with the cross-section area A mm? and the resistivity p
Qmm?/km is
p
== Q/km 3.1

r=5 o (31)
The conductor is made of copper with the resistivity at 20°C of 17.2 Q@ mm? /km, or aluminum
with the resistivity at 20°C' of 27.0 Qmm?/km. The choice between copper or aluminum is
related to the price difference between the materials.

The effective alternating current resistance at normal system frequency (50-60 Hz) for lines
with a small cross-section area is close to the value for the direct current resistance. For
larger cross-section areas, the current density will not be equal over the whole cross-section.
The current density will be higher at the peripheral parts of the conductor. That phenomena
is called current displacement or skin effect and depends on the internal magnetic flux of
the conductor. The current paths that are located in the center of the conductor will be
surrounded by the whole internal magnetic flux and will consequently have an internal self
inductance. Current paths that are more peripheral will be surrounded by a smaller magnetic
flux and thereby have a smaller internal inductance.

The resistance of a line is given by the manufacturer where the influence of the skin effect is
taken. Normal values of the resistance of lines are in the range 10-0.01 ©/km.

The resistance plays, compared with the reactance, often a minor role when comparing the
transmission capability and voltage drop between different lines. For low voltage lines and
when calculating the losses, the resistance is of significant importance.

3.1.2 Shunt conductance

The shunt conductance of an overhead line represents the losses owing to leakage currents
at the insulators. There are no reliable data over the shunt conductances of lines and these
are very much dependent on humidity, salt content and pollution in the surrounding air. For
cables, the shunt conductance represents the dielectric losses in the insulation material and
data can be obtained from the manufacturer.

The dielectric losses are e.g. for a 12 kV cross-linked polyethylene (XLPE) cable with a
cross-section area of 240 mm?/phase 7 W /km,phase and for a 170 kV XLPE cable with the
same area 305 W /km,phase.

The shunt conductance will be neglected in all calculations throughout this compendium.

3.1.3 Inductance

The inductance is in most cases the most important parameter of a line. It has a large
influence on the line transmission capability, voltage drop and indirectly the line losses. The
inductance of a line can be calculated by the following formula :
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a 1
=2-107" (In—= + — ] H/km,ph 2
l 0 (nd/2+4n> /km,phase (3.2)

where

a = Jajaa13a03 m, = geometrical mean distance according to Figure 3.2.
d = diameter of the conductor, m

n = number of conductors per phase

Ground level

Figure 3.2. The geometrical quantities of a line in calculations of inductance and capacitance.

The calculation of the inductance according to equation (3.2), is made under some assump-
tions, viz. the conductor material must be non-magnetic as copper and aluminum together
with the assumption that the line is transposed. The majority of the long transmission lines
are transposed, see Figure 3.3.

Locations of transposing

e

«——— Transposing cycle ——— |

Figure 3.3. Transposing of three-phase overhead line.

This implies that each one of the conductors, under a transposing cycle, has had all three
possible locations in the transmission line. Each location is held under equal distance which
implies that all conductors in average have the same distance to ground and to the other
conductors. This gives that the mutual inductance between the three phases are equalized
so that the inductance per phase is equal among the three phases.
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In many cases, the line is constructed as a multiple conductor, i.e. more than one conductor
is used for each phase, see Figure 3.4. Multiple conductors implies both lower reactance of

Figure 3.4. Cross-section of a multiple conductor with three conductors per phase.

the line and reduced corona effect (glow discharge). The radius d/2 in equation (3.2) must
in these cases be replaced with the equivalent radius

(d/2)eq = 3/n(D/2)"=" - (d/2) (3.3)

where

n = number of conductors per phase

D/2 = radius in the circle formed by the conductors

By using the inductance, the reactance of a line can be calculated as
r=wl=2nfl €Q/km,phase (3.4)

and is only dependent on the geometrical design of the line if the frequency is kept constant.
The relationship between the geometrical mean distance a and the conductor diameter d
in equation (3.2) varies within quite small limits for different lines. This due to the large
distance between the phases and the larger conductor diameter for lines designed for higher
system voltages. The term ﬁ has, compared with 111(#72), usually a minor influence on the
line inductance.

At normal system frequency, the reactance of an overhead line can vary between 0.3 and 0.5
2/km,phase with a typical value of 0.4 2/km phase. For cables, the reactance vary between
0.08 and 0.17 €2/km,phase where the higher value is valid for cables with a small cross-section
area. The reactance for cables is considerably lower than the reactance of overhead lines. The
difference is caused by the difference in distance between the conductors. The conductors
are more close to one another in cables which gives a lower reactance. See equation (3.2)
which gives the inductance of overhead lines.

Example 3.1 Determine the reactance of a 130 kV overhead line where the conductors are
located in a plane and the distance between two closely located conductors is 4 m. The
conductor diameter is 20 mm. Repeat the calculations for a line with two conductors per
phase, located 30 cm from one another.

Solution



23

a12 = agg = 4, a;3 = 8
d/2 =0.01 m
a=v4-4-8=>5.04

x=2mr-50-2-107* (In 2 + 1) = 0.0628 (In(504) + 0.25) = 0.41 Q/km,phase

Multiple conductor (duplex)

(d/2)eq = ¢/2(0.3/2)0.01 = 0.055

x = 0.0628 (In 2% + £) = 0.29 Q/km,phase

The reactance is in this case reduced by 28 %.

3.1.4 Shunt capacitance

For a three-phase transposed overhead line, the capacitance to ground per phase can be

calculated as 10-6
c= F /km,phase (3.5)

2H a
181n (7 : —(d/2)6q>

where

= /HHyH3; = geometrical mean height for the conductors according to Figure 3.2.

A = /A A3 A3 = geometrical mean distance between the conductors and their image con-
ductors according to Figure 3.2.

As indicated in equation (3.5), the ground has some influence on the capacitance of the line.
The capacitance is determined by the electrical field which is dependent on the characteristics
of the ground. The ground will form an equipotential surface which has an influence on the
electric field.

The degree of influence the ground has on the capacitance is determined by the factor 2H/A
in equation (3.5). This factor has usually a value near 1.

Assume that a line mounted on relatively high poles (= A ~ 2H) is considered and that the
term ﬁ can be neglected in equation (3.2). By multiplying the expressions for inductance

and capacitance, the following is obtained

106 1 km\ 2 1
l-c=2-1074 (m a ) : - (—) == (3.6)
(d/2)eq) 181n (<d/‘§)eq) (31002 s )

where v = speed of light in vacuum in km/s. Equation (3.6) can be interpreted as the
inductance and capacitance are the inverse of one another for a line. Equation (3.6) is a
good approximation for an overhead line. The shunt susceptance of a line is

b =2mf-c¢  S/km,phase (3.7)

A typical value of the shunt susceptance of a line is 3 - 1075 S/km,phase. Cables have
considerable higher values between 3 - 107> — 3 - 10~* S/km,phase.
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Example 3.2 Assume that a line has a shunt susceptance of 3 - 107% S/km,phase. Use
equation (3.6) to estimate the reactance of the line.

Solution

2 2
e Y Y (100m)

cv? b2 3-106(3-10°)2

which is near the standard value of 0.4 {2/km for the reactance of an overhead line.

=0.366 €/km

3.2 Model of a line

Both overhead lines and cables have their electrical quantities r, x, g and b distributed along
the whole length. Figure 3.1 shows an approximation of the distribution of the quantities.
Generally, the accuracy of the calculation result will increase with the number of distributed
quantities.

At a first glance, it seems possible to form a line model where the total resistance/inductance
is calculated as the product between the resistance/inductance per length unit and the length
of the line. This approximation is though only valid for short lines and lines of medium
length. For long lines, the distribution of the quantities r, [, ¢ and g must be taken into
account. Such analysis can be carried out with help of differential calculus.

There are no absolute limits between short, medium and long lines. Usually, lines shorter
than 100 km are considered as short, between 100 km and 300 km as medium long and lines
longer than 300 km are classified as long. For cables, having considerable higher values of
the shunt capacitance, the distance 100 km should be considered as medium long. In the
following, models for short and medium long lines are given.

3.2.1 Short lines

In short line models, the shunt parameters are neglected, i.e. conductance and susceptance.
This because the current flowing through these components is less than one percent of the
rated current of the line. The short line model is given in Figure 3.5. This single-phase
model of a three-phase system is valid under the assumption that the system is operating
under symmetrical conditions.

Figure 3.5. Short line model of a line.
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The impedance of the line between bus k£ and bus j can be calculated as

Zy; = Ryj + jXi; = (rij + jag;) £ /phase (3.8)
where L is the length of the line in km.
3.2.2 Medium long lines
For lines having a length between 100 and 300 km, the shunt capacitance cannot be neglected.

The model shown in Figure 3.5 has to be extended with the shunt susceptance, which
results in a model called the m-equivalent shown in Figure 3.6. The impedance is calculated

+ — Z.=R_+ jX,, ~ _Z =R_+jX,
= 1 kj & ki — — ] K I K _
Ot 0 U, U, oakrs —0 70,
-T YSh_kj —YSh_kj T or — )_}Sh_k/' -)_}S/r/?/ T
Ishv 2 2 Ish;
o o 0 o

Figure 3.6. Medium long model of a line.

according to equation (3.8) and the admittance to ground per phase is obtained by

?sh—kj o bcﬁ
2 173

= Ysh—kj = Jbsh—kj S (3.9)

i.e. the total shunt capacitance of the line is divided into two equal parts, one at each end
of the line. The m-equivalent is a very common and useful model in power system analysis.

3.3 Single-phase transformer

The principle diagram of a two winding transformer is shown in Figure 3.7. The fundamental
principles of a transformer are given in the figure. In a real transformer, the demand of
a strong magnetic coupling between the primary and secondary sides must be taken into
account in the design.

Assume that the magnetic flux can be divided into three components. There is a core flux ®,,
passing through both the primary and the secondary windings. There are also leakage fluxes,
®;; passing only the primary winding and ®;5 which passes only the secondary winding. The
resistance of the primary winding is r; and for the secondary winding . According to the
law of induction, the following relationships can be given for the voltages at the transformer
terminals :

d(Py + Dy)
dt

d(® + P,)
dt

u = i+ N (3.10)

-/
Ug = T212+N2
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N, turns N, turns

Figure 3.7. Principle design of a two winding transformer.

Assuming linear conditions, the following is valid

M@y = Lui (3.11)
No®py = Lyt

where

L;; = inductance of the primary winding

L5 = inductance of the secondary winding

Equation (3.10) can be rewritten as

: di d®,,
Uy = Ny +Ll1d_tl —I—le (3.12)
dit do
= 71oily + Lig—= + Ny—=
Uo roleg + Lo o + INo 0t

With the reluctance R of the iron core and the definitions of the directions of the currents
according to Figure 3.7, the magnetomotive forces Nyi; and Nyif can be added as

Nyiy + Noily = R®,, (3.13)

Assume that i, = 0, i.e. the secondary side of the transformer is not connected. The current
now flowing in the primary winding is called the magnetizing current and the magnitude can
be calculated using equation (3.13) as

i = (3.14)
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If equation (3.14) is inserted into equation (3.13), the result is

. . N, . . Ny .
1=ty — sz; =i, + F?ZQ (3.15)
where

Assuming linear conditions, the induced voltage drop N; dé{l)tm in equation (3.12) can be
expressed by using an inductor as

dd di
N mo_ Lm m
U dt dt

i.e. L, = N?/R. By using equations (3.12), (3.15) and (3.17), the equivalent diagram of a
single-phase transformer can be drawn, see Figure 3.8.

(3.17)

I N, i ideal I
i n N N 2 | 12 7 i
- M - AN >
lm
1/[] Lm el % g 62 1/[2

Figure 3.8. Equivalent diagram of a single-phase transformer.

In Figure 3.8, one part of the ideal transformer is shown, which is a lossless transformer
without leakage fluxes and magnetizing currents.

The equivalent diagram in Figure 3.8 has the advantage that the different parts represents
different parts of the real transformer. For example, the inductance L,, represents the
assumed linear relationship between the core flux ®,, and the magnetomotive force of the
iron core. Also the resistive copper losses in the transformer are represented by r; and 7.

In power system analysis, where the transformer is modeled, a simplified model is often used
where the magnetizing current is neglected.

3.4 Three-phase transformer

There are three fundamental ways of connecting single-phase transformers into one three-
phase transformer. The three combinations are Y-Y-connected, A-A-connected and Y-A-
connected (or A-Y-connected). In Figure 3.9, the different combinations are shown.

When the neutral (i.e. n or N) is grounded, the Y-connected part will be designated by
Y0. The different consequences that these different connections imply, will be discussed in
Chapter 8.
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aO OA % OA ao oA
b, £ 4 T _‘ A 1 &
i i |7 _‘ I 1
% £ % . £ % £
Y-Y-connected A-A-connected Y-A-connected

Figure 3.9. Standard connections for three-phase transformers.

3.4.1 Single-phase equivalent of three-phase transformers

Figure 3.10 shows the single-phase equivalent of a Y-Y-connected three-phase transformer. In
the figure, U, and U 4y are the line-to-neutral phasor voltages of the primary and secondary
sides, respectively. However, U, and U 4 are the line-to-line phasor voltages of the primary
and secondary sides, respectively. As shown in Figure 3.10 b), the ratio of line-to-neutral
voltages is the same as the ratio of line-to-line voltages.

I, NN, 1
an UAN
Uan — ﬂ . Uab — ﬁ
UAN N2 ' UAB NZ
a) b)

Figure 3.10. Single-phase equivalent of a three-phase Y-Y-connected transformer.

Figure 3.11 shows the single-phase equivalent of a A-A-connected three-phase transformer.
For a A-A-connected transformer the ratio of line-to-neutral voltages is also the same as
the ratio of line-to-line voltages. Furthermore, for Y-Y-connected and A-A-connected trans-
formers U, is in phase with U n (or Uy, is in phase with U,p).

It should be noted that A windings have no neutral, and for analysis of A-connected trans-
formers it is more convenient to replace the A-connection with an equivalent Y-connection
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Figure 3.11. Single-phase equivalent of a three-phase A-A-connected transformer.

as shown with the dashed lines in the figure. Since for balanced operation, the neutrals of the
equivalent Y-connections have the same potential the single-phase equivalent of both sides
can be connected together by a neutral conductor. This is also valid for Y-A-connected (or
A-Y-connected) three-phase transformer.

Figure 3.12 shows the single-phase equivalent of a Y-A-connected three-phase transformer.

N.
— N =z —
A ]u : \/g IA
Uan UAN
UAB
Uy N, Un_ 5N,
B Up N, U 2

Figure 3.12. Single-phase equivalent of a three-phase Y-A-connected transformer.

It can be shown that U,, = % Ui =3 % Uan €3 ie. Uy, leads U 4n by 30° (see also
equation (2.15)).

In this compendium, this phase shift is not of concern. Furthermore, in this compendium
the ratio of rated line-to-line voltages (rather than the turns ratio) will be used. Therefore,
regardless of the transformer connection, the voltage and current can be transferred from the
voltage level on one side to the voltage level on the other side by using the ratio of rated line-
to-line voltages as multiplying factor. Also, the transformer losses and magnetizing currents
(i.e. i in Figure 3.8) are neglected.

Figure 3.13 shows the single-line diagram of a lossless three-phase transformer which will be
used in this compendium. In the figure, Uy, is the rated line-to-line voltage (given in kV) of
the primary side and Uy, is the rated line-to-line voltage (given in kV) of the secondary side.
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Figure 3.13. Single-line diagram of a three-phase transformer.

Uin/Us, is the ratio of rated line-to-line voltages. S, is the transformer three-phase rating
given in MVA, and z; is the transformer leakage reactance, normally given as a percent based
on the transformer rated (or nominal) values. Finally, U; and U, are the line-to-line phasor
voltages of the transformer terminals.



Chapter 4
Important theorems in power system analysis

In many cases, the use of theorems can simplify the analysis of electrical circuits and systems.
In the following sections, some important theorems will be discussed and proofs will be given.

4.1 Bus analysis, admittance matrices

Consider an electric network which consists of four buses as shown in Figure 4.1. Each bus
is connected to the other buses via an admittance 7,; where the subscript indicates which
buses the admittance is connected to. Assume that there are no mutual inductances between

4

Figure 4.1. Four bus network.

the admittances and that the buses voltages are Uy, Us, Us and Uy. The currents I, Io, I3
and [, are assumed to be injected into the buses from external current sources. Application
of Kirchhoft’s current law at bus 1 gives

I =G15(U1 = Ua) + §13(U1 — Us) + 514(Us — Ua) (4.1)
or
I = (G + Y3 ";@14)?1 :?12U_2 __?13U_3 __?14U4 = (4.2)
=Y Ui+ YUy +Yi3Us +Y14Uy
where

Yiu =0 +03+Tu, Yi2= T, Yis=—Fzand Yy, = -7, (4.3)
Corresponding equations can be formed for the other buses. These equations can be put
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together to a matrix equation as :

{1 211212213214
I= {2 — 221222223224
£ 3 231232233234
]4 Y41 Y42 Y43 Y44

2| =YU (4.4)

This matrix is termed as the bus admittance matrix or Y-bus matrix which has the following

properties :

e [t can be uniquely determined from a given admittance network.

e The diagonal element Y is the sum of all admittances connected to bus k.

e The non-diagonal element Y7; is defined by Yy,
admittance between bus k£ and bus j.

e This gives that the matrix is symmetric, i.e. Yy,

network includes phase shifting transformers).

o It is singular since I; + Iy + I3+ 1, =0

—_L

= —Yp; = 7, where 7y is the

=Y, (one exception is when the

If the potential in one bus is assumed to be zero, the corresponding row and column in the
admittance matrix can be removed which results in a non-singular matrix. Bus analysis using
the Y-bus matrix is the method most often used when studying larger, meshed networks in
a systematic manner.

Example 4.1 Re-do Ezample 2.5 by using the Y-bus matrix of the network in order to
calculate the power given by the radiators.

Solution

’N’@ ’QN

I -

_ ¥ L
U, 6=—1I =

I A

0.5 :
o— Il

? I3 =

)/ L
U3O?—__

0 Z

— LO
(P ———

Figure 4.2. Network diagram used in the example.

According to the task and to the calculations performed in Example 2.5, the following is valid;
Zp =23470.16 Q, Z90 =234 750.03Q, 72, =479+ j4.81 Q, 7, = 1597+ j1.60 2, Z, =
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23.96 + j2.40 . Start with forming the Y-bus matrix. I, and U, are neglected since the
system otherwise will be singular.

1 1 _
{1 7L+7a (3 O _ZL+Za gl
1= | 2|2 8 zgz, (1) 7 Y2 | _yu (4.5)
I3 1 L T L% Us
I4 T Zi+Z.  Zi +Z, CZi+Z Y44 U4
where B ] ] ] ]
Y (4.6)

= = — + = — + = — + =
Jr+ 2y Zp+Zy Zp+Z. Zio

In the matrix equation above, Uy, Us, Uz and 14 (1,=0) as well as all impedances, i.e. the
Y-bus matrix, are known. If the given Y-bus matrix is inverted, the corresponding Z-bus
matrix is obtained :

g1 211212213214 Z1
Uy 1 LonLoalo3loy I,

U=| = =Z7ZI=Y"'1=| =27 =~ = 4.7
7, ToZZ557s | | T .7
Uy YSVACYALYAY Iy

Since the elements in the Y-bus matrix are known, all the elements in the Z-bus matrix can
be calculgteg. Since_ 1,=0 the voltages Ui, Uy and Uj can be expressed as a function of the
currents Iy, I, and I3 by using only a part of the Z-bus matrix :

gl 211212213 zl
Uy | = | Z21422233 I, (4.8)
Us 2314327 33 I3

Since the voltages Uy, U, and Us are known, the currents I, I, and I5 can be calculated as :

1

{1 511512513 - gl
{2 = 521522523 g2 = (49>
13 Z31Z32Z33 U3
19.0 — j1.83  —1.95 —j0.324 —1.36 + j0.227 220/0°
= 107 | —1.95+50.324 48.9—j4.36 —3.73—;0.614 | | 220/ — 120° | =
—1.36 4 j0.227 —3.73+j0.614  35.1 — j3.25 9220/120°
4.58/ — 4.39°
= | 115/-1236° | A
8.31/111.3°

By using these currents, the power given by the radiators can be calculated as :

2]

ca = Zg7=1004+ 5101 VA
w = ZyI2 =2095+ 5210 VA > = 4754+ j477 VA (4.10)
S.e = Z.J2 =1655+ j166 VA

2]

i.e. the thermal power obtained is 4754 W.
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4.2 Millman’s theorem

Millman’s theorem (the parallel generator-theorem) gives that if a number of admittances
Yk, Yor, Yar... Y, are connected to a common bus k, and the voltages to a reference bus
Uio,Us0,Usp . ..U, are known, the voltage between bus k£ and the reference bus, Uy can

be calculated as
SVl
U ==L — (4.11)

SV

i=1

Assume a Y-connection of admittances as shown in Figure 4.3. The Y-bus matrix for this

Figure 4.3. Y-connected admittances.

network can be formed as

[ Z1 ] [ Y 0 0 _Zlk 171 glo |
Ig 0 ng R 0 —ng U20
= S : : (4.12)
L 0 0 o Vo o Vuo Uno
| Lk ] Y Yo .. Y Yu+Yut+...Ya) | | Uk |
This equation can be written as
zl glozlk - gkoZm
Iy _ UsoY 2 R UkoY 2k (4.13)
1 ~UpY1r —UoYor — ...+ S Y irUro

Since no current is injected at bus k (I = 0), the last equation can be written as

Tk = 0 = _Ulo?lk - Ugo?gk — ... —|— Z?ZkUkO (414)

1=1
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This equation can be written as

k0 —
E Yik
=1

and by that, the proof of the Millman’s theorem is completed.

(4.15)

Example 4.2 Find the solution to Example 2.5 by using Millman’s theorem, which will be
the most efficient method to solve the problem so far.

1 = =
_ ¥ L Z,
G —= o E——
I A A
_ ¥ L b
Uzo_—__ O —7
’/13 L ZC
U3O?—_ —0 N
0 7 1. =
_ LO U
(P ——— !

Figure 4.4. Diagram of the network used in the example.

Solution

According to the task and to the calculations performed in Example 2.5, the following is valid;
7 =23+ §0.16 Q, Z10 = 2.3+ j0.03 Q, Z, = 47.9 + j4.81 Q, Z, = 15.97 + j1.60 Q, Z,. =
23.96 + 52.40 .

By using Millman’s theorem (i.e. equation (4.15)), the voltage at bus 4 can be calculated by

TT7 1 TT 1 TT 1 TT 1
Vog s tUigog, tUeg g +Usy

U40 - 1 1 1 1
7o T 77 V77 T 77 (4.16)

=12.08/ —155.1° V

The currents through the impedances can be calculated as

I, = @ =4.58/ — 4.39° A
Lo+ 21

I, = YomUs 415, 12360 A (4.17)
Zy+ 271

I; = M = 8.31/111.3° A

Ze+ 4y
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By using these currents, the power from the radiators can be calculated in the same way as
earlier :

S.a = ZoI? =1004 + j101 VA
S = Zpl; = 2095+ j210 VA D =4754 + j4T7 VA (4.18)
S.e = Z.J3 =1655+ j166 VA

i.e. the thermal power is 4754 W.

4.3 Superposition theorem

According to section 4.1, each admittance network can be described by a Y-bus matrix, i.e.
I=YU (4.19)
where

I = vector with currents injected into the buses

U = vector with the bus voltages

The superposition theorem can be applied to variables with a linear dependence, as shown in
equation (4.19). This implies that the solution is obtained piecewise, e.g. for one generator
at the time. The total solution is obtained by adding all the part solutions found :

I, U, U, 0 0
I U, 0 U, 0

I= S l=Y ) =Y | . +Y | . +...+Y | | (4.20)
1, U, 0 0 U,

It can be noted that the superposition theorem cannot be applied to calculations of the
power flow since they cannot be considered as linear properties since they are the product
between voltage and current.

Example 4.3 Use the conditions given in Example 4.1 and assume that a fault at the feeding
transformer gives a short circuit of phase 2. Phase 1 and 3 are operating as usual. Calculate
the thermal power obtained in the house of Elektra.

Solution

According to equation (4.9) in Example 4.1, the phase currents can be expressed as a function
of the feeding voltages as

— — — — _1 —

Iy Z1Z12213 Uy

I, | = 521522523 Us (4.21)
I3 231232733 Us
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_/ Z, Z,
U, O— - o —
7, Z, )
————o0— — o s
-U, | . /13 . ZC
_ U, O o — o s
U - = 7 Is —
S Y, an 4\VU4

Figure 4.5. Diagram of the network used in the example.

A short circuit in phase 2 is equivalent with connecting an extra voltage source in reverse
direction in series with the already existing voltage source. The phase currents in the changed
system can be calculated as :

2]

za

U

zb

SZC

-1

211212213 gl 211212213 0_

521522523 g2 + 521522523 _U2 -

Z31Z32Z33 U3 Z31Z3QZ33 0

4.58/ — 4.39° Z1Z1975 17" 0

115/ —123.6° | + | Zo1Z29 703 290/ — 120° | =
8.31/111.3° AAA 0

4.34/ — 9.09°

0.719/ — 100.9° | A (4.22)
7.94/ — 116.5°

Z 7 =904 + j91 VA
Z,I2 = 8.27 + j0.830 VA D =2421 + j243 VA (4.23)
Z.I3 = 1509 + j151 VA

i.e. the thermal power is 2421 W

As shown in this example, the superposition theorem can, for instance, be used when studying
changes in the system. But it should once again be pointed out that this is valid under the
assumption that the loads (the radiators in this example) can be modeled as impedances.

4.4 Reciprocity theorem

Assume that a voltage source is connected to a terminal k in a linear reciprocal network and
is giving rise to a current at terminal [. According to the reciprocity theorem, the voltage
source will cause the same current at k if it is connected to [. The Y-bus matrix (and by
that also the Z-bus matrix) are symmetrical matrices for a reciprocal electric network.
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Assume that an electric network with n buses can be described by a symmetric Y-bus matrix,
ie.

{1 le 212 Zln gl
I Y Y R U

‘l=1=YU=| * "®*~ ? 2 (4.24)
7n 7nl 7n2 ?nn Un

Assume that U}, is the only non-zero voltage. The current at [ can now be calculated as

71 = ?lkUk (425)

Assume now that U is the only non-zero voltage. This means that the current at k is

Iy =YuU, (4.26)

EU’f = U, the currents I, and I; will be equal since the Y-bus matrix is symmetric, i.e.
Y = Y. By that, the proof of the reciprocity theorem is completed.

4.5 Thévenin-Helmholtz’s theorem

This theorem is often called the Thévenin’s theorem (after Léon Charles Thévenin, telegraph
engineer and teacher, who published the theorem in 1883). But 30 years earlier, Hermann
von Helmholtz published the same theorem in 1853, including a simple proof. The theorem
can be described as follows:

e Thévenin-Helmholtz’s theorem states that from any output terminal in a linear electric
network, no matter how complex, the entire linear electric network as seen from the
output terminal can be modelled as an ideal voltage source Uzy, (i.e. the voltage will
be constant (or unchanged) regardless of how the voltage source is loaded) in series
with an impedance Z7y. According to this theorem, when the output terminal is not
loaded, its voltage is Ury, and the impedance Zpy, is the impedance as seen from the
output terminal when all voltage sources in the network are short circuited and all
current sources are disconnected.
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Proof :
Assume that the voltage at an output —

terminal is Up,. Loading the output /
terminal with an impedance Z, a cur- Linear 0 _
- . . . utput
rent [ will flow through the impedance. electric . Z,
This connection is similar to have a net- network terminal
work with a voltage source Upy, con- O
necting to the output terminal in se-
ries with the impedance Zj, together =
with having a network with the voltage ]_1 Z, f
source —U 7, connecting to the output . ——O—
terminal and the other voltage sources Linear
in the network shortened. By using electric <~>UTh
the superposition theorem, the current network
I can be calculated as the sum of I, O
and I5. The current I; = 0 since the
voltage is equal on both sides of the + _
impedance Z;. The current I, can be I_2 Z,
calculated as - O R
72 _ _(_UTh)/(7k + 7Th> VOltage B
since the network impedance seen from SOurces (”)‘U Th
the output terminal is Zzj,. The con- shortened
clusion is that ©
T=T 4T, =1 (4.27)
Zk+ Zrn

which is the same as stated by Thévenin-Helmholtz’s theorem, viz.

o) o
Linear Z
. _ T Output
electric Up, = g ) P I
network ! Th ermina
——O O
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Chapter 5
Analysis of balanced three-phase systems

Consider the simple balanced three-phase system shown in Figure 5.1, where a symmetric
three-phase Y0-connected generator supplies a symmetric Y0-connected impedance load.
The neutral of the generator (i.e. point N) is grounded via the impedance Zyg. However,
the neutral of the load (i.e. point n) is directly grounded. Since we are dealing with a
balanced (or symmetrical) system, Iy = I, + I, + 1. =1, =0,ie. Uy =U, =0 and Zyg
has no impact on the system. Note that also in case of connecting point n directly to point
N via the impedance Zy¢, the neutrals n and N have the same potential, i.e. Uy = U,,
since in a balanced system I, + I, + I. = 0.

Z, I,
I -
Zg I,
I -
Z, I,
I -

Figure 5.1. A simple three-phase system.

Therefore, the analysis of a balanced three-phase system can be carried out by studying only
one single phase where the components can be connected together by a common neutral
conductor as shown in Figure 5.1 a).

QN
=~
QN
~I

a) b)
Figure 5.2. Single-phase equivalent of a symmetric three-phase system.

Based on Figure 5.1 a), the total three-phase supplied power is given by

o U, N ULy e/’

 Zo+ 2. Za+Z:

§3<1> ZBUGT: = 3ULNI6]'(6_’Y) = 3ULN[6j¢
:\/g\/gULNI6j¢: \/gULLlejqb

For analysis of balanced three-phase systems, it is common to use the line-to line voltage
magnitudes, i.e. the voltage U, in Figure 5.1 a) is replaced by U = U ¢’ (as shown in

I, =1¢e"

(5.1)

41
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Figure 5.1 b)) where, U = Uy, however the phase angle of this voltage is the phase angle
of the phase voltage. Furthermore, the other components in Figure 5.1 b) are per phase
components. Based on Figure 5.1 b), we have then

U:\/_T(7c+7L)

e . 5.2
53q> = \/_ \/gUI6]¢ ( )

5.1 Single-line and impedance diagrams

A single-line diagram of a balanced three-phase power system shows the main components
as well as the connections between them. A component is only given in the diagram if it is
of interest for the analysis. Figure 5.3 shows the single-line diagram of a simple balanced
three-phase power system. The system consists of four buses (or nodes) numbering from one
to four, two generators G1 and G2, two transformers T1 and T2, two loads LD1 and LD2,
and a transmission line between bus2 and bus3.

3 T2 4 92

1 T
Gl Line |

~

1

Figure 5.3. Single-line diagram of a small power system.

Here-onward, if not otherwise explicitly stated, the following is valid in this compendium:

e all system quantities (power, voltage, current, impedances and admittances) are given
in the complex form,

e power is given as three-phase power in MVA, MW and/or MVAr,

e for the phasor voltage U = U /0, the magnitude U is a line-to-line voltage given in kV,
however the phase angle 6 is the phase angle of a line-to-neutral voltage,

e currents (given in kA), impedances (given in €2) and admittances (given in S) are per

phase quantities.

Consider again the system shown in Figure 5.3. A typical system data can be given as
follows:

e Generator G1 : S,,=30 MVA, U,,=10 kV, z,=10%

e Generator G2 : S,,=15 MVA, U, ,=6 kV, z,=8%

U, 10KV
e Transformer T1 : Snt_]-5 MVA U—:n = m, l’t:].o%
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n k
Transformer T2 : S,;=15 MVA, Yin = 0KV

= =1
Uy, 6KV 0%

e Line : r=0.17 Q/km, z = 0.3 Q/km, b, = 3.2 x 107% S/km and £ = 10 km

e Load LD1 : impedance load, P p = 15 MW, U,, = 30 kV, cos ¢ = 0.9 inductive
e Load LD2 : impedance load, P,p = 40 MW, U, = 6 kV, cos ¢ = 0.8 inductive
Comments:

Sng is the generator three-phase rating, U,, is the generator rated (or nominal) line-to-line
voltage and z, is the generator reactance given as a percent based on the generator rated
values. The actual value of the generator reactance can be determined by
2
zy Usy - 4
=———= Q and Z,=35X
97100 Sy 9= J %
In a similar way the actual value of the transformer leakage reactance can be determined,

however, depending on which side of the transformer it will be calculated. Having the
reactance on the primary side, then it is determined by

2
. xt Uln

tp — m Snt Q and 7tp = j ti

Having the reactance on the secondary side, then it is determined by

2
xt U2TL
th =

-t 0 d Zi =7 X4
100 S, NG Zts = J A4

For the line, using the model shown in Figure 3.6, we have
712 = E (7’ + jl‘) Q and ?sh—12 = jbc ,C S

For the load, P is the consumed three-phase active power with the power factor cos ¢ at the
nominal (or rated) voltage U,,. Thus, the impedance load can be determined by

B 2 2 2 D
Zip = S — U _ ©jsing) where Spp= -
Lp S,p, Sip(cosp—jsing)  Spp (cos ¢+ sin¢) ere oLp cos ¢

Figure 5.4 shows the single-phase impedance diagram corresponding to the single-line dia-
gram shown in Figure 5.3.

The simple system shown in Figure 5.4 has three different voltage levels (6, 10 and 30 kV).
The analysis of the system can be carried out by transferring all impedances to a single
voltage level. This method gives often quite extensive calculations, especially dealing with
large systems with several different voltage levels. To overcome this difficulty, the so called
per-unit system was developed, and it will be presented in the next section.
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Z, | » : : Ziine : P I Z,

| | | | | |

| | | | | |

I | m= | Yy Y I N

VA L Zsh-Line  Zsh-Line 1 Z

: g S |

| | | | | |

| | | | | |

e >
Gl T1 LDl1 Line T2 LD2" QG2

Figure 5.4. Impedance network of a small power system.

5.2 The per-unit (pu) system

A common method to express voltages, currents, powers and impedances in an electric
network is in per-unit (or percent) of a certain base or reference value. The per-unit value
of a certain quantity is defined as

true value

Per-unit value = 5.3
et Valle = fase value of the quantity (5:3)

The per-unit method is very suitable for power systems with several voltage levels and
transformers. In a three-phase system, the per-unit value can be calculated using the corre-
sponding base quantity. By using the base voltage

Usase = base voltage, kV  (line-to-line voltage) (5.4)
and a base power,
Shase = three-phase base power, MVA (5.5)
the base current
Sbase

Ipyse = ——— = base current/phase, kA 5.6
’ \/g Ubase /p ( )

as well as a base impedance

2
Ubase _ UbaS@
Sbase \/glbase

can be calculated. In expressions given above, the units kV and MVA have been assumed,
which imply units in kA and 2. Of course, different combinations of units can be used, e.g.
V, VA, A Qor kV, kVA, A, k.

Zbase =

= base impedance, §) (5.7)

There are several reasons for using a per-unit system:

e The percentage voltage drop is directly given in the per-unit voltage.

e [t is possible to analyze power systems having different voltage levels in a more efficient
way.

e When having different voltage levels, the relative importance of different impedances
is directly given by the per-unit value.
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e When having large systems, numerical values of the same magnitude are obtained
which increase the numerical accuracy of the analysis.

e Use of the constant v/3 is reduced in three-phase calculations.

5.2.1 Per-unit representation of transformers

Figure 5.5 shows the single-phase impedance diagram of a symmetrical three-phase trans-
former. In Figure 5.5 a), the transformer leakage impedance is given on the primary side,
and in Figure 5.5 b), the transformer leakage impedance is given on the secondary side. Fur-
thermore, « is the ratio of rated line-to-line voltages. Thus, based on transformer properties

we have

Un 1 I,
— =— and — =« 5.8
U2n « Ig ( )

Let the base power be Sp.s.. Note that Sy, is a global base value, i.e. it is the same in all
different voltages levels. Let also Uppese and Uspese be the base voltages on the primary side
and secondary side, respectively. The base voltages have been chosen such that they have
the same ratio as the ratio of the transformer, i.e.

Ulbase 1
= = 5.9
U2base « ( )

Furthermore, since Spase = V'3 Utpase Tivase = V'3 Usbase Iavase, Dy virtue of equation (5.9) we
find that

[lbase —a (51())

[2base

where, [1pqsc and Iopese are the base currents on the primary side and secondary side, respec-
tively.

The base impedances on both sides are given by

U2 U U2 U
A ase — Lbase = Lbase and Z ase = 2base _ 2base 511
1 Sbase \/g Ilbase 2 Sbase \/g I2base ( )
Tl th 1 o 72 71 1 o —tc 72
—— — .
UI 22 3 (72 U1 oU ! U 5
o
a) b)

Figure 5.5. single-phase impedance diagram of a symmetrical three-phase transformer.
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Now consider the circuit shown in Figure 5.5 a). The voltage equation is given by

— S — U
U, =31 Zyy, + EQ (5.12)
In per-unit (pu), we have

U, V3LhZy _Us L Zy . Us

= = = Ulpu = 7l;zm 7tppu + U2pu
Ulbase \/g Ilbase Zlbase o Ulbase ]lbase Zlbase U2base

(5.13)
Next, consider the circuit shown in Figure 5.5 b). The voltage equation is given by

OéUl = \/572 7ts + Ug (514)
In per-unit (pu), we have

OKU1 . aUl o \/3727153 i U2 o 72 Zts 4 U2
U2base aUlbase \/§[2base Z2base U2base [2base Z2base U2base

= Ulpu = 72;zm 7tspu—i_U2pu
(5.15)
By virtue of equations (5.13) and (5.15), we find that

[lpu thpu = [2pu Ztspu

Furthermore, based on equations (5.8) and (5.10) it can be shown that Iy,, = Ia,, (show
that). Thus,

thpu = 7tspu (516)

Equation (5.16) implies that the per-unit impedance diagram of a transformer is the same
regardless of whether the actual impedance is determined on the primary side or on the
secondary side. Based on this property, the single-phase impedance diagram of a three-phase
transformer in per-unit can be drawn as shown in Figure 5.6, where thu = 7tppu = Ztspu.

pu tpu _ —
—>— . _ _
— — Ul pu | 7 U2 pu
U ‘ U2 o or pu tpu

1 pu

Figure 5.6. Per-unit impedance diagram of a transformer.

Example 5.1 Assume that a 15 MVA transformer has a voltage ratio of 6 kV/30 kV and
a leakage reactance of 8 %. Calculate the pu-impedance when the base power of the system
1s 20 MVA and the base voltage on the 30 kV-side is 33 kV.

Solution
Based on given data, S,; = 15 MVA, Uy, /Us, = 6/30, x; = 8% and Uspese = 33 kV. We first
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calculate the transformer impedance in ohm on the 30 kV-side and after that, the per-unit
value.

_ Zo, Zo U2 j8-302
Taokw = 2 Zivuseso = n — 4.8 0
30k 100 “**** = 100'S,, 10015’
Za g 7 Zaowy - S 4.8 - 20
7 . 100 “thase30 _ Z30kV _ Z30kV * Obase _ J- — 30.088
” Z2base Z2base U22base 332 J pu

The given leakage reactance in percent can be considered as the per unit value of reactance
based on the transformer ratings, i.e. Zjy.s. To convert this per unit value to the system
per unit value, we may apply the following equation

2
Ubase—given Sbase—new
2
Sbase—given U

base—new

Zt;zm—new = thu—given

In our case, 7t;uu—given = ] 8/1007 Ubase—given = U2n = 307 Sbase—given = Snt = 15> Sbase—new =
20, and Upgse—new = 33.

Thus,
— 48 302 20 .
Zipu—new = ————= = j0.088 5.17
t” 100 15 332 /o0 P (5.17)
The pu-value of the reactance can be also determined based on the base values on the primary
side. From equation (5.9), we have

Ulbase o 1 . 6 . 6 . 6
U2base - a - % = Ulbase - 30 U2base - 30 33
U2 1\? U2 1\?2
7 ase = lbase _ [ — 2base __ ( — 7 e
o Sbase <a) Sbase « 2
Thus,
7 o 7% o 7% U12n o ]8 6
Gkv = 700 7™ T 100 5,, 100 15
_ Zewv 48 62 /30\% 20 830220
7, = = S22 () 2 S22 2 088
tp Zime 10015 \ 6 /) 332 10015 332 7 pu

5.2.2 Per-unit representation of transmission lines

Figure 5.7 shows the m-equivalent model of a line, where 7, ., = Y ahoni/2.

The voltage at bus k£ in kV is given by

S S v
Uk:\/gzk]I—I—U], Whel"e I:Ik_lgh:[k‘_ysh—kj\/—%

Let Spases Upases Lpase and Zpqse be the base values for the line. Note that the base admittance
is given by Yiuse = 1/Zpase- Then, the above equations i per unit are given by
7. 37,1 T, L
= = Uppu=ZripuLpu +Uip
Ubase \/g Zbase [base Ubase o hape S r
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+ —Z, =R +JjX, - — 7. =R +jX
7 L1 Th W ki = = [ T %% ki
«O»— O U, U, Ot —Oo U,
_T Yo Yoy L or _T Yoy Vo T
Ishv 2 2 Ish
O O O O
Figure 5.7. m-equivalent model of a line.
where
- I, _ Uk V3 Zase _ U, - _ —
Ipy = T Yahek B U Tipu = Ysh—rj Zvase U = Tepu = Ysh—tjpu Ukpu

Figure 5.8 shows the per-unit impedance diagram of a transmission line.

g B _

kpu Jpu

ijpu
I Y sh—kipu Y sh—kjpu I

Figure 5.8. Per-unit impedance diagram of a transmission line.

5.2.3 System analysis in the per-unit system

To analyze a three-phase power system, it is more convenient and effective to convert the
physical quantities into the per-unit system as follows:

1. Choose a suitable base power for the system. It should be in the same range as the
rated power of the installed system equipments.

2. Choose a base voltage at one section (or voltage level) of the system. The system is
divided into different sections (or voltage levels) by the transformers.

3. Calculate the base voltages in all sections of the system by using the transformer ratios.
4. Calculate all per-unit values of all system components that are connected.
5. Draw the per-unit impedance diagram of the system.
6. Perform the system analysis (in the per-unit system).
7. Convert the per-unit results back to the physical values.
Example 5.2 Consider the power system shown in Figure 5.9, where a load is fed by a

generator via a transmission line and two transformers. Based on the given system data
below, calculate the load voltage as well as the active power of the load.
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Figure 5.9. Single-line diagram of the system in Example 5.2.

System data:
Generator G : U,=13.8 kV,

13.
Transformer T1 : S,;=10 MVA, % = M, X1p=1.524 Q (on 13.8 kV-side),
Usn, 69]€l‘<:/V
Transformer T2 : S,;=5 MVA, g;: = 1(?))?2 AR 2,=8%,

Line : x = 0.8 Q/km and £ = 10 km
Load LD : impedance load, P,p =4 MW, U, = 13.2 kV, cos ¢ = 0.8 inductive.

Solution

1. Let the base power be Sp,,.=10 MVA.

2. Let the base voltage at the generator be Ujp,se=13.8 kV.

3. The transformer ratio gives the base voltage Usp,se=609 kV for the line and
Uspase = 69 - 13.2/66 = 13.8 kV for the load.

In Figure 5.10, the different sections of the system are given.

S 1yl e 1wy |
me
O+@ | (KD—h
LD
S, =10MVA S, =10MVA S, =10 MVA
U, =138 kv U, =69 kv iU, =138 kV

Figure 5.10. Different sections of the system given in Example 5.2.

4. Calculate the per-unit values of the system components.

U, 138

G Upu= U= T 58 = 1.0 pu
Tl Zyp,, = Ly _ j1.524 — 0.080 pu
P Zlbase 1382
_ 8 1322 1 8 1322 10
T2 Ty = _ o 10t — 0.1464
2= J7007 5 Zuese 2100 5 13.82 p

L= 10
22 10 j0.8 — = j0.0168 pu

Line:  Zospu =
e 2 Z2base 692
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— U2 U? U2 .
LD: Z;p= S*LD = Sip(cosd — jsnd) = S (cos¢p + jsing) =
- i'22(0 8 + j0.6) = 27.8784 + j20.9088
1/0.8" ' ' '
- Zip 4 10 .
Ziop= 7 = (27.8781 + j20.9088) - 75 = 14639 + j1.0979 pu

5. By using these values, an impedance diagram can be drawn as shown in Figure 5.11.

U =1£0 U U U

1pu 2 pu 3pu 4 pu

Ip“ Ztlpu ZZ3pu t2 pu
[ ——

Figure 5.11. Impedance network in per-unit.

6. The current through the network can be calculated as

_ 1+ 30
I = - ; ‘ ‘
PU ™ 50.08 + j0.0168 + 70.1464 + 1.4639 + 51.0979

= 0.5037/—42.4933° pu  (5.18)

The load voltage is
Uspu = ULppu = Lpu Z10pu = 0.9217/-5.6221° pu (5.19)
The load power is B B B
Stope = Urppuly, = 0.3714 + j0.2785 pu (5.20)

7. The load voltage and active load power in physical units can be obtained by multiplying
the per-unit values with corresponding base quantities.

Up = ULppu Uspase = 0.9217 - 13.8 = 12.7199 kV (5.21)
Pop = Real(Sippa) Spase = 0.3714 - 10 = 3.714 MW (5.22)

Note that the Ppp given in the system data (i.e. Prp=4 MW) is the consumed active
power at the rated (or nominal) voltage U,=13.2 kV. However, the actual voltage at bus 4
is 12.7199 kV. Therefore, the actual consumed power is 3.714 MW.



Chapter 6
Power transmission to impedance loads

Transmission lines and cables are normally operating in balanced (or symmetrical) condi-
tions, and as shown in Figure 5.8 a three-phase transmission line (or cable) can be represented
with a single-phase line equivalent (or more precisely, with a positive-sequence network, see
chapter 8.2). This equivalent can be described by a twoport.

6.1 Twoport theory

Assume that a linear, reciprocal twoport is of interest, where the voltage and current in one
end are Uj and I, whereas the voltage and current in the other end are U; and I;. The
conditions valid for this twoport can be described by constants ABCD as

7)- (3313

Assume that the twoport is shortened in the receiving end, (i.e. U; = 0) according to Figure
6.1, and that the voltage U is applied to the sending end.

[kl
R S—

Ul

v[.

Jjl

Al x|
T

Figure 6.1. Twoport, shortened in the receiving end

For the system shown in Figure 6.1, we have

U = A0+B-1; =
Tkl — UO"‘DTJl:

I (6.2)

If it is assumed that the twoport is shortened in the sending end instead, (U = 0) as shown
in Figure 6.2, and the voltage U is applied to the receiving end. Then according to Figure

~

%

I%A J

OIIN|
I

Figure 6.2. Twoport, shortened in the sending end

51
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6.2, we have

0
Iz =

SN
< <l
S
uNl b'\‘l
ot

The reciprocity theorem gives that

From the equations given above, the following expressions can be derived :

eq. (6.4) = Ij= %U (6.7)

eq. (6.7)+(6.6)+(62) = ITp=A-T (6.8)
eq. (6.2)+(6.5)+(6.8) = —-I=C-B-I-D-A-1 (6.9)
eq (69,740 = A.-D-B-C=1 (6.10)

i.e. the determinant of a reciprocal twoport is equal to 1. This implies that if several
reciprocal twoports are connected after one another, the determinant of the total twoport
obtained is also equal to 1. With three reciprocal twoports Fy, F, and F3 connected after
one another, the following is always valid :

6.1.1 Symmetrical twoports

Assume that a symmetrical linear reciprocal twoport is of interest. If the definitions of
directions given in Figure 6.3 is used, a current injected in the sending end [ at the voltage

[k 1
—

il

Al x|
Sl =i

Figure 6.3. Symmetrical twoport, connection 1

U, gives rise to a current I at the voltage U, in the receiving end. This can be written in

an equation as
7.1 [4 B1[T,
IRERIIES 012

Suppose that the circuit is fed in the opposite direction, i.e. U; and I; are obtained in the
sending end according to Figure 6.4. This connection can mathematically be formulated as :

[—Ufll]zlg g“%} (6.13)
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~

1
J
—— -

U,

J

i
Al x|
Sl =i

Figure 6.4. Symmetrical twoport, connection 2

By changing the position of the minus sign inside the matrix, equation (6.13) can be rewritten
as

0,1 [ A -B1[T,
{71}_{—6 5}[73'] (014
The matrix in equation (6.14) can be inverted which gives that
llj] A-D-B-C| C A 1 ( )
—_—

Since the twoport is symmetrical, the following is valid

7,1 [T
{ 7 } = { y } (6.16)
The equations (6.12), (6.15) and (6.16) give together that
A B D B
2321

This concludes that for symmetrical twoports A = D.

N

6.1.2 Application of twoport theory to transmission line and trans-
former and impedance load

Note that all variables in this subsection are expressed in (pu).

Figure 6.5 shows the m-equivalent model of a line.

g, . _

ki

e

:|: -)_}shfkj yshf/g' :|:

Figure 6.5. m-equivalent model of a line.
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From the figure, we have
Up = Ui+ (I;+Uj Yoprj) Zg (6.18)
I = Uk Upoij+ L+ Uj Ui
These equations can be rewritten as
Uk - (]. ‘l‘ 7@' . ysh—kj) Uj —|— 7@' . Tj (619)
It = Yooy O+ 14+ Zss o) Ui+ (Zij - Yoy +1) I

and by using the matrix notation, this can be written as a twoport equation

A B
—_— —
{ @ } B L+ Yanrj - 2k Zkj { @ } (6.20)
L Ushj (2 + Tanj - 7ij L4+ Yy - 71@' 5
! c D

As shown in equation (6.20), a line is symmetrical which gives that A =D. A line is also
reciprocal which gives that A- D — B-C = 1.

Using the short line model, then 7, ,; = 0. Therefore, the twoport equation for a short line
model is given by
U]l [1 Zy || U
[Tk}_[o 1}[73' (621

The per-unit impedance diagram of a transformer is similar to the per-unit impedance di-
agram of a short line. Therefore, the twoport equation for a transformer is similar to the
twoport equation of a short line model, i.e.

BREIG

Figure 6.6 shows the per-unit impedance diagram of an impedance load.

Figure 6.6. Impedance diagram of an impedance load.
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From the figure, the following can be easily obtained.

U, =T,
U, (6.23)
Zip

Tk :Tj+7LD :7]+

Therefore, the twoport equation for an impedance load is given by
k= — 6.24
{ I } [ 7 LI (6:24)

6.1.3 Connection to network

As discussed in section 4.5, based on Thévenin-Helmholtz’s theorem from any output ter-
minal in a linear electric network the entire linear electric network as seen from the output
terminal can be modelled as an ideal voltage source Uy in series with an impedance Zpp,.
Considering any bus in a linear electric network as an output terminal, as seen from any bus
k the network can be replaced with a Thévenin equivalent as shown in Figure 6.7, where
Uy = Urpyp. Assume that a solid three-phase short circuit (i.e. Zp = 0) is applied to bus k.

Th — k

| Thi |
f@ [ ——

Figure 6.7. Thévenin equivalent of the network as seen from bus k.

This model implies that the short circuit current is

U - UTh p.u
I, = ————kA or I,,=—=———pu (6.25)
V3 Zrni Q2 ZThk p-u
The question is now how well this model can be adapted to real conditions. For instance,
consider the simple system shown in Figure 6.8, where LD is an impedance load and short
line model is used for the lines.

§ 1T
1mne

D

Figure 6.8. A simple system.

Assume that the initial voltage at bus D is known, i.e. Up; = Up;Z0p; (p.u). If the pu-values
of all components are known, then as seen from bus D the following Thévenin equivalent can
be obtained,
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D
f@ —

Figure 6.9. Thévenin equivalent seen from bus D.

where,
_ _ _ 7.7 _ _
UTh = UDz' and ZThD = # + ZBC +Zt2
Zun+Zrp
If the pu-values of all components are not known, by applying a solid three-phase short circuit
to bus D, the short circuit current can be measured and converted to per unit (i.e. /4 (p.u)

will be known). Then, the Thévenin impedance as seen from bus D can be calculated as

<

Th

7ThD = p-u

~|

sck

Having connected an impedance load Zpp (p-u) to bus D, the voltage at bus D will be

Z1pDp
Zrwp + Z1pD

77 ZLDD

p==—""— Urn (6.26)
Zrwp + Zrpp

UTh = UD:'

i.e., the voltage magnitude at bus D will drop with

.100 %

' 7LDD

Zrwp + Z1op

Now assume that the transformer T2 has a regulator to automatically regulate the voltage
magnitude at bus D to its initial value, i.e. Up; (p.u). This kind of transformer is known as
On Load Tap Changer (OLTC). When the load is connected to bus D, the OLTC regulates
the voltage at bus D to Up;, i.e. Up = Up; not the voltage given in equation (6.26). The
Thévenin equivalent is not valid in this case. Thévenin-Helmholtz’s theorem is applied to
linear circuits with passive components (static linear circuits), and an OLTC is not a passive
component.

Next, as seen from bus F the following Thévenin equivalent can be obtained,

UTh = E

|

Figure 6.10. Thévenin equivalent as seen from bus F.

Where, 7ThE = 7ThD + 7DE and UTh = UEZ
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Having connected an impedance load Zpg (p-u) to bus E, the voltage at bus E will be

77 ZLDE

o Zrhe + Z1pE g

— 7
Orn = Up— '#
Zrhe + Z1pE

i.e., the voltage magnitude at bus F will drop with

100 %

' 7LDE

Zrhe + Z1pE

If transformer T2 is an OLTC, the voltage at bus D will be recovered to its initial value (i.e.
Up = Up;), but not the voltage at bus E. Therefore, the voltage at bus E when the load i
connected will be

Z1pE
(Zrwe — Zrwp) + ZipE

The conclusion is that the equivalent impedance from a bus located out in a distribution
system (with a fairly weak voltage) to the closest bus with regulated voltage can be calculated
as the difference between the Thévenin impedance from the bus with weak voltage and the
Thévenin impedance from the bus with voltage regulation. To calculate the voltage drop
at the connection of the load, the calculated equivalent impedance and the voltage at the
regulated bus will be used in the Thévenin equivalent model.

Z1pE
ZpE+ ZLpE

Up = ‘ Up (6.28)

-

In some cases, the term short circuit capacity Sy at a bus k is used. It is defined as
Fsck = UThTZCk = UTh Isck Z(Zﬁsck p.u (629>

which gives the power that is obtained in the Thévenin impedance. Since this impedance
often is mostly reactive we have ¢, =~ 90°. The short circuit capacity is of interest when the
loadability of a certain bus is concerned. The short circuit capacity indicates how much the
bus voltage will change for different loading at that bus. The voltage increase at generator
buses can be also calculated.

Example 6.1 At a bus with a pure inductive short circuit capacity of 500 MVA (i.e. cos Qger =
0) an impedance load of 4 MW, cos¢prp = 0.8 at nominal voltage, is connected. Calculate
the change in the bus voltage when the load is connected.

Solution

Assume a voltage of 1 pu and a base power Sy, = 500 MVA] i.e. Fscpu = 1/90°. The
network can then be modeled as shown in Figure 6.11.

The Thévenin impedance can be calculated according to equation (6.25) and (6.29) :

o2 UThpu Uﬂz"hpu 1 .
Thp [Scpu Sscpu 1[ _ 900 ] ( )
The load impedance can be calculated as
- Unpu Unpu 1°
ZLDpu = — P = PLI; (COS ¢LD —|—jSiIl (bLD) =~ (08 —|—j06) (631)

SLDpu Sbase COS OLD 500-0.8



o8

LDpu

Figure 6.11. Single-phase model of system given in the example.

Thus, the voltage Uyp at the load is

Ziopw = 80460
Theu = 514780 + 760

ULppu = = 1/0 = 0.9940/ — 0.4556° (6.32)

ZThpu + 7LDpu
i.e. the voltage drop is about 0.6 %.

Conclusion : A load with an apparent power of 1 % of the short circuit capacity at the bus
connected, will cause a voltage drop at that bus of ~ 1 %.

Example 6.2 As shown in Figure 6.12, a small industry (LD) is fed by a power system via
a transformer (5 MVA, 70/10, © = 4 %) which is located at a distance of 5 km. The electric
power demand of the industry is 400 kW at cosp=0.8, lagging, at a voltage of 10 kV. The
industry can be modeled as an impedance load. The 10 kV line has an series impedance of
0.9+350.3 Q /km and a shunt admittance of j3 x 1075 S/km. Assume that the line is modeled
by the m-equivalent. When the transformer is disconnected from bus 3, the voltage at this
bus is 70 kV, and a three-phase short circuit applied to this bus results in a pure inductive
short circuit current of 0.3 kA.

Calculate the voltage at the industry as well as the power fed by the transformer into the
line.

P 3| . T Li
ower me

1

|
LD

70/10 S km

Figure 6.12. Single-line diagram of the system in Example 6.2.

Solution
Choose the base values (MVA, kV, = kA Q) :

Shase = 0.5 MVA, Upsero = 10 kKV = lpaser0 = Sbase/V3Ubasero = 0.0289 kA, Zppsero =
Ub%zselO/Sbase =200 Q
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Ubase?O =70 kV = Ibase?O = Sbase/\/gUbase70 = 0.0041 kA

Calculate the per-unit values of the Thévenin equivalent of the system:

_ Trn 7020 _ T  0.3/—90°

T — _ —1/0°=1 and T, — _ — 72.8155/ — 90°
e Upasero 70 a T T T 0.00412

B T

Zrnpe = ——2% — j0.0137

scpu

Calculate the per-unit values of the transformer:

7 _ 71&% thaselO _ 7t% U22n Sbase _ ﬁ 1_02 E _ ﬁ 0_5 — 50.004
700 Zpasero 100 S UZ_ 100 5 102 100 5 7

Calculate the per-unit values of the line:

_ 5.(0.9+ 0.3

Doy = 2 - tﬁ ) _ 0.0225 + j0.0075
B Vonopu 5 (3 x 1079) 0.003
ysh—21pu = 2 = 2 Zba8€10 = 2

AL = 1+ T sty Zaipu = 1.0000 + j0.0000

B;, = 721pu = 0.0225 + 70.0075

Cr = Tan-21pu(2 + Jsnooipu - Z21pu) = 0.0000 4 50.0030
Dy = A; =1.0000+ j0.0000

Calculate the per-unit values of the industry impedance:

— U? 1 102 1
Z Doy = =— = —(0.84+50.6) — = 0.8+ 50.6
rop SLD ZbaselO % ( J ) 200 J

Figure 6.13 shows the per-unit impedance diagram of the entire system, where the power
system has been modelled by its Thévenin equivalent. Bus 4 (the terminal bus of the ideal
voltage source) is termed as infinite bus.

Thévenin equivalent =
of the power system

Figure 6.13. Per-unit impedance diagram of the system in Example 6.2.

The twoport of the above system (from the infinite bus to bus 1) can be formulated as

U_Thpu _ 1 7Thpu + 7tpu ?2pu _ 1 7Thpu + 7tpu EL EL ?lpu _
L, 0 1 Iop, 0 1 Cr Dgp Iy,
A B[ Uy | [0.9999 + j0.0000 0.0225+ 50.0252 | [ Uy
C D ~ | 0.0000 4 50.0030 1.0000 + 50.0000

[lu [lu
p p
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As seen from bus 4, the impedance of the entire system (including the industry) can be
calculated as

— R I I U1pu D) N __
7., = Yrwu _ AUt Bl _ AP AZun+ B e +0.6244
P Iipw CUpu+DIly © lﬁw D CZippu+D

= Tipu = Urnpu/Zsotpu = 0.9662/ — 37.1035°

The power fed by the transformer into the line can be calculated as
Use | [1 Zrwput Zovapw | [ Uzipe | [ 0.98982 — 0.7917°
Topu N 0 1 1 | 0.9662/ — 37.1035°
= Sy =Uspl 2pu Shase = 0.3853 + j0.2832 MVA

I Apu

the voltage at the industry can be calculated as

Upel  [A Bl ' [ U | [ 096802 —0.3733°
1 | C D Tipu | | 0.9680/ — 37.2432°
= U (kV) = Ulpu Upuseio = 9.6796 kV

]lpu

6.2 A general method for analysis of linear balanced
three-phase systems
When analyzing large power systems, it is necessary to perform the analysis in a systematic

manner. Below, a small system is analyzed with a method which can be used for large
systems. In Figure 6.14, an impedance load Zp; is fed from an infinite bus (i.e. bus 3

_3 = = 1

1, Z, | Z |
[@"__/I e
- 1_ ZLDI

Figure 6.14. Per unit impedance diagram of a balanced power system.

which is the terminal bus of the ideal voltage source) via a transformer with impedance Z,
and a line with impedance Z9;. The voltage at the infinite bus is Usz. All variables are
expressed in per unit. The Y-bus matrix for this system can be formulated as

e 1 1 1 -
£1 Zip1 . Zo1 _7 . 01 gl
{2 =I=YU= 7o 71—0—7— ~Z gg (6.33)
I 0 —7% 7& Us

The Y-bus matrix can be inverted which results in the corresponding Z-bus matrix :

U=Y 1=17I (6.34)
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Since I; = I, = 0, the third row in equation (6.34) can be written as

o _ T,

where Z(3, 3) is an element in the Z-bus matrix. With that value of the current inserted into
equation (6.34), all system voltages are obtained.
Uy, = 7Z(2,3) 13

Corresponding calculations can be performed for arbitrarily large systems containing impedance
loads and one voltage source.

3 - 2 - 1
Z, | 21 | U
a) —— — |
— I Zm Z
_ LDI
ZLD2
3 = 2 - 1
Zt | 21 | U
b) ——— pre
l,,.,=0 —
= (72 LD2 ! Z,,
ZLD2 -

Figure 6.15. Total voltage obtained by using superposition

Assume that an impedance Zps is added to the system at bus 2, as shown in Figure 6.15
a). This will change the voltage magnitudes at all buses with exception of the bus connected
to the voltage source (bus 3 in this example). Then, the actual voltages can be expressed by

U’ = Upe + Ua (6.37)

where U’ is a vector containing the actual voltages due to the change, Up.e is a vector
containing the voltages of all buses (with exception of the bus connected to the voltage
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source) prior to the change and U, is the applied change. This equation can be illustrated
graphically as shown in Figure 6.15, i.e. the total voltage can be calculated as a superposition
of two systems with equal impedances but with different voltage sources.

As indicated by the system in Figure 6.15 c), the feeding voltage is —U, while the voltage
source at bus 3 is shortened (when the voltage source is short circuited the bus connected
to the voltage source (i.e. bus 3) is removed). The Y-bus matrix for this system can be
obtained by removing the row and column corresponding to bus 3 in Y (see equation (6.33))
since bus 3 is grounded and removed. If bus 3 was kept in the mathematical formulation,
Y (3,3) = oo since the impedance to ground is zero.

- 1 1 1 —
[ L } “Ta=YaUs= | 7o | Za 7 [ Do } (6.38)
La: “Zn a7 | LUM
The expression given above, can be inverted which gives the corresponding Z-bus matrix :
_ Uas Za(1,1) Za(1,2) ][ Iay
Ua=YA'Ia=ZAla = |+ |= ’ ’ - 6.39
amVaaszala = (g <[ 200 200 ][] ew

In this equation, Ta; = 0 which is shown in Figure 6.15 c¢). This gives that the second row
can be written as

Upo = Za(2,2)] as (6.40)
Figure 6.14 gives the same currents as Figure 6.15 b), since the voltage over Z; p, in Figure
6.15 b) is zero. This implies that the current through Z 1.p2 is zero. Therefore, Tpy = —T/L D2
At bus 2 in Figure 6.15 a) the following is valid
Uy=Tppy Zipr=—Ins Zips (6.41)
By combining equations (6.37), (6.40) and (6.41), the following can be obtained
_ T
Tas = = 2 (6.42)

Zrpe +7Za(2,2)
By inserting that value in the equations given above, all voltages after the system change
can be calculated as :

_ 7 _
U, = — 2 U, (6.43)
Zipe +7Za(2,2)

— — ZA(1,2 —
U, = U,—= shd) g (6.44)
Zip2+Za(2,2)

The procedure given above can be generalized to be used for an arbitrarily large system.
Assume that an impedance Z, is connected to a bus 7 and an arbitrary bus is termed i. The
current 7; (=—Ia,) through Z, can be calculated as well as the voltages after connection of
the impedance Z, at bus 7. The equations are as follows.

1 U,

/] = —r 6.45

" ZT» + ZA(T’, ’l“) ( )
Zr+Za(r,r)

U ali,r) (6.47)
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Note that ¢ # r, and bus r and bus ¢ do not represent the bus connected to the voltage
source.

The Thévenin equivalent at a bus in a symmetrical network can be calculated by using
equations (6.37) and (6.39). At bus r (r=2 in this case), the equation will be as

U'(r) = Upre(r) + Za(r,r)Ia(r) (6.48)

where

Upre(r) = Urp,  Thévenin voltage at bus r prior to the change, see Figure 6.16.

Za(r,7) = Zrn, Thévenin impedance as seen from bus r, see Figure 6.16.

IA(r) = —7; The actual injected current into bus 7.

U'(r) = U; the actual voltage at bus r.
N L, T — T [
: U,.(r) 1U'(r) : U, _ LU
| Z,(r,r) : | L) | | Ly, : | I
| f@ o — | f@ ———
I | or I |
‘o _______.T o _______!r1

Figure 6.16. Thévenin equivalent at bus  in a symmetrical three-phase network.

As given by equation (6.48) and Figure 6.16, U'(r) = Upye(r) if Ian(r) = 0. This formu-
lation shows that the Thévenin voltage at bus r can be calculated as the voltage at bus r
when the bus is not loaded, i.e. In(r) = 0. The Thévenin impedance is found as the r-th
diagonal element of the impedance matrix Za which is determined when the voltage source
is shortened.

Example 6.3 In Figure 6.17, an internal network of an industry is given. Power is delivered
by an infinite bus with a nominal voltage at bus 1. Power is transmitted via transformer T'1,
Line2 and transformer T2 to the load LD2. There is also a high voltage load LD1 connected

2 3
Linel |
|
1 TI lLD1
4 12 3
Line2 @
LD2

Figure 6.17. Single-line diagram of an internal industry network

to T'1 via Linel. The system data is given as follows:
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Transformer T1 : 800 kVA, 70/10, v = 7 %
Transformer T2 : 300 kVA, 10/0.4, xt =8 %

Linel : r =017 Q/km, x = 0.3Q/km, b. = 3.2 x 1076 S/km, L =2 km

Line2 : r = 0.17 Q/km, x = 0.3Q/km, b. = 3.2 x 107% S/km, L =1 km

Load LD1 : impedance load, 500 kW, cos¢ = 0.80, inductive at 10 kV

Load LD2 : impedance load, 200 kW, cosp = 0.95, inductive at 0.4 kV

The m-equivalent model is used for the lines.

Calculate the efficiency of the internal network as well as the short circuit current that is
obtained at a solid three-phase short circuit at bus 4.

Solution

2 223 pu 3|
— |
e L'y,
Ztl pu —'l'_<_ Y- pu _>—-|__ !ZLDI pu
_ 4 - 5 °
ZZ4 pu | t2 pu
|

—‘l'_<— -)_}shf24pu _>—'|'_ !ZLDZPU

Figure 6.18. Network in Example 6.3.

Choose the base values (MVA, kV, = kA Q) :
Stase = D00 kKVA = 0.5 MVA, Upysero = 70 KV

UbaselO =10kV = IbaselO - Sbase/\/gUbaselo = 0.0289 kA> ZbaselO - szasel(]/sbase =200 Q2
Uba5604 =04kV = [ba5604 = Sbase/\/gUbaseO4 = 0.7217 kA, ZbaseO4 = Ub2ase(]4/5base =0.32Q

Calculate the per-unit values of the infinite bus :

Uy =70/Upgsero = 70/70 = 1

Calculate the per-unit values of the transformer 7'1 :

Ztlpu - (Ztl%/]-oo) ' ZtlbaselO/Zbaselo = (ZTl%/]-OO) ' Sbase/Sntl = (]7/100) ' 05/08 - ]00438

Calculate the per-unit values of the transformer 772 :

Zoopu = (Z12%/100) - Shase/ Smiz = (j8/100) - 0.5/0.3 = j0.1333

Calculate the per-unit values of Linel :
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Zozpu = L(r + §2) | Zpasero = 2 - (0.17 + 50.3) / Zpaser0 = 0.0017 + 50.003

ysh—23pu = ]‘C bc Zba8610/2 = ]2 : (32 X 10_6) . ZbagelO/Q = ]00013/2

Calculate the per-unit values of Line2 :

Zospy = L(1 + jx)/Zpasero = 1 - (0.17 4+ j0.3) / Zpasero = 0.0009 + 50.0015

Ysh—24pu = JLbe Zpaser0/2 = 71 (3.2 x 107°) - Zyaser0/2 = 70.00064 /2

Calculate the per-unit values of the impedance LD1 :

Zrpipu = (Ui p1/S1p1)/ Zsasero = (10%/]0.5/0.8]) - (0.8 + j0.6) /200 = 0.64 + 50.48

Calculate the per-unit values of the impedance LD?2 :
ZLpopu = (U? 13/ 57 09)/ Zvaseos = (0.42/0.2/0.95) - (0.95 + j+/T — 0.952)/0.32 = 2.2562 +
70.7416

Calculate the Y-bus matrix of the network. The grounding point is not included in the Y-bus
matrix since the system then is overdetermined.

e —— 0 0 0
Ztlyiu _Ztlpu 1 1
= Y —= —= 0
Ztlpu 212 £23pu Z24pu
Y = 0 T Y® _0 0 (6.49)
0 —=t 0 Y —1
Z24pu 414 1 Zthu
0 0 0 —= - —
L Zt2pu Zt2pu ZLD2pu .
where
_ 1 1 1 _
Y22 = = + A Ysh— 23pu + =+ ysh—24pu
Ztlpu Z23pu Z24pu
_ 1 1
Y33 = Z +y Ysh— 23pu Tt = 7
23pu LD1pu
— 1 1
Y44 = Z +y Ysh— 24pu t = 7
24pu t2pu
Next, we have
I=YU (6.50)
which can be rewritten as
[ U, ] [ 1, ]
U2 [2
Us | =U=YN=ZI=27Z| I (6.51)
U4 [4
Us | | 15 |
The Z-bus matrix can be calculated by inverting the Y-bus matrix :
0.510+30.375 0.510450.331 0.508+;0.329 0.510+;0.331 0.516+;0.298
0.510450.331  0.510+50.331  0.508+30.329 0.510+30.331 0.516+450.298
Z = | 0.508+50.329 0.508+50.329 0.509+50.330 0.508-+50.329  0.515-+50.296 (6.52)

0.510+50.331
0.516+50.298

0.510+50.331
0.516+50.298

0.508+350.329
0.515+750.296

0.510+350.332
0.517+750.299

0.517+750.299
0.529+350.397
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Since all injected currents with exception of I; are zero, I; can be calculated using the first

row in equation (6.51) :

U, =Z(1, 1)1, = 1, =U,/Z(1,1) = 1.0/(0.510 + j0.375) = 1.58/ — 36.33°

-+

The voltages a
I, = (0.510 + j0.331) - (1.58Z — 36.33°) = 0.9606/ — 3.324°
I, = (0.508 + j0.329) - (1.58/ — 36.33°) = 0.9569/ — 3.423°
I, =
I, =

( )
L = (0.510 + j0.331) - (1.58Z — 36.33°) = 0.9601/ — 3.350°
( )

(0.516 4 j0.298) - (1.58/ — 36.33°) = 0.9423/ — 6.351°

The total amount of power delivered to the industry is
S, =U, - Il + Spase = 0.6367 4 j0.4682 MVA
The power losses in Linel and Line2 can be calculated as
T 793 =(Uy — U3)/Z3pu = 1.1957/ — 40.27°
T 7904 =(Uy — Uy) /[ Z 24pu = 0.3966/ — 24.50°
Pirinet =Real(Zagpu) 1555 + Spase = 0.0012 MW
Pt Lines =Real(Zaupu) 1594 + Spase = 0.0000669MW
The efficiency for the network is then
_ Real (gl) - P fLinel — P fLine2

— = 0.9980 = 99.80%
Real(Sh)

the other buses can be easily be solved by using equation (6.51) :

(6.53)

(6.54)

(6.55)

(6.56)

(6.57)

A solid short circuit at bus 4 can be calculated by connecting an impedance with Z; = 0 at
bus 4. According to section 6.2, the current through the impedance Z, can be determined by
removing the row and the column of the Y-bus matrix that corresponds to the bus connected

to the voltage source (i.e. bus 1 in this example). Thus,

N 1 1
Y22 _223pu a 724pu
_7211% u Y33 0
YA — Y(2 . 5, 2 . 5) — . 1p O ? i 1 (658)
724pu 414 1 7t2pu
O O _Zthu 7t2pu 7LD2pu

The inverse of this matrix is

0.0024+350.0420
0.0025+350.0418
0.0025+350.0419
0.0046+350.0410

Za=Y, ' =

0.0025+350.0418
0.0043+350.0446
0.0025+350.0418
0.0046+350.0408

0.0025+450.0419
0.0025+450.0418
0.0033450.0434
0.0055450.0424

0.0046450.0410
0.0046450.0408
0.0055450.0424
0.0144450.1719

(6.59)

The short circuit current at bus 4 can then be calculated according to equation (6.45).

U, 0.9601£ — 3.350°

7SC = = I asel) — ;
Y7+ Za(4,4) P50 7 1+ (0.0033 + j0.0434)
N—_——

element (3,3) in za
= 0.6366/ — 88.97° kA

0.0289 =

(6.60)
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6.3 Extended method to be used for power loads

The method described in section 6.2 is valid when all system loads are modeled as impedance
loads, i.e. the power consumed is proportional to the voltage squared. In steady-state
conditions, an often used load model is the constant power model. The method described
in section 6.2 can be used in an iterative way, described as follows:

1. Calculate the per-unit values of all components that are of interest. Loads that are
modeled with constant power (independent of the voltage) are replaced by impedances.
The impedance of a load at bus k can be calculated as Zpy = U,%/E*LDk where U,, = 1
pu is the rated (or nominal) voltage, and Sppy is the rated power of the load.

2. Calculate the Y-bus matrix and the corresponding Z-bus matrix of the network as well
as the load impedances. By using the method described in section 6.2 (equation (6.35)
and (6.36)), the voltage at all buses can be calculated.

3. Calculate the load demand at all loads. The power demand Srok—p at load LDk is
obtained as Sppx_p = U2/ Z *LDk where Uy, is the actual calculated voltage at bus k.

4. Calculate the difference between the actual calculated and specified load demand for
all power loads :

APLDk = |R6(§ka_b)—R6(§LDk)| (661)
AQrpr = |Im(Sppr—s) — Im(SLow)l (6.62)

5. If APppy and/or AQppy are too large for a certain bus :
(a) Calculate new load impedances according to Zppy = U2/S} ;. where Uy is the
actual calculated voltage at bus k obtained in step 3,
(b) Go back to step 2 and repeat the calculations.

If APy pr and AQrpr are found to be acceptable for all power loads, the iteration
process is finished.

A simple example will be given to clarify this method.

Example 6.4 Assume a line operating with a voltage of U, = 225/0° kV in the sending
end, i.e. bus 1, and with a load of Prp = 80 MW and Qpp = 60 MVAr in the receiving end,
i.e. bus 2. The line has a length of 100 km with x = 0.4 Q/km, r = 0.04 Q/km and b. =
3 x 107 S/km. Calculate the receiving end voltage.

Solution

In Figure 6.19, the network modeled by impedance loads is given.

Assume Spese = 100 MVA and Upyee = 225 kV which gives
Zbase = U rse/ Shase = 506.25 Q
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Sip=Fp+i0p

14_ Voorz = jbsh—lz_>l

Figure 6.19. Impedance diagram of the system in Example 6.4.

This gives the following per-unit values of the line

Uipu = 225/Upase = 1.0, Prppu = Prp/Shase = 0.8, Qropu = QL0 /Spase = 0.6
Ziopu = L1+ )/ Zpase = 100 (0.04 + 5 0.4) / Zpase = 0.0079 + 5 0.0790
Based on equation (3.9),

bsh—12pu = L be Zpase/2 = 100 (3 X 107°) Zppse/2 = 0.0759

The iteration process can now be started :

1. Uy = 1, Z1ppu = U22pu/(PLDpu — jQLppu) = 0.8 + j0.6

2. Tiopy = Uipu/ (Zropu + | Z1ppu) = 0.7330 - j0.5415 = Uspy = [Uipu — T19puZ 12pu]
= 0.9529

Stopu = Uzu/ Z 1 ppu = 0.7265 + j0.5448

APrp = 0.0735, AQrp = 0.0552

Z .ppu = 0.7265 + j0.5448

Uspu = 0.9477

APrp = 0.0087, AQrp = 0.0066

Z .ppu = 0.7185 + j0.5389

Uspu = 0.9471

APrp = 0.0011, AQrp = 0.00079

Z.ppu = 0.7176 + 0.5382i

Uspu = 0.9470

APrp = 0.0001, AQrp = 0.0001

This is found to be acceptable, which gives a voltage magnitude in the sending end of
Uy = 0.9470 - Upyse = 213.08 kV. This simple example can be solved exactly by using a
non-linear expression which will be shown in Example 7.4.

.]b h—12pu

w

D EANERDNDRERA

Example 6.5 Consider the system in FExample 6.2, but let the short line model be used for
the line (i.e. b, = 0), and the load be considered as a constant power load.

Calculate the voltage level at the industry.

Solution
1. From Example 6.2, we have the following:

Uripe =1, Zrnpa = 50.0137,  Zypu = j0.004,  Zoypu = 0.0225 + j0.0075
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U

UThpu = LDpu

Ztotpu

SLD =F,+ jQLD

Figure 6.20. Network used in Example 6.5.

The total impedance between bus 1 and bus 4 is given by:
Zrotpu = Zhpu + Zipu + Zorpu = 0.0225 + 50.0252

Calculate the per-unit values of the power demand of the industry as well as the correspond-
ing impedance at nominal voltage :

ngpu = (PLD + ][PLD/ COS ¢] - sin ¢)/Sbase = 0.8000 + j06000

Z1opu = (U /S1pp) [ Upsero = 0-8 +j0.6

2. The Y-bus matrix of the network can be calculated as :

v ZE o |- ] e
Ztotpu  ZLtotpu Z1,Dpu ) ’ ) )
The Z-bus matrix is calculated as the inverse of the Y-bus matrix :
Z=Y= | G501 Jom 0804000 ] 6
The voltage at the industry is now calculated according to equation (6.36) :
Urppu = Z(2,1) - Urppu/Z(1,1) = 0.9679/ — 0.3714° (6.65)
3. The power delivered to the industry can be calculated as :
Stopub = U p/Zypye = 0.7495 + 50.5621 (6.66)
4. The difference between calculated and specified power can be calculated as :
APp = |R6(§_LDpu—b) - Re(g_LDpu” = 0.0505 (6.67)
AQrp = |Im(SLopu—s) — Im(SLppu)| = 0.0379 (6.68)

5. These deviations are too large and the calculations are therefore repeated and a new
industry impedance is calculated by using the new voltage magnitude :

Zrope = (Ut ppu/S1ope) = 0.7495 + j0.5621 (6.69)

Repeat the calculations from step 2.

2, 3. = Srppus = 0.7965 + j0.5974
4. AP;p = 0.0035, AQrp = 0.0026
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Unacceptable =
5. Zppu = 0.7462 + j0.5597
Continue from step 2.

2, 3. = Srppus = 0.7998 + j0.5998
4. APrp =0.00024, AQrp = 0.00018
Unacceptable =

5. Zrppu = 0.7460 + 50.5595
Continue from step 2.

2, 3. = Sppu_s = 0.8000 + j0.6000

4. APpp = 0.000016, AQrp = 0.000012
Acceptable =

Urp = UrLppu - Upasero = 9.6565/ — 0.3974°



Chapter 7
Power flow calculations

In chapters 5 and 6, it was assumed that the network had only one voltage source (or
generator bus), and the loads were modelled as impedances. These assumptions resulted in
using a linear set of equations which could be easily solved.

In this chapter, the loads are modelled as constant power loads, and the system has more
than one generator bus (i.e. a multi-generator system).

First, the power flow in a transmission line will be derived, and then a more general power
flow calculations (commonly known as load flow) will be presented.

7.1 Power flow in a line

Consider the the m-equivalent model of a line shown in Figure 7.1, where all variables ex-
pressed in per-unit.

[.\'/1

l] b,\'h*k/' ] bsh*k/ l

Figure 7.1. m-equivalent model of a line.

Let

The power Sy; in the sending end k is given by

_ e -\ — ‘ _ .. U -T.
Sk = Uk (fsh+f ) = Uy ((Jbsh—ijk) +%) =

kj
U? U,U; , .
I Deh—ki L Ry — 7 Xy;  Rij — jXu
. U? . U.U,; . .
= —J bsp—i;j U? + Z—S(Rkj + i Xkj) — %(Rk‘j + j Xy;j) (cos by, + jsinOy;)
kj kj
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By dividing equation (7.2) into a real and an imaginary part, expressions for the active and
reactive power can be obtained, respectively, as

Ry,
Piy= 22 Ui+
Rkj 2
Z,fj
X,
Qrj = —bsn-i; U + Z—I;]
kj

<_bsh—kj

ij 2
L. B

U U
72
U U

ij S1n ( kj arctan (Xk]))

U, U
Z2
Up U,

Z1;

(ij sin ekj — Rkj COS ekj)
(7.3)

U]? — (Rsin ij + ij COS ij)

(7.4)

kj

cos | 0, — arctan R—
kj — arcta e

kj

))

From equations (7.3) and (7.4), it can be concluded that if the phasor voltages (i.e. the
voltage magnitude and phase angle) at both ends of the line are known, the power flow can
be uniquely determined. This implies that if the phasor voltages of all buses in a system are
known, the power flows in the whole system are known, i.e the phasor voltages define the

system state.

Example 7.1 Assume a line where the voltage in the sending end is U, = 225/0° kV and
in the receiving end Uy = 213.08/ — 3.572° kV. The line has a length of 100 km and has
z =04 QMkm, r=0.04 Qkm and b. = 3 x 107¢ S/km. Calculate the amount of power

transmitted from bus 1 to bus 2.

Solution

Assume Spese = 100 MVA and Upqse = 225 kV, this gives that

Zbase = Ul?ase/sbase = 506.25 Q2
The per-unit values for the line are

Uy = 225/Upgse = 1.0 pu, Uy = 213.08/Upyse = 0.9470 pu, 015 = 0-(-3.572) = 3.572°
Riz = 0.04 - 100/ Zyuse = 0.0079 pu, X12 = 0.4 - 100/ Zpase = 0.0790 pu,

beh—12 = 3 X 1076100 - Zpase/2 = 0.0759 pu, Z1y = \/R2, + X2, = 0.0794 pu

The power flow in per-unit can be calculated by using equation (7.3) and (7.4) :

b 00079, 1.0-0.9470
27 0.07942 0.0794
= 0.8081 pu
0.0790
— (—0.0759 + —
Gz ( * 0.07942) i
= 0.5373 pu

expressed in nominal values

P12
Q12

. o 0.0079 B
sin (3.572 — arctan (m)) =

1.0-0.9470 0.0079
2_ 7 v 579° — i
cos (3 57 arctan <0.0790)>

0.0794

0.8081 - Spese = 80.81 MW
0.5373 - Spase = 53.73 MVAr



73

For this simple system, the calculations can be performed without using the per-unit system.
By using equation (5.7), equation (7.3) can be rewritten as

2 , , .
Po;(MW) = Py;(pu)Shase = Uiase {Rk] Uz + Ux Uy sin (ij — arctan (Rk] )) } —

Zbase Z]%j ij ij

Ri;(Q) o Ur(kV) - U;(kV) . < (RkJ'))
= U:(kV) + sin | 6, — arctan [ =2
7o) VI Ty o (e martan (g

i.e. this equation is the same independent on if the values are given as nominal or per-unit
values. Note that arctan(Ry;/Xx;) = arctan(Ry;(€2)/X;(€2)).

For a high voltage overhead line (U > 70 kV), the line reactance is normally considerably
higher than the resistance of the line, i.e. Rj; < Xj; in equation (7.3). An approximate
form of that equation is (i.e. Ry; =~ 0)

Py~ U)Iz,](j] sin 0y (7.5)
j

i.e. the sign of ;; determines the direction of the active power flow on the line. Normally,
the active power will flow towards the bus with the lowest voltage angle. This holds also for
lines having a pronounced resistivity.

Assume that the voltages Uy and U; are in phase and that the reactance of the line is
dominating the line resistance (i.e. R ~ 0). This implies that the active power flow is very
small. Equation (7.4) can be rewritten as

Up(Uy, — Uj)
Xbj

Equation (7.6) indicates that this type of line gives a reactive power flow towards the bus
with the lowest voltage magnitude. The equation shows that if the difference in voltage
magnitude between the ends of the line is small, the line will generate reactive power. This
since the reactive power generated by the shunt admittances in that case dominates the
reactive power consumed by the series reactance. The “rule of thumb” that reactive power
flows towards the bus with lowest voltage is more vague than the rule that active power
flows towards the bus with lowest angle. The fact that overhead lines and especially cables,
generates reactive power when the active power flow is low, is important to be aware of.

Qrj = —bsn_1; Uf + (7.6)

Example 7.2 Using the approzimate expressions (7.5) and (7.6), respectively, calculate the
active and reactive power flow in the line in Example 7.1.

Solution
1.0 - 0.9470
P o~ G 3.572° = 0.7468 pu = T4.68 MW
12 00790 O P
1.0(1.0 — 0.9470
O ~ —0.0759-1.0° + ( o ) _ 0.5048 pu = 59.48 MVAr

The answers are of right dimension and have correct direction of the power flow but the
active power flow is about 8 % too low and the reactive power flow is 11 % too large.
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7.1.1 Line losses

The active power losses on a three-phase line are dependent on the line resistance and the
actual line current. By using physical units (i.e. not in per-unit), the losses can be calculated
as

P; = 3Ry;I? (7.7)
The squared current dependence in equation (7.7) can be written as

*

S S 5?2 P4+ Q?

P=1"e?" =11 = : = = 7.8
c B0 VEU 307 30 (7.8)
The active power losses for the line given in Figure 7.1 can be calculated as
P2+ (Qrj + bsh—i; UR)?
Pf _ Rkj kj (Qka h—Fkj k) (7‘9)

Ui

where, bs,_x; U? is the reactive power generated by the shunt capacitance at bus k.

The expression given by (7.9) is valid both for nominal and for per-unit values. This equation
shows that a doubling of transmitted active power will increase the active power losses by a
factor of four. If the voltage is doubled, the active power losses will decrease with a factor
of four.

Assume that the active power injections at both ends of the line are known, i.e. both Pj;
and Pj, have been calculated using equation (7.3). The active power losses can then be
calculated as

PfIij—Fij (710)

The reactive power losses can be obtained in the corresponding manner

P4 (Qrj + ban—1; UR)?
Ui

Qr =3X1; > = Xy, (7.11)

Equations (7.8) and (7.9) shows that the losses are proportional to S? and that the losses
will increase if reactive power is transmitted over the line. A natural solution to that is to
generate the reactive power as close to the consumer as possible. Of course, active power
is also generated as close to the consumer as possible, but the generation costs are of great
importance.

Example 7.3 Use the same line as in Example 7.1 and calculate the active power losses.

Solution

The losses on the line can be calculated by using equation (7.9) and the conditions that
apply at the sending end

PE + (Qu2 + bep_12U?)?
Ut
0.80812 + (0.5373 + 0.0759 - 1.02)2
1.02

Pf(MW) = R12 Sbase =

= 0.0079 100 = 0.81 MW
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The losses can also be calculated by using the receiving end conditions

P2 bs _ U2 2
Pf(MW) _ R12 21 + (QQIZ; h—12 2) Sbase _
2
(—0.80)% + (—0.60 + 0.0759 - 0.9470%)?
. 100 = 0.81 MW
0.0079 004702 00=0.8

or by using equation (7.10)

Py(MW) = [Pi + Py]Shase = [0.8081 + (—0.80)]100 = 0.81 MW

7.1.2 Shunt capacitors and shunt reactors

As mentioned earlier in subsection 7.1.1, transmission of reactive power will increase the
line losses. An often used solution is to generate reactive power as close to the load as
possible. This is done by switching in shunt capacitors. Figure 7.2 shows a Y-connected
shunt capacitor. Figure 7.2 also shows the single-phase equivalent which can be used at

phase a _T_
=—c T
phase b _T_ c
L T C L
phase ¢ r .
-
LT ¢
Three-phase connection Single-phase equivalent

Figure 7.2. Y-connected shunt capacitors.

symmetrical conditions. A shunt capacitor generates reactive power proportional to the bus
voltage squared U?. In the per-unit system, we have

Qsh = BaU? = 21 fc U (7.12)

An injection of reactive power into a certain bus will increase the bus voltage, see Example
7.6. The insertion of shunt capacitors in the network is also called phase compensation. This
because the phase displacement between voltage and current is reduced when the reactive
power transmission through the line is reduced.

As mentioned earlier, lines that are lightly loaded generates reactive power. The amount of
reactive power generated is proportional to the length of the line. In such situations, the
reactive power generation will be too large and it is necessary to consume the reactive power
in order to avoid overvoltages. One possible countermeasure is to connect shunt reactors.
They are connected and modeled in the same way as the shunt capacitors with the difference
that the reactors consume reactive power.
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7.1.3 Series capacitors

By studying equation (7.5), an approximate expression of the maximum amount of power
that can be transmitted through a line, at a certain voltage level, can be written as

U.U; . U,U;
Pyj—maz = max L sin 0,; = J
Ok; kj X;j

(7.13)

i.e. the larger the reactance of the line is, the less amount of power can be transmitted.
One possibility to increase the maximum loadability of a line is to compensate for the series
reactance of the line by using series capacitors. In Figure 7.3, the way of connecting series
capacitors is shown as well as the single-phase equivalent of a series compensated line. The

c

phasea ij :Rkj+j(ij_Xc)

i — — —

phaseb —|l—— I l I
b b,

phase ¢ I ;] S o kl;

Three-phase connection Single-phase equivalent

|_

Figure 7.3. Series capacitors

expression for the maximum loadability of a series compensated line is

UU;

L. 14
X, — X, (7.14)

ij—max ~

It is obvious that the series compensation increases the loadability of the line.

The use of series capacitors will also reduce the voltage drop along the line, see Example
7.7.

7.2 Non-linear power flow equations

The technique of determining all bus voltages in a network is usually called load flow. When
knowing the voltage magnitude and voltage angle at all buses, the system state is completely
determined and all system properties of interest can be calculated, e.g. line loadings and
line losses.

In a power system, power can be generated and consumed at many different locations. Con-
sider now a balanced power system with N buses. Figure 7.4 schematically shows connection
of the system components to bus k.

The generator generates the current Iy (in pu), the load at the bus draws the current ok
(in pu), and Ij; (in pu) is the currents from bus k to the neighboring buses. According to
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Figure 7.4. Notation of bus & in a network.

Kirchoft’s current law, the sum of all currents injected into bus k must be zero, i.e.
N
Iar — Lk :Z[kj (7.15)
j=1

By taking the conjugate of equation (7.15) and multiply the equation with the bus voltage
(in pu), the following holds

N
Udoy — Urppp = Y Uidy, (7.16)
j=1
This can be rewritten as an expression for complex power in the per-unit system as

N
Sak— Sipk = ngj (7.17)
=1

where

Sar = Por + jQcr is the generated complex power at bus k,

Stok = Prpr + jQrpr is the consumed complex power at bus k,

Skj = Pij + jQg; is the complex power flow from bus k to bus j.

The power balance at the bus according to equation (7.17) must hold both for the active

and for the reactive part of the expression. By using Pgpr and Qg pr as notation for the net
generation of active and reactive power at bus k, respectively, the following expression holds

N

Pepr = Pex — Pupe = Y Py (7.18)
=1
N

Qopk = Qer — QLpr = Z Qr;j (7.19)
j=1

i.e. for any bus k£ in the system, the power balance must hold for both active and reactive
power. Note that in equations (7.18)-(7.19), Prpx and Qppy are assumed constant.
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U,Z6

C Foi + 70Qq

P13 +jQ]3

I)LD3 + jQLD3

U,Z0, 4

C B+ JOs,

PLDZ + jQLDZrz

])23 + jQ23

Figure 7.5. Single-line diagram of a balanced three-bus power system.

Figure 7.5 shows a balanced power system with N = 3. Based on equations (7.18) and
(7.19), the following system of equations can be obtained.

( Pagi = P+ Pi3
Qa1 = Qu+ Q3
Pay — Prpa = Por+ Pa3
Qa2 — Qrp2 = Qo + Qa3
—Prps = P51+ Ps

= Q31 + Q3

At each bus in Figure 7.5, four variables are of interest: net generation of active power Pgp,
net generation of reactive power (Qgpr, voltage magnitude U, and voltage phase angle 6.
This gives that the total number of variables for the system are 3 -4 = 12. The voltage
phase angles must be given as an angle in relation to a reference angle. This since the phase
angles are only relative to one another and not absolute. This reduces the number of system
variables to 12 — 1 = 11. However, there are only six equations in the system of equations
(7.20), this gives that five quantities must be known to be able to solve for the remaining
six variables. Depending on what quantities that are known at a certain bus, the buses are
mainly modeled in three different types.

A\

(7.20)

L —QLps3

PQ-bus, Load bus : For this bus, the net generated power Pgp, and Qgpr are assumed to
be known. The name PQ-bus is based on that assumption. On the other hand, the voltage
magnitude Uy and the voltage phase angle 6 are unknown. A PQ-bus is most often a bus
with a pure load demand, as bus 3 in Figure 7.5. It represents a system bus where the power
consumption can be considered to be independent of the voltage magnitude. This model
is suitable for a load bus located on the low voltage side of a regulating transformer. The
regulating transformer keeps the load voltage constant independent of the voltage fluctua-
tions on the high voltage side of the transformer. Note that a PQ-bus can be a bus without
generation as well as load, i.e. Pgpr = Qgpr = 0. This holds e.g. at a bus where a line is
connected to a transformer.
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PU-bus, Generator bus : In a PU-bus, the net active power generation Pgpr as well as the
voltage magnitude U, are assumed to be known. This gives that the net reactive power
generation Qgpx and the voltage angle 0 are unknown. In a PU-bus some sort of voltage
regulating device must be connected since the voltage magnitude is independent of the net
reactive power generation. For example, in a synchronous machine, the terminal voltage can
be regulated by changing the magnetizing current. In a system, voltage can be regulated
by using controllable components as controllable shunt capacitors and controllable shunt
reactors. A standard component is called SVC, Static VAr Compensator. This component
change the reactive power flow in order to regulate the bus voltage. Assume that bus
2 in Figure 7.5 is modeled as a PU-bus. This gives that the active power generation of
the generator as well as the active power consumption of the load are known. Also the
reactive power consumption of the load is known. The bus voltage is constant due to the
magnetization system of the generator. The generator may generate or consume reactive
power in such a way that the relation in equation (7.19) holds.

U6-bus, Slack bus : At a slack bus (only one bus in each system), the voltage magnitude
and the voltage phase angle are known and fixed. The voltage phase angle is chosen as a the
reference phase angle in the system. Normally, the phase angle 6y is set to zero. Unknown
quantities are the net generation of both active and reactive power. At this bus, (as for the
PU-bus) a voltage regulating component must be present. Since the active power is allowed
to vary, a generator or an active power in-feed into the system is assumed to exist at this bus.
Since this bus also is the only bus where the active power is allowed to vary, the slack bus
will take care of the system losses since they are unknown. If the loads have been modeled
in the load flow as constant power loads and a line is tripped, the only bus which will change
the active power generation is the slack bus. If bus 1 is chosen as slack bus in Figure 7.5,

both Pg and Qg1 are unknown but the voltage U, is given as well as the reference angle
0, = 0.

Assume that M of the system N buses are PU-buses. A summary of the different bus types
is given in Table 7.1. As given in equations (7.3)—(7.4), the active and reactive power flow

Bus model Number | Known quantities | Unknown quantities
UH—bU.S, Slack bus 1 U, 0 PGD; QGD
PU-bus, Generator bus M Pap, U Qap, 0
PQ-bus, Load bus N-M-1 Pap, Qap U, 6

Table 7.1. Bus types for load flow calculations

through a line can be expressed as a function of the voltage magnitude and voltage phase
angle at both ends of the line. Assume that the power system in Figure 7.5 is modeled in
such a way that bus 1 is a slack bus, bus 2 is a PU-bus and bus 3 is a PQ-bus. By using
this bus type modeling, the system of equations (7.20) can be written as

( PGDl(IlIlkI’IOWI’l) = P12(U1,91,U2,92)—|—P13(U1,91,U3,93)
Qc1(unknown) = Q12(Us, 01, Us, 02) + Q13(Uy, 01, Us, 03)
PGD2 = P21(U1>91aU2792)+P23(U2792aU3>93)
QGDQ(U_nkIlOWII) = Q21(U1,91,U2,92) +Q23(U2,92,U3,93)
PGD3 P31(U17917U3793)+P32(U27927U3793)

\ QGD?) = Q31(U17 ‘917 U37 ‘93) + Q32(U27 ‘927 U37 ‘93)

(7.21)
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where also 5, Us and 03 are unknown quantities whereas the others are known. As given in
equation (7.21), unknown power quantities appear only on the left hand side for buses mod-
eled as slack and PU-bus. These quantities can be easily calculated when voltage magnitudes
and angles are known. These equations are not contributing to the system of equations since
they only give one extra equation, and one extra variable which easily can be calculated. The
system of equations in (7.21) can therefore be simplified to a system of equations containing
unknown U and 6 as

Pepas = Po(Ui,01,Us,05) + Po3(Us, 65, Us, 63)
Pops = P3(Uy,6h,Us, 03) + Pso(Us, 05, Us, 03) (7.22)
Qcps = Qs1(Ur,01,Us, 05) + Q32(Us, 05, Us, 65)

The system of equations given by (7.22) is non-linear since the expressions for power flow
through a line (equation (7.3)—(7.4)) include squared voltages as well as trigonometric expres-
sions. This system of equations can e.g. be solved by using the Newton-Raphson method.

The system of equations given by (7.22) can be generalized to a system containing N buses,
of which M have a voltage regulating device in operation. A summary of this system is given
in Table 7.2. As indicated in Table 7.2, the system of equations contains as many unknown

Bus model | Number Balance equations Unknown quantities

Popr =2 Pij | Qape=>_Qrj | Uk O,
Slack bus 1 0 0 0 0
PU-bus M M 0 0 M
PQ-bus N-M-1 N-M-1 N-M-1 N-M-1 N-M-1
Total N 2N-M-2 2N-M-2

Table 7.2. Summary of equations and unknown quantities at load flow calculations

quantities as the number of equations, and by that, the system is solvable.

7.3 Power flow calculations of a simple two-bus system

As shown in section 7.2, constant power loads give a non-linear system of equations, and
power flow calculations for large power system requires soft-ware tools such as MATLAB
which will be used in this course. To understand the concept of power flow calculations, in
this section a simple two-bus system is studied. Since for power flow calculations, a bus bus
must be a slack bus, there are therefore two possible bus-type combinations, namely, slack
bus + PU-bus and slack bus + PQ-bus which can be analytically handled.

Consider the two-bus power system shown in Figure 7.6. The data given in Example 7.1 is
used for this system. Let bus 1 be a slack bus with U; = 225/0° kV. Let also P;ps = 80
MW.
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l Sipy =
ljbthzl jbsh—Zl—'l'_ Ppr+ 7O

Figure 7.6. Single-line diagram of a balanced two-bus power system.

7.3.1 Slack bus + PU-bus

This combination is of interest when the voltage magnitude is known at both buses and the
net active power (i.e. Pgp) is known at one of the buses. This implies that the only unknown
quantity is the voltage phase angle at the PU-bus, i.e. the bus having a known net active
power Pgp.

Example 7.4 Let bus 2 be a PU-bus with Uy = 213.08 kV. Calculate the voltage phase angle
at bus 2 (the same as Example 6.4). Find also Qo in MVAr.

Solution

From equation (7.3) we have

Ro 2 U, U . Ro
Py = —U 091 — arctan | ——
21 Z221 5 + 7ol s ( 21 arctan <X21>>

Ro _( Zn Roi
0y, = 0) +arctan [ =2 ) + Py -2y
2 L aretan <X21) et (U2 0 ( ATz 2))

where,

0.0079

R21
Py = Papy = (0— P Spase = —0.8  pu, tan —2- — arct = 5.71°
o1 ap2 = ( 02)/ S pu, arctan X, arctan 0.0790
Thus,
0.0794 0.0079
0y =0+ 5.71° in|——— [ —08— ———-0.9470% ) | = —3.5724°
2= 0.0+ arcsin <0.9470 1.0 < 0.07942 ))

From equation (7.4), we have

Xo1 , Uy Roy
= _bs _ —_— — 9 - t ~ ase
Q21 [( h—o21 + 2221) U, 7 cos ( 51 — arctan (le))] Sh

0.0790 0.94701.0
= —0. 9470% —
K 009+ 0.07942) 0940~ 0 o704
= —59.9793 MVAr, from MATLAB

cos(—3.5724° — 5.710)} 100
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7.3.2 Slack bus + PQ-bus

This combination is of interest when the voltage magnitude is known only at one of the buses

and the net active and reactive power generation are known at the other bus.

Example 7.5 Now let bus 2 be a PQ-bus, and Qrps = —Q21 where Qo1 has been obtained

in Bxample 7.4. Calculate the voltage magnitude and phase angle at bus 2.

Solution

Based on equations (7.3) and (7.4), by eliminating 65, the voltage magnitude Us can be

analytically found, and it is given by
ay ay 2 1
U2 = _~2 + _ 2 2
2 25 () <2a3) a3( i +a3)

a; = —Ry P — X201 Qn

ay = —Xo1 Py + Ry Qn

as = (1= Xo1ban01)? + R3, b3 oy

as = 2-a1(l — Xo1bsp_21) — Up + 2a2Ro1 bgp—21

where

The voltage Us can now be calculated as

U= 1 \U;
In our case,
ap = —0.0079(—0.8) — 0.0790(—0.5998) = 0.0537
a; = —0.0790(—0.8) 4+ 0.0079(—0.6)) = 0.0585
az = (1-0.0790-0.0759)* + 0.0079% - 0.0759* = 0.9880

a; = 2-0.0537(1—0.0790 - 0.0759) — 1.0% +
2-0.0585 - 0.0079 - 0.0759 = —0.8931

Ui = 0.4520 ) 04449 = 0.8968

Uy, = (J_r v 0.8968 = 0.9470

)

Uy (KV) = 0.9470 - Upgse = 213.08 kV

(7.23)

(7.24)

The voltage phase angle can now be calculated in the same way as performed in Example

7.4, which results in the the same answer.
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Example 7.6 Use the data given in Example 7.5 with Ppy = 80 MW and QQps =~ 60 MVAr.
Use these load levels as a base case and calculate the voltage Uy when the active and reactive
load demand are varying between 0-100 MW and 0-100 MVAr, respectively.

Solution

By using equations (7.23) and (7.24), the voltage can be calculated. The result is shown in
Figure 7.7. The base case, i.e. Ppys = 80 MW and QQps = 60 MVAr, is marked by circles on

225\ — I I I I I
~~__ PD2=80 MW, QD2=0-100 MVAr
220 Tl 1

=215 T .

X IECY

= | QD2=60 MVAr, PD2=0-100 MW -

D210 T~ 1
205 R
200 | | | | | | | | |

0 10 20 30 40 50 60 70 80 90 100

MW or MVAr

Figure 7.7. The voltage Us as a function of Pps and Q) ps.

both curves. As shown in the figure, the voltage drops at bus 2 as the load demand increases.
The voltage at bus 2 is much more sensitive to a change in reactive load demand compared
to a change in active demand. If a shunt capacitor generating 10 MVAr is connected at
bus 2 when having a reactive load demand of 60 MVAr, the net demand of reactive power
will decrease to 50 MVAr and the bus voltage will increase by two kV, from 213 kV to 215
kV. As discussed earlier in subsection 7.1.1, a reduced reactive power load demand will also
reduce the losses on the line.

Example 7.7 Use the base case in Example 7.6, i.e. Ppy = 80 MW and QQps = 60 MVAr.
Calculate the voltage Uy when the series compensation of the line is varied in the interval
0-100 %.

Solution

A series compensation of 0-100 % means that 0-100 % of the line reactance is compensated by
series capacitors. 0 % means no series compensation at all and 100 % means that X, = X5;.
The voltage can be calculated by using equations (7.23) and (7.24). The result is shown in
Figure 7.8. As shown in Figure 7.8, the voltage at bus 2 increases as the degree of series
compensation increases. If the degree of compensation is 40 %, the voltage at bus 2 is
increased by 4.5 kV (= 2 %) from 213.1 kV to 217.6 kV.

When having short lines or when only interested in approximate calculations, the shunt
capacitance of a line can be neglected. In these conditions, by, o1 in equation (7.23) is
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225

220

U2 [kV]

215

|
10 20 30 40 50 60 70 80 90 100
% compensation

21 0 | | |
0
Figure 7.8. The voltage Us as a function of degree of compensation.

neglected, and the equation will be rewritten as

2 2 2 2 2
Us = Ul = (i—) \/(Ul al) - (a% —Fa%) (725)

2 2
where
ay = —Ro Py — Xy Qzl
ay = —Xog Por + Ro1 Qn

Example 7.8 Use the data given in Example 7.5. Calculate the magnitude of the voltage
by using the approximate expression given by equation (7.25).

Solution
Equation (7.25) gives that

a; = —0.0790(—0.8) + 0.0079(—0.6) = 0.0537
as = 0.0079(—0.6) — 0.0790(—0.8) = 0.0585
=
Uy = 0.9410
=

Uy(kV) = 0.9410 - Upgse = 211.72 KV
i.e. the voltage becomes 0.6 % too low compared to the more accurate result.

Another approximation often used, is to neglect as in equation (7.25). That equation can
then be rewritten as

U, U?
U, ~ o) + 1 + Roy Po1 4+ Xo1 Q2 (7.26)
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Example 7.9 Use the same line as in FExample 7.5. Calculate the voltage by using the
approximate expression given by equation (7.26).

Solution
Equation (7.26) gives that

Uy = 0.9430

Us(kV) = 0.9439 - Upgse = 212.18 kV

i.e. the calculated voltage is 0.4 % too low. As indicated in this example, equation (7.26)
gives a good approximation of the voltage drop on the line. In the equation, it is also clearly
given that the active and reactive load demand have influence on the voltage drop. The
reason why the voltage drop is more sensitive to a change in reactive power compared to a
change in active power, is that the line reactance dominates the line resistance.

7.4 Newton-Raphson method

7.4.1 Theory

The Newton-Raphson method may be applied to solve for xy, s, ,x, of the following
non-linear equations,

91(I1,$27 T 7xn> = f1(l’1,$27 T 7$n) -0 =0
92(I1,$27 T 7xn> = f2($1,$27 T 7$n) —by=0
(7.27)
gn(x17x27”' 7In>:fn(x17x27”' 7xn>_bn:O
or in the vector form
g(z) = f(r) =b=0 (7.28)
where
T g1(z) fi(x) by
T2 ga(7) fa(z) by
:1: = ) g(x> = ) f(x) = : ) b = .
Ty, In(T) fu() bn

x is an n X 1 vector which contains variables, b is an n x 1 vector which contains constants,
and f(z) is an n x 1 vector-valued function.

Taylor’s series expansion of (7.28) is the basis for the Newton-Raphson method of solving
(7.28) in an iterative manner. From an initial estimate (or guess) #(*); a sequence of gradually
better estimates ™), 3, 2®) ... will be made that hopefully will converge to the solution

*

T .
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Let 2* be the solution of (7.28), i.e. g(z*) = 0, and 2 be an estimate of 2*. Let also

Az = * — () Equation (7.28) can now be written as
g(z*) = g(z + AzD) =0
Taylor’s series expansion of (7.29) gives

g2 + AzD) = g(z®) + JACE) Az =0

where
9g91(x) Og(z)
ox Ozn
JACED) — {39(35)} — :1 :
or |, .o dgn(x)  Ogn(x)
ozy Oan A peg(®

is called the jacobian of g.

From (7.30), Az can be calculated as follows
JACEI Az = 0= g(z) = Ag(z?) =
. 911 .
Az = [JAC(I( ))} Ag(zV)
Since g(z®) = f(z) — b, Ag(x®) is given by

Ag(z®) = b— f(z@) = —g(z®)

Furthermore, since b is constant, JACE") ig given by
3(1;1(96) . 5(]9”1(50)
Oz x=x?) Oz x=x?) 8f,;(gc) afr;(m)
dz1 T T0mn d peg®

Therefore, Az can be calculated as follows

i ofi(x of(@)7 1 ‘ !
Al TS ST T Gl ad)
Az =| | =] : S :

Finally, the following is obtained

1 = 1+1

(7.29)

(7.30)

(7.31)

(7.35)

(7.36)

The intention is that (! will estimate the solution x* better than what z(® does. In the

same manner, £(2, z®)

we obtain an iterative method according to the flowchart in Figure 7.9.

- can be determined until a specified condition is satisfied. Thus,
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Set i=0

Step 1
(i) P

Give x

A
Calculate A g(x'?)| Step 2

) 4 : Step Final
Is the magnitude of the all entries of Ag(xV) _Yes

less than a small positve number £?

No

x=x0

Y

\
Calculate JAC®? | Step 3

\i
Calculate Ax'? | Step4

A

i=i+1

ROBNCE ISRPNNCE)

Step 5

Figure 7.9. Flowchart for the Newton-Raphson method.
Example 7.10 Using the Newton-Raphson method, solve for x of the equation

g(x) =kix+ kg cos(x —ks) — ks =0
Let k1 = —0.2, ko = 1.2, ks = —-0.07, ki=0.4 and € = 1074,

Solution

This equation is of the form given by (7.28), with f(z) = ky x + ks cos(z — k3) and b = ky.
Step 1

Set i = 0 and () = 2(® = 0.0524 (radians), i.e. 3 (degrees).

Step 2

Ag(z®) =b— f(z®) = 0.4 — [(—0.2 ¥ 0.0524) + 1.2 cos(0.0524 + 0.07)] = —0.7806

Go to Step 3 since |Ag(z™)| > €

Step 3

JACE™) = [91] = —0.2 — 1.2 5in(0.0524 + 0.07) = —0.3465

Step 4

11
Ax) = [JACED] T Ag(a®) = =570 — 22529

—0.3465

Step 5

1=14+1=0+1=1
2@ = 201D 4 Az(=D = 0.0524 + 2.2529 = 2.3053. Go to Step 2
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After 5 iterations, i.e. i = 5, it was found that |Ag(z®)| < € for 2(® = 0.9809 (rad.).
Therefore, the solution becomes x = 0.9809 (rad.) or z = 56.2000 (deg.).

MATLAB-codes for this example can be found in Appendix A.
Comments on Example 7.10

Figure 7.10 shows variations of g(z) versus x. The figure shows that the system (or equation)
has only three solutions, i.e. the points at which g(x) = 0. Due to practical issues, z* indicted
with (O) in the figure is the interesting solution.

25

2 4
1.5 b

1+ 4

Y ,

a(x)

_25 1 1 1 1 1 1 1
-400 -300 -200 -100 0 100 200 300 400
X

Figure 7.10. Variations of g(x) vs. x.

Figure 7.11 shows how the equation is solved by the Newton-Raphson method.

We first guess the initial estimate #(*). In this case #(*) = 0.0524 (rad.), i.e 3 (deg.). The
tangent to g(z) through the point (z@, g(z(?)), ie. ¢'(z9) = [dz—f)] o = JACE),

intersects the x-axis at point z(). The equation for this tangent is given by
Y = g(e®) = () 5 (w — 2¥)

The intersection point (M) is obtained by setting Y = 0, i.e.

9(95(0)) -1
i = ¥ =Ty =~ (6@)g=®)

Az® = 20— 30 = _ (¢(2©)) " g(a®) = [ J AC(M)} - Ag(z®)
In a similar manner, z(® can be obtained which is hopefully a better estimate than z(!). As

shown in the figure, from 2(® we obtain (® which is a better estimate of 2* than what 2(?
does. This iterative method will be continued until [Ag(z)| < e.
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(0)
g(x™)
X - (0),
9b9 T / JACK)

Figure 7.11. Variations of g(z) vs. x.
Example 7.11 Solve for z in Example 7.10, but let *® = 0.0174 (rad.), i.e. 1 (deg.).

Solution

D.1Y, (i.e., Do It Yourself)

7.4.2 Application to power systems

Consider a power system with N buses. The aim is to determine the voltage at all buses
in the system by applying the Newton-Raphson method. All variables are expressed in

pu.
Consider again Figure 7.1. Let

i LU Ry Xy
& k3 7@' Rkj + ] ij Zkzg Zkzj
By 7.37
X
b, = —"1
kj Zk2]
Based on (7.37), we rewrite (7.3) and (7.4) as follows
Pij = i Uf — U Uj [grj cos(0;) + brjsin(0y;)] (7.38)

Qi = Ui(=bsn—rj — bry) — Ux Uj [grj sin(6k;) — brj cos(Ox;)] (7.39)
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The current through the line, and the losses in the line can be calculated by

o

T, — T J@ (7.40)
Uy,

Puj = Pu+ Py 7.41

Quj = Qrj +Qjk 7.42)

Consider again Figure 7.4. Let Y = G + j B denote the admittance matrix of the system (or
Y-matrix), where Y is an N x N matrix, i.e. the system has NV buses. The relation between
the injected currents into the buses and the voltages at the buses is given by I = Y U, see
section 4.1. Therefore, the injected current into bus k is given by I, = Z?{:l Y Uj.

The injected complex power into bus k£ can now be calculated by

U;f = U,

J

(Grj — jBrj) Uj(cos(0k;) + jsin(0h;))

WE

N
Sp=UT, =Ur»_ Y,
j=1

J=1

= (Uk > U; (G cos(0k;) + By Sin(%)]) +J (Uk > U; [Gyj sin(6y;) — By, COS(%)])

Jj=1 Jj=1

Let By, denote the real part of S, i.e. the injected active power, and Q) denote the imaginary
part of Sy, i.e. the injected reactive power, as follows:

N

Pk = Uk Z Uj [Gk] COS(ij) + Bkj sin(@kj)]
j=1
N (7.43)
Qk = Uk Z Uj [Gk] Sil’l(ekj) - Bkj COS(ekj)]
j=1
Note that Gj; = —gi; and By; = —by; for k # j. Furthermore,
N
P=) Py
j=1
N
Qr=Y_ Qu
j=1
Equations (7.18) and (7.19) can now be rewritten as
P, — P, =0
k — L'Gpk (7.44)

Qr —Qcpr = 0



which are of the form given in equation (7.28), where

[0, ] ExN [ Popr ]
0 On fr(0,0) Py bp Pepn
T = = , f(0,U) = = , b= =
U Uh fo(6,0) Q1 bg Qcpi
N | QN ] | Qapn

the aim is to determine z = [# U]” by applying the Newton-Raphson method.

91

(7.45)

Assume that there are 1 slack bus and M PU-buses in the system. Therefore, # becomes an

(N —1) x 1 vector and U becomes an (N —1 — M) x 1 vector, why?
Based on (7.34), we define the following:
APk = PGDk — Pk k # slack bus

AQr = Qapr — Qr  k # slack bus and PU-bus
Based on (7.35), the jacobian matrix is given by
afp(0,U)  0fp(6,U)
0 i H N
0fq(0.U)  0fe(0,U) /
50 S0 J L
where,
H isan (N—-1)x(N-1) matrix
N isan (N—-1)x(N—-M—-1) matrix
J isan (N—-M—-1)x (N-1) matrix
L' isan (N—M—1)x (N—-M —1) matrix

The entries of these matrices are given by:

Hy; = %%k + slack bus

20, j # slack bus

Ny, = g—g’; k # slack bus J # slack bus and PU-bus

k # slack bus and PU-bus  j # slack bus

Ly, = g;g; k # slack bus and PU-bus  j # slack bus and PU-bus

Based on (7.32), (7.46) and (7.47), the following is obtained

7 7] lae] =

(7.46)

(7.47)

(7.48)

To simplify the entries of the matrices N’ and L', these matrices are multiplied with U.

Then, (7.48) can be rewritten as

A el g i el R e

(7.49)
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where,
for k # 3
ij = ?9% = Uk Uj [Gk] sin(@kj) — Bkj COS(Q]W')]
Nkj = Uj N]g] = Uﬁg_][?; = Uk Uj [Gk] cos(@kj) + Bkj sin(@kj)]
(7.50)
Jij = aa;% = —U, U, |Gy cos(0y;) + By sin(6y;)]
ij = Uj L;f] = U]g;gf = Uk Uj [Gk] sin(@kj) - Bkj COS(Q]W')]
and for k = j
Hyp = 2—% = —Qi — BiU}
Ny, = ng—ﬁ’; =bB, + GkkUlf
(7.51)
Ju= gt =P—Gul}
Lyj = ng%: = Q1 — BuU}
Now based on (7.36), the following is obtained:
AH] [ AH} [H N] - {AP]
AGY _ (7.52)
{TU AU’ J L| |AQ
Finally, U and 6 will be updated as follows:
Or = 0, + Aby, k # slack bus (7.53)

U = Ui (1 + AUY) k # slack bus and PU-bus

7.4.3 Newton-Raphson method for solving power flow equations

Newton-Raphson method can be applied to non-linear power flow equations as follows:

e Step 1

la) Read bus and line data. Identify slack bus (i.e. Uf-bus), PU-buses and PQ-buses.

1b) Build the Y-matrix and calculate the net productions, i.e. Pop = Pg — Prp and
Qcp = Qe — Qrp-

1c) Give the initial estimate of the unknown variables, i.e. U for PQ-buses and 6 for
PU- and PQ-buses. It is very common to set U = Uy and 0 = Oy 4. However,
the flat initial estimate may also be applied, i.e. U =1 and 6 = 0.

1d) Go to Step 2.

e Step 2
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2a) Calculate the injected power into each bus by equation (7.43).

2b) Calculate the difference between the net production and the injected power for
each bus, i.e. AP and AQ by equation (7.46).

2¢) Is the magnitude of all entries of [AP  AQ]" less than a specified small positive
constant € ?

x If yes, go to Step Final.
x if no, go to Step 3.

Step 3

3a) Calculate the jacobian by equations (7.50) and (7.51).
3b) Go to Step 4.

Step 4

4a) Calculate [A9  AU’]" by equation (7.52).
4b) Go to Step 5.

Step 5

5a) Update U and 6 by equation (7.53).
5b) Go till Step 2.

Step Final

— Calculate the generated powers, i.e. Po (MW) and Q¢ (MVAr) in the slack bus,
and Qg (MVAr) in the PU-buses by using equation (7.44).
Calculate the power flows (MW, MVAr) by using equations (7.38) and (7.39).

— Calculate active power losses (MW) by using equation (7.41).

Give all the voltage magnitudes (kV) and the voltage phase angles (degrees).

Print out the results.

Example 7.12 Consider the power system shown in Figure 7.12. Let Spese = 100 MVA,
and Upgse = 220 V.

I
|

R

2
|

ﬁ@

Figure 7.12. Single-line diagram of a balanced two-bus power system.

The following data (all in pu) is known:

e Line between Bus 1 and Bus 2: short line, Z15 = 0.02 + j 0.2
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e Bus 1: slack bUS, Ul = 1, 91 = O, PLDl = 02, QLDl = 0.02

e Bus 2: PU-bus, Uy =1, Pgy =1, Prps =2, Qrps = 0.2

By applying Newton-Raphson method, calculate 0y, Pgi, Qa1, Qa2 and the active power
losses in the system after 3 iterations.

Solution

MATLAB-codes for this example can be found in Appendix A.

Step 1
la) bus 1 is a slack bus , bus 2 is a PU-bus , Uy =1, Uy =1, 6; = 0.
1b)
2%2 _2%2 (G +jBu Giz+jBi
Y — = —
—2%2 %12 | G211+ Bar Gaa + j By

[ 0.4950 — j4.9505 —0.4950 + 5 4.9505
| —0.4950 + 57 4.9505  0.4950 — 5 4.9505

Paps = Pgy — Prpo=1-2= -1
No Q¢p since there is no PQ-bus in the system.

1lc)
Since the system has only one slack bus and one PU-bus, the phase angle of the PU-bus is
the only unknown variable. As an initial value , let 6y = 0.

Iteration 1

Step 2
2a)

Pg = U2 Ul [Ggl COS(92 - 91) + Bgl sin(92 — 91)] + U22 G22 =
= 1x%1%[—0.4950 % cos(0 — 0) + 4.9505 x sin(0 — 0)] + 1% x 0.4950 = 0

2b)
AP:APQZPGDQ_PQZ_l_OZ_l

Step 3

Qg = U2 U1 [Ggl sin(92 — 91) — BQl COS(GQ — 91)] — U22 BQQ =
= 1% 1%[—0.4950 % sin(0 — 0) — 4.9505 * cos(0 — 0)] — 12 * (—4.9505) = 0
P
H = % = —Qy — ByU2 = —0 — (—4.9505 % 1%) = 4.9505
2
JAC = [H] = [4.9505]
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Step 4

_ g1 _ _
Aby=H AP, = 19505 0.2020

Step 5
Oy = 0y + Aby = 0 — 0.2020 = —0.2020

Iteration 2
Step 2
2a)
P2 = U2 U1 [Ggl COS(GQ — 91) + B21 sin(@z — 91)] + U22 G22 =

= 1% 1%[-0.4950 * cos(—0.2020 — 0) + 4.9505 * sin(—0.2020 — 0)] 4 12 % 0.4950 = —0.9831
2b)

AP = AP, = Pgps — P, =—1—(—0.9831) = —0.0169

Step 3

Qg = U2 U1 [Ggl sin(«92 — 91) — B21 COS(GQ — 91)] — U22 BQQ =
— 11 %[—0.4950 * sin(—0.2020 — 0) — 4.9505 # cos(—0.2020 — 0)] — 12 % (—4.9505) = 0.2000

H = g—gj = —Qy — BoyUy = —0.2000 — (—4.9505 * 1?) = 4.7505
JAC = [H] = [4.7505]
Step 4 0.0169
Ay = H'AP, = 4.%5 o5 = 00035
Step 5

0y = 65 + Aby, = —0.2020 — 0.0035 = —0.2055

Iteration 3
Step 2
2a)

Pg = U2 U1 [Ggl COS(92 - 91) + Bgl sin(92 — 91)] + U22 G22 =
= 1% 1%[—0.4950 * cos(—0.2055 — 0) + 4.9505 * sin(—0.2055 — 0)] + 1% % 0.4950 = —1.0000

2b)
AP = APy = Pgpy — Py = —1 — (—=1.0000) ~ 0 (in MATLAB AP, = —9.3368 % 1079)
Step 3

Qg = U2 U1 [Ggl sin(92 — 91) — BQl COS(GQ — 91)] — U22 BQQ =
= 1% 1%[—0.4950 # sin(—0.2055 — 0) — 4.9505  cos(—0.2055 — 0)] — 1% * (—4.9505) = 0.2053
OP.
H = 872 — —Qy — BpU2 = —0.2053 — (—4.9505 * 1) = 4.7452
2
JAC = [H] = [4.7452]
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Step 4
—9.3368 x 107°

= —1. 1076 ~
1745 9676 x 10 0

Aby = H AP, =

Step 5
0y = 0y + 0 = —0.2055 — 0 = —0.2055

Now go to Step Final

Step Final
P, = UyUy Gy cos(f — 0y) + Byg sin(f; — 65)] + U2 Gyy =
= 1x1%[=0.4950  cos(0 + 0.2055) + 4.9505 * sin(0 + 0.2055)] + 1% % 0.4950 = 1.0208
Q1 = U Uy [Gyysin(f; — 0) — By cos(y — 0,)] — U2 By, =
= 1% 1%[-0.4950 * sin(0 4 0.2055) — 4.9505 * cos(0 + 0.2055)] — 1% * (—4.9505) = 0.0032
Qy = Uy Uy [Go sin(fy — 0)) — By cos(0y — 0,)] — U By =
= 11 [—0.4950 # sin(—0.2055 — 0) — 4.9505 % cos(—0.2055 — 0)] — 1% ¥ (—4.9505) = 0.2053
Por = (Pi+ Pipi) * Spase = (1.0208 +0.2) % 100 = 122.08 MW (in MATLAB Py, =122.0843)
Qa1 = (Q1+ Qrp1) * Shase = (0.0032 +0.02) % 100 = 2.32 MVAr (in MATLAB Q¢1=2.3171)
Qo = (Qa+ Qrpo) * Shase = (0.2053 +0.2) + 100 = 40.53 MVAr (in MATLAB Qg»=40.5255)

g = —G , b=—-—B and bg_12=0

Py = (g12U7 = Uy Us [gr2 cos(8y — 6) + bz sin(6r — 65)]) * Spase =
= (0.4950 % 1* — 1% 1  [0.4950 * cos(0 + 0.2055) — 4.9505 * sin(0 + 0.2055)]) * 100 =
= 102.0843 MW

Py = (92107 = Uy Uy [go1 cos(fs — 61) + oy sin(fa — 61)]) * Spase =
= (0.4950 % 1> — 1% 1 x [0.4950 * cos(—0.2055 — 0) — 4.9505 * sin(—0.2055 — 0)]) * 100 =
= —100 MW

Q2 = ((_bsh—12 - b12)U12 — U1 Uy [g12 sin(0) — 02) — bia cos(0) — 92)]) * Shase =
= ((—0+4.9505) % 1* — 1 % 1 % [0.4950 = sin(0 4 0.2055) + 4.9505 x cos(0 4 0.2055)]) * 100 =
= 0.3171 MVAr

Q= ((=bsh12 = b21)U5 — U Uy [ga1 sin(By — 61) — by cos(f2 — 01)]) * Spase =
= ((—0+4.9505) x 1* — 1 % 1 % [0.4950 = sin(—0.2055 — 0) 4 4.9505  cos(—0.2055 — 0)]) * 100
= 20.5255 MVAr

Pt = Pyt Py = 102.0843 — 100 = 2.0843 MW
or
Pi?fss = (Pgl + PGQ) — (PLDI —+ PLDQ) = (1220843 —+ 100) — (20 -+ 200) = 2.0843 MW
180 180

ANG = [91 92] * 7 = [O — 02055] * 7 = [0 — 1177710]
VOLT = [Uy Us#Upwe =[1 1]%220=1[220 220]
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Example 7.13 Consider again the power system shown in Figure 7.12. In this ezample, let
bus 2 be a PQ-bus with the following data:

e Bus 2: PQ—Z)US, ng = 1, QGQ = 0405255, PLD2 = 2, QLDQ =0.2

Let also € = 107%. By applying Newton-Raphson method, calculate 05, Pai, Qai, Qg and
the active power losses.

Solution

See the MATLAB-codes in Appendix A.

Step 1
la) bus 1 is a slack bus , bus 2 is a PQ-bus , U; = 1 and 6; = 0.
1b)
Gu+3j3Bun G+ jbBi
Go1 + 7 Bar G+ j B
Pgp2 = Pg2— Prp
Qcp2 = Qc2— Qrp2
1lc)

Since the system has only one PQ-bus, the voltage and phase angle of bus 2 are the unknown
variables. As an initial value , let 8y = 0 and Uy = 1.

Step 2
2a)
Py, = UyU,[Gos cos(fy — 61) + By sin(fy — 61)] + U2 Goy
Qy = UyUy[Gy sin(fy — 61) — By cos(fy — 0,)] — Uz By
2b)
AP = APy, =PFPgpy— P,
AQ = AQ2 = Qcp2 — Q2
Step 3
As long as |[AP,| > ¢ and |AQs| > ¢, perform Step 3 as follows:

H = —Qz —Bz2U22
N = P+ GypU;
J = Py— GpU?
L = Q2—B22U22

H N
e < 1N

AHQ o —1 AP2
] = e[
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Next, update AP, and AQs based on updated 65 and U, (i.e Steps 4-5) as follows:

02
Us
Py
@2

AP

AQ

Oy + Aby

Uy (1+ AUY)

Us Uy [Goy cos(By — 61) 4 By sin(fy — 61)] + Uz Gy
Us Uy (G sin(fy — 0)) — By cos(By — 0;)] — U3 Boy
AP, = Pgps — P»

AQ2 = Qap2 — Q2

and check if |AP,| < e and |AQq| < ¢.

Step Final

See Step Final in Example 7.12.

In the next examples, it will be shown that how the ”fsolve” function in MATLAB can be
used for solving non-linear power flow equations.

Example 7.14 Consider the power system shown in Figure 7.153. Let the base power be
Stase = 100 MVA, the base voltage be Upyse = 220 kV. Let also, bus 1 be a slack bus.

System 1 System 2

Figure 7.13. Single-line diagram of a balanced four-bus power system.

The system data (in MW, MVAr, £V, Q and S) is given as follows:

e Line between Bus 1 and Bus 2: Z;, =5+ 565 , by,_12 = 0.0002

e Line between Bus 1 and Bus 3: Z;5 =4 + 760 , bsp,_13 = 0.0002

e Line between Bus 2 and Bus 3: Zy3 =5 + 768 , bsp,_o3 = 0.0002

e Line between Bus 3 and Bus 4: Z3, = 3 + 530, short line

e Bus 1: U; =220, 0, =0, Prp; =10, Qrp1 =2

e Bus 2: PLD2 = 90, QLDQ =10

e Bus 3: PLD3 = 80, QLD?: =10

e Bus 4: PLD4 = 50, QLD4 =10
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Use "fsolve” function in MATLAB, and find

a) the unknown voltage magnitudes and voltage phase angles,

b) the generated active and reactive powers at the slack bus, and the generated reactive
powers at PU-buses (if any),

c) the total active power losses, and the losses in System1 and System 2,

d) the changes (in % compared to the obtained results in task c)) of power losses in both
systems, for an active load increased at bus 2 with 30 MW, i.e. PPy =120 MW.

e) Let Ppps =90 MW. Re-do task d) for a reactive load increased at bus 8 with 10 MVAr,
i.e. Q155 =20 MVAr.

Solution

MATLAB-codes for this example can be found in Appendix A.

For using ”fsolve”, you may need two MATLAB-files, one main file and one for solving z in
0 = g(z) by "fsolve” function, (see the MATLAB-codes in Appendix A). In the second file
you need to define x and g(x) as follows:

o 0o o0 o o o 8
I

[92 050, Uy Us U4]
91(1') = P, — Papo

ga(x) = P3 — Pgps
93(36’) = Py — Papa
94(z) = Q2 — Qg2
95(r) = Q3 — Qs
96(r) = Q4 — Qcpa

, (active power mismatch at bus 2, see equation (7.44))
., (active power mismatch at bus 3)
, (active power mismatch at bus 4)

,  (reactive power mismatch at bus 2)

, (reactive power mismatch at bus 3)

,  (reactive power mismatch at bus 4)

where, P, and @y can be obtained based on equation (7.43).

a) U; = 1.0000 x Upse = 220.0000 KV, 6; = 0°,
Us = 0.9864 X Upgse = 216.9990 kV, 0, = —7.8846°,
Us = 0.9794 X Upgse = 215.4704 kV, 05 = —8.7252°,
Uy = 0.9693 X Upyse = 213.2499 kV, 6, = —10.5585°,

b) Slack bus (bus 1): Pg; = 232.4938 MW, Qg1 = 9.6185 MVAr

c) P =0.1715 MW |, P52 — 23222 MW , Pfot = 24938 MW

Loss

Loss

Loss

d) P =01729 MW = AP =0.8163%

Loss Loss
P2 =3.0236 MW = AP =30.2041 %
Pt =3.1966 MW = AP = 28.1830%
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e) Pl = 01749 MW = AP =1.9825%

Loss Loss
P2 =23620 MW = AP =1.7526 %
Piot =25318 MW = AP =1.7685%

Example 7.15 Consider again the power system in Example 7.14. The System 1 operator
1s interested in the results of the power flow calculations when installing a controllable shunt
capacitor at bus 3 to keep the voltage at its rated (or nominal) value, i.e. Us = 220 kV.
Re-do the tasks in Example 7.1/, and also find the size of the shunt capacitor By, in S.

Solution

In this example, bus 3 will be considered as a PU-bus with Us = 220 kV. MATLAB-codes for
this example can be found in Appendix A. Note that only the changes of the MATLAB-codes
compared to the MATLAB-codes for Example 7.14 are given.

a) U; = 1.0000 x Upyse = 220.0000 kV, 0; = 0°,
Us = 0.9968 X Upgse = 219.2882 kV, 0, = —7.8192°,
Us = 1.0000 X Upgse = 220.0000 kV, 05 = —8.6473°,
Uy = 0.9901 X Upyse = 217.8306 kV, 6, = —10.4051°,

b) Slack bus (bus 1): Py = 232.4490 MW, Q¢ = —14.7469 MVAr
PU-buses (bus 3): Qg3 = 22.5772 MVAr and By, = 0.00046647 S

c) PpYt=0.1644 MW |, P} = 2.2846 MW , Piot = 2.4490 MW

Loss Loss Loss
d) P =0.1644 MW = AP =0%
P2 =29622 MW = AP =29.6595 %
Pt =31266 MW = AP = 27.6684 %
e) PPl =0.1644 MW = AP =0%
PP =29846 MW = APY®2 =0%
Pt =24490 MW = AP =0%

Example 7.16 Consider the power system described in Example 7.15. Now, both system
operators are interested in the results of the power flow calculations when the generator at bus
1 has a fized generation with Pgy and Qg1 obtained in Example 7.15, and a new generator
is installed at bus 4 to be a slack bus with Uy and 0, obtained in Example 7.15. Re-do the
tasks in Fxample 7.15.

Solution

In this example, bus 1 will be considered as a PQ-bus. After modifying the MATLAB-codes
for Example 7.15, the load flow simulations give the following results:
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Uy = 1.0000 X Upgse = 220.0000 kV, 6, = 0°,

Us = 0.9968 X Upgse = 219.2882 kV, 0, = —7.8192°,
Us = 1.0000 X Upgse = 220.0000 kV, 05 = —8.6473°,
Uy = 0.9901 X Upyse = 217.8306 kV, 6, = —10.4051°,

Slack bus (bus 4): Pgy =0 MW, Qg4 = 0 MVAr
PU-buses (bus 3): Qg3 = 22.5772 MVAr and By, = 0.00046647 S

PPl =0.1644 MW |, PPY*2 = 2.9846 MW | P = 2.4490 MW

Loss Loss

P — 0.0373 MW APYSY — 773114 %

Loss = Loss
P2 =923230 MW = APY? = 16896%
Pt =23605 MW = AP = -3.6137%
P = 01644 MW = APY! —0%
P2 —92846 MW = APY?=0%
PPt =24490 MW = APP =0%

Some questions regarding the obtained results:

ql:

q2:

q3:

qb:

Why is APLSZi = 0 in Example 7.15, task d), but not in Example 7.14 and Example
7.167

Why is APt = 0 in Example 7.15 and Example 7.16 , task e), but not in Example
7.147

Why have APY! and APt

Loss Loss

in Example 7.16, task d), decreased?

: In Example 7.15, does By, in tasks d) and e) have the same value as that obtained in

task b)? Motivate your answer.

Why are the obtained voltages in Example 7.15 and Example 7.16 identical?
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Chapter 8

Symmetrical components

8.1 Definitions

Assume an arbitrary un-symmetric combination of three phases, exemplified by the currents
I, I, and I., as shown in Figure 8.1 a).

~i~
(=]

SO0

Figure 8.1. Unbalanced current phasors expressed as the sum of positive-, negative-,
and zero-sequence components.

Based on C. L. Fortesque’s theorem, a set of three unbalanced phasors in a three-phase

system can be resolved into the following three balanced systems of phasors (or symmetrical
components) :

A. Positive-sequence components consisting of a balanced system of three phasors with
the same amplitude, and having a phase displacement of 120 and 240°, respectively.
The phase sequence is abca, as shown in Figure 8.1 b).

B. Negative-sequence components consisting of a balanced system of three phasors with
the same amplitude, and having a phase displacement of 240 and 120°, respectively.
The phase sequence is acba, as shown in Figure 8.1 ¢).

C. Zero-sequence components consisting of a balanced system of three phasors with the
same amplitude and phase, as shown in Figure 8.1 d).

The three balanced systems can be symbolized with 1 (positive-sequence), 2 (negative-
sequence) and 0 (zero-sequence).

103
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The result shown in Figure 8.1 can be mathematically expressed as :

~l

a — Tal + 7a2 + TaO
= In+ T+ Iy (8.1)
c = 7cl + 7c2 + TCO

~l ~
S

The three positive-sequence components can be denoted as

Iy = T,e (8.2)
Icl = 7(116].1200

The corresponding expressions for the negative- and zero-sequence components are as
_ — e
Iy = Iu0€ 120

2 = lpe P (8.3)
7aO = 7bOZTCO

~l

By inserting equation (8.2) and (8.3) into equation (8.1), the following is obtained

Ta = 7al + 7(12 + 7aO
Tb = Oé27a1 + OéTag + TaO (84)
7c = aTal + a27a2 + 7aO
where,
e 1 3
a = e/ = cos120° + jsin 120° = -5 +j§ (8.5)
The following expressions of the symbol « are valid
. e BV
2 _ j240 —j1200 _ _ Lt V9
a“=e e 5 I3
o =1
l+a+a® =0 (8.6)
Oé* — 042
(a®)* e
Equation (8.4) can, by using matrix form, be written as
I,, =TI (8.7)
where the matrix
1 1 1
T=|a®> a 1 (8.8)
a o 1

is called the transformation matriz for the symmetrical components, (see also Appendiz B
where various linear transformations are presented). The current vector

: (8.9)

C

L, =

h

~ ~l ~l
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represents the current phasor of each phase whereas

~| o~~~

I -
L= I, or just Iy = _9 (8.10)
I 0

represents the symmetrical components of the phase a current from which (based on equa-

tions (8.2)-(8.3)) the symmetrical components of the other phase currents can be obtained.

By using equation (8.7), the symmetrical components as a function of the phase currents
can be obtained by :

=TI, (8.11)
where
1 1 a o
T ! = 3 1 o® « (8.12)
11 1

Of course, the symmetrical components can also be applied to voltages. Using the vectors

Ua Ual U—l
U, = | U, and Ug= | U orjust Ug= | U_, (8.13)
Uc UaO U—O

for representing line-to-neutral voltage phasors and symmetrical components, respectively,
the relation between them can be written as

Up, = TU; (8.14)
U, = T'U,, (8.15)

Example 8.1 Cualculate the symmetrical components for the following symmetrical voltages

U, 277/0°
U, =| Uy | = | 277/-120° | V (8.16)
U. 277/ + 120°

Solution

By using equations (8.12) and (8.15), the symmetrical components of the voltage Up, can
be calculated as

U_, 1 1 a o U,
U_g = Us = r]j_l-U-ph = g 1 Oé2 « Ub = (817)
U_y 11 1 U,

1-277+1/120° - 277/ — 120° + 1/240° - 277/ + 120°
1-277+1/240° - 277/ — 120° 4+ 1/120° - 277/ + 120° | =
1-277+1-277/ —120° 41 - 277/ 4 120°

1
3
277/0°
0
0
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As given in the example, a symmetric three-phase system with a phase sequence of abc gives
rise to a positive-sequence voltage only, having the same amplitude and angle as the voltage
in phase a.

Example 8.2 For a Y0-connected three-phase load (Y0 means that the neutral point is
grounded either solidly or through an impedance), phase b is at one occasion disconnected.
The load currents at that occasion are :

za 10/0°
IL,=|1, | = 0 A (8.18)
1. 104 + 120°

Calculate the symmetrical components of the load current as well as the current through the
neutral-ground conductor, I,,.

Solution

I || 1-10£0° 41712070+ 1/240° - 10/ + 120°
I, | = 3 | 110407 +1/240°- 04 1£120°- 104 +120° | = (8.19)
I, 1-10£0°+1-0+41-10Z +120°
6.667/0°
= | 3.333£—60°
3.333£60°
I, = I,+1,+1.=10L0°+0+ 10/ +120° = 10£60° =3I,  (8.20)

As given in the example, the current through the neutral-ground conductor is three times
as large as the zero-sequence current.

8.1.1 Power calculations under unbalanced conditions

Based on the voltage and current phasors of each phase, the three-phase complex power can
be calculated as

S=P+jQ=UJ. +U,J,+T.I = UL T, (8.21)
By introducing symmetrical components, the expression above can be converted to
S = U‘;hI;h = (TU,)Y(TI,)* = U'T*T*I; (8.22)

where t stands for transpose. The expression T*T* can be written as

1 o « 1 1 1 1 00
T'T*= |1 a o a o> 1 |[=3]010 (8.23)
1 1 1 o> a1 0 01

i.e. the transformation is not power invariant since U;hI;h # U, see also Appendix B.
Equation (8.22) can be rewritten as

S=3UT =3U0_1T ,+3U_1 ,+3U_o1, (8.24)
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Since the magnitude of the line-to-line voltages are /3 times the line-to-neutral voltages and
Spase = V3 - Upase - Ipase, the introduction of the per-unit system gives that equation (8.24)
can be rewritten as

= _ V3(V3Uy)' - I
Spu =
\/g : Ubase . Ibase
This implies that the total power (in per-unit value) in an unbalanced system can be ex-

pressed by the sum of the symmetrical components of power. The total power in physical
unit can be obtained by multiplying S, with Spuse, i.e.

= Upu—l T;:m—l + Upu_g T;U—2 + Upu_() T;u_o pu (825)

g = gpu Sbase = Upu—l T;U_l Sbase + Upu—2 T;u_z Sbase + Upu—O T;u_(] Sbase MVA (826>

8.2 Sequence circuits of power system components

8.2.1 Transformers

In the analysis of three-phase circuits under unbalanced conditions, the transformer is rep-
resented by its positive-, negative- and zero-sequence impedances. These can be determined
by analyzing the three-phase transformer, e.g. the YO-A connected shown in Figure 8.2.

A

Figure 8.2. YO0-A connected transformer with neutral point grounded through an
impedance Z,,.

The impedance Z, represents the equivalent impedance of each phase and consists of both
leakage reactance of the primary and secondary windings as well as the resistance of the
windings, i.e. the windings shown in the figure are considered as ideal windings. The
magnetizing current of the transformer can be neglected, i.e. the magnetizing impedance is
assumed to be infinitely large.

By using the direction of currents as shown in Figure 8.2, the following expressions for the
three phases of the transformer can be held

AU, = 1,Z.,+1,7,
AU, = I,Z,+1,7Z, (8.27)
AU, = I.Z.+1,7Z,
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Since I,, = I, + I, + 1., this can be rewritten as
AU, = 1,(Ze+Zy)+ 1120+ 1.2,
+ 1.7,

AU, = I1,7,+1, (Z +7Z, ) (8.28)
AU, = TZn+1,Zy+1.(Zc+ Zy)
which can be written on matrix form
AU, Zo+ 72, Z, Zn 1,
AU, = | AU, | =| Z. Zc+Z. Zy, T, | = ZeI,, (8.29)
AU, Z., Z., Zo+ 2, I

Transforming the above phase quantities to the symmetrical components, the following can
be obtained.

Z. 0 0
Zs=T'"Z4T=| 0 Z. 0 (8.30)
0 0 Z.+37,
i.e.
y Z, = positive-sequence impedance
Z,o = Z.= negative-sequence impedance (8.31)
Zio = Z.+3Z,= zero-sequence impedance

As given above, the positive- and negative-sequence impedances are the same and equal to
Z,. That Z,_1 = Z,_, is not surprising since the transformer impedance does not change if
the phase ordering is changed from abc (positive-sequence) to acb (negative-sequence).

The zero-sequence impedance includes Z. but a factor of 3Z,, is added where Z,, is the
impedance connected between the transformer neutral and the ground. If Z,, = 0, the zero-
sequence impedance will be equal to Z.. Note that to obtain zero-sequence currents, it must
be a connection between the transformer neutral and the ground.

Whereas the positive- and negative-sequence impedances of the transformer are independent
on from which side of the transformer the analysis is performed, the zero-sequence impedance
can vary with a large amount. Figure 8.3 a) shows a Y0-Y0 connected transformer through
which zero-sequence currents can flow since both sides are grounded. The zero-sequence
impedance is given by Z; ¢ = Z, +3(Z,, + Zx).

Figure 8.3 b)-c) show a Y-Y connected and a YO-Y connected transformers through which
zero-sequence currents cannot flow, since no zero-sequence currents can flow in the primary
winding unless a zero-sequence currents flow in the secondary winding.

Figure 8.3 d) shows a YO-A connected transformer through which zero-sequence currents can
flow, but only on the Y0-side since a neutral-ground conductor exists. Note that due to the
induced currents and an mmf-balance, there exist circulating currents in the A-winding, but
they cannot flow into a system connected to the A-winding, i.e. Ta_¢o = Ig_o = Ic—o = 0.

In Figure 8.3 e)-f), no zero-sequence currents can flow on either side due to the connection
types.
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Winding connection Zero-sequence
equivalent circuit

a)

b)

c) P S
Ref.
Ty Zo T,=0
-
d) P S
Ref.

e)

Figure 8.3. Zero-sequence equivalent circuits of transformers with different winding connections.

8.2.2 Impedance loads

A three-phase impedance load is normally Y- or A-connected as shown in Figure 8.4.

The neutral of a Y-connected load may be grounded with or without an impedance. Then
it is termed YO-connected. For the Y 0-connected load shown in Figure 8.4 a), we have:

U, Zo+Z,  Z, Zn 1,
Up,=| Uy | = Z.  Zy+Zn  Zn Iy | = Zupp,Ip, (8.32)
Uc Zn Zn ZC _'_ ZTL [C

This equation can be transformed to symmetrical components as follows:

Uph = TU;= ZLDPhIPh = ZLDPhTIS
=
U, = T 'Zipy, T = Zipsl, (8.33)
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o

]

a

a) YO-connected load b) A-connected load

Figure 8.4. Two possible load configurations

where
ZLDs = T_l ZLDphT = (834)
\[ 7t Tt FuroTotaZ. ZatalytaZ,
= | ZataZy+ a2gc Zot+Zy+Z.  Z, +_a2Zb_+aZi
Zo+a?Zy+aZ, Zo+voaly+a?Z, Zo+Zy+2Z.+92,

As indicated in this matrix, there are non-diagonal elements that are nonzero, i.e. there
exists couplings between the positive-, negative- and zero-sequences. A special case is when
Za= Zy= Z.. In this special case, Z;ps can be written as

Z, 0 0
Zips=| 0 Z, 0 (8.35)
0 0 Z,+37,

Eor a symmetric YO—cgnnected ioad Zip1 = Zipo = Zsand Zrp_o = Zo + 3Z,. If
Z,=0then Z;p_1 = Z1p-2 = Zp—o. However, if the neutral of the load is not grounded,
i.e a Y-connected load, then Z,, = co = Zp_¢ which means that no zero-sequence currents
can flow.

For the A-connected load shown in Figure 8.4 b), the impedance can be A-Y transformed
which results in a Y-connected load:

7ab7ac

Zy = ——abfee (8.36)
Zab+Zac+Zbc

—_ Z v Zpe

Z, = —— b (8.37)
Zab_'_Zac_'_Zbc

N 7(1070

Z, = —— ot (8.38)
Zab_'_Zac_'_Zbc

Z, = (8.39)

For a symmetric A-connected load, i.e. Zy = Zpe = Z4e, the symmetrical components can
be calculated by using equations (8.35) to (8.39) :

Zipor = Za/3 (8.40)
Zip—2 = Za/3 (8.41)
7LD—O = o0 (842)
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8.2.3 Transmission line
Series impedance of single-phase overhead line

The theory of having an overhead line using the ground as a return conductor was discussed
by Carson in 1923. Carson considered a single conductor of unity length (e.g. one meter) in
parallel with the ground, see Figure 8.5.

Surface of

Local earth U, Z, remote earth

A

" TDM 1
I

Zy Fictitious ground

1 Unit return conductor

Figure 8.5. Carson’s single-phase overhead line using the ground as return path

The current I, flows in the conductor using the ground between d — d’ as return path. The
ground is assumed to have an uniform resistance and an infinite extension. The current I
(=—1,) is distributed over a large area, flowing along the ways of least resistance. Kirchhoff’s
law about the same voltage drop along each path is fulfilled. It has been shown that these
distributed return paths may, in the analysis, be replaced by a single return conductor having
a radius ¢4 located at a distance D,q from the overhead line according to Figure 8.5. The
distance D,y is a function of the resistivity of the ground p. The distance D, increases as
the resistivity p increases.

The inductance of this circuit can be calculated as

po o1 o1 Iz 1 p Dag D,q

L,=—Ih—+—In—-2-—1 =—1 1 8.43
27 Do 27 "Dy 27 Du 2w<npa+npd (8.43)
—_— ———

Laa de Lad
where
i = the permeability of the conductor
D, = eV e, for a single conductor with radius ¢,
D, = e Y4, for a return conductor in ground with radius e,

The inductance can according to equation (8.43) be divided into three parts, two apparent self
inductances (Laq, Lqq) and one apparent mutual inductance (L.q). Note that these quantities
are only mathematical quantities without any physical meaning. For instance, they do not
have correct unit inside the In-sign. It is only after the summation they achieve a physical
meaning. Hopefully, the different part expressions will simplify the understanding of the
behavior of a three-phase line. The total series reactance of this single-phase conductor is

Xa = wLa = w(Lm + de - 2Lad) (844)
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By using this line model, having apparent inductances, the voltage drop for a single-phase
line can be calculated as

Uaa’ o Ua - Ua/ . Eaa Ead _a )
{ Uar } B { Ug—Ua } - { Zad Zad ] [ -1, } V/length unit (8.45)

where U,, Ua/,gd and Uy are given in proportion to the same reference. Since Uy = 0 and
Uy —Ug =0, U, can be obtained by subtracting the two equations from each other :
Ua = (Eaa + Zdd — 22ad)Ta = 7(1[(1 (846)
By definition B
Zo =Zaa + Zaa — 2Z4q 2/length unit (8.47)

The impedances in this equation can be calculated as

Zaa = Ta+ JTaa =T+ jwle, $2/length unit

rq+ jrgg = rq+ jwLsg Q/length unit (8.48)
Zad = JTaa = jwleq €/length unit

Zo = Ta+ra+jX, Q/length unit

Zdd

where

re = conductor resistance per length unit

rq = ground resistance per length unit

Series impedance of a three-phase overhead line

In order to obtain the series impedance of a three-phase line, the calculations are performed
in the same way as for the single-phase line. In Figure 8.6, the impedances, voltages and
currents of the line are given.

Since all conductors are grounded at o', ¥, ¢, the following are valid

Uy —Us=0 , Uy—Us=0 , Uos—Ug=0

- - (8.49)
Ij=—U,+1p+1.)

The voltage drop over the conductors can be calculated as

gaa’ ga - ga’ zaa zab Eac zad za

Uy Uy — Uy Zab  Zbb  Zbc  Zbd Iy :

— = | = = = | @ - - V/length unit 8.50
gcc’ gc - gc’ Zac Rbe Ree Red {c / & ( )
Uaa Us—Ug Zad Zbd Zed Zdd 1,4

In a similar way as for the single-phase conductor, the impedances in equation (8.50) are
apparent without any physical relevance. With U, = 0 and by using equation (8.49), the
fourth row can be subtracted from the first row in equation (8.50) which gives

U, — (Ua’ — Ud’) = (Zoa — 2Zaq + Zldﬁa + (Zab — Zad — Zba + Edd)Tb +
+ (zac - zad - Ecd + zdd)jc (851)
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Figure 8.6. Three-phase overhead line with ground as return path

This can be simplified to Uy = Zaala + Zaplp + Zacl.. The impedances Z,q, Za and Z,, are
defined below. Note that when I, = I, = 0, the impedance Z,, is exactly the impedance
of a single-phase line using the ground as return path as described in section 8.2.3. If the
calculations above are repeated for the phases b and ¢, the following can be obtained

U, Zaa Zab Zae | | L
Uy | = | Zaw Zw Zpe I, | V/length unit (8.52)
Ue Zoe Zbe ZLee I,
where
Zoa = Zaa— 2Zad + Zaa /length unit
Zy, = Zp — 2Zpa + Zag /length unit
Zee = Zec— 2Zca+ Zaa /length unit (8.53)
Zab=Zpa = Zab— Zad — Zbd + Zaa §)/length unit
Zve =20y = Zpe— Zpd — Zed + Zaa §/length unit
Zoe=Zea = Zae— Zad — Zed + Zaa /length unit

The impedances can be calculated in a similar way as shown in equations (8.43) and (8.48).
It is important to concern the coupling between the phases. A current flowing in one phase
will influence the voltage drop in other phases. The replacing of a three-phase line with
three parallel impedances, is an approximation which gives that all non-diagonal element of
the Z-bus matrix in equation (8.52) are neglected. In other words, the mutual inductance
between the conductors are neglected. The error this simplification gives is dependent on
several things, e.g. the distance between the conductors, the length of the conductors and
the magnitude of the currents in the conductors.
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Symmetrical components of the series impedance of a three-phase line

Symmetrical components are often used in the analysis of power systems having three-phase
lines, in order to simplify the complicated cross-couplings that exist between the phases.
The quantities in equation (8.52) can be defined as :

a Zaa
bo| = Uph = ZPhIPh = gab
Z(IC

C

ac

be

\ (8.54)

[

7ab
Zb

(]
NI NI N
~1 ~I i

Zbc

cc

The voltage vector (Up, ) and current vector (I, ) can be replaced by the corresponding

symmetrical component multiplied with matrix T according to the section on symmetrical
components :

Uy, =TUs =272, Tl =7,.1,, (8.55)
This equation can be rewritten as

U, = T2, TIL = Z,I, (8.56)

If a symmetrical overhead line (or cable) is assumed, i.e. oo = 2o = Zewand Zoy = Zpe =
Z ge, the following is obtained

(|1 e e Zaa Zay Zac 1 11
ZS = T_IthT = g 1 Oé2 « Zab be 71,0 Oé2 a 1 =
1 1 1 7ac 7bc 7cc a Oé2 1
7aa - 7(11) - 0 - 0
= 0 Zaa Zab 0 (857>
0 0 Z aa + 27 4
Equation (8.56) can be rewritten as
U,
g_g =Us=72,1; = (8.58)
U_-o
7aa - 7(11) 0 0 z—l Z—l z—l
= 0 Zaa — ZLab 0 {—2 = g—2£—2
0 0 Lo+ 2724 I_g Z_ol_g
where
Z_1 = Zgo— Za, = positive-sequence impedance
Z_9 = Zgo — Zay = negative-sequence impedance (8.59)
Z_o = Zgo+ 27, = zero-sequence impedance

By inserting the expressions used in equation (8.53) into equation (8.59), the following can
be obtained

-2 = Eaa - zab (860)
Zaa + 2Zap — 6Z4q + 3Z4qa

NI N

|
=}
I
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Note that the coupling to ground are not present in the expressions for the positive- and
negative-sequence impedances, i.e. the elements having index d in the Z-bus matrix in
equation (8.50) are not included. This means that the zero-sequence current is zero in the
positive- and negative-sequence reference frame, which is quite logical. All couplings to
ground are represented in the zero-sequence impedance. As indicated above, a line by using
this model, can be represented as three non-coupled components : positive-, negative-, and
zero-sequence components. It should be pointed out that some loss of information will occur
when using this model. For example, if only positive-, negative-, and zero-sequence data are
given, the potential of the ground, Uy in Figure 8.6, cannot be calculated. To calculate that
potential, more detailed data are needed. The line model introduced in subsection 6.1.2, is
based on positive-sequence data only, since symmetrical conditions are assumed.

Equivalent diagram of the series impedance of a line

As given above, for a symmetrical line Z_; = Z_,. Assume that this line can be replaced by
an equivalent circuit according to Figure 8.7, i.e. three phase impedances Z, and one return

|
~I
IS
N
N

(S \I

|

o
o>
N]
3~\|

~il
N

a
N
o

[

;

To % amiem 7,

Figure 8.7. Equivalent diagram of the series impedance of a line

impedance Z 5 where the mutual inductance between the phases is assumed zero. With three
phases and one return path, as given by the equivalent in Figure 8.7, the following is valid

Io=T,+1,+1. (8.61)

By using equation (8.61), the voltage drop between the phases and the return conductor can
be calculated as

/ —/

T -0 = U,—Ty—To-Zu—=TatTy+1.)7s
Uy, —~Uy = Uy—Ug—1y Za— (Ta+ 1, +1.)Zs (8.62)
U,—-Uy = U=Uo—1.-Zo— (Ta+ Ty +10)Zg
which can be rewritten to matrix form

- _ _ _ _

Uy = Uy Uo = Uy ZatZs _Zs_ g L,

Ub_UO = Qb—go — 55 Za;l—Zg _Z@_ {b (863)

[ U.—Ug Zg Zsg  Zat+Zg I,
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or

U, = Uy, — Zosly, (8.64)

Since the matrix Z,s is both symmetric and cyclo-symmetric, it can represent a line according
to the assumption made. The matrix Z,3 can be converted to symmetrical components by
using equation (8.57) :

Zo 0 0
Zeog =T 'ZsT=| 0 Z, 0 (8.65)
0 0 Z,+3Zg

When the symmetrical components Z, = Z, and Z, for the line are known, the following is
obtained

(8.66)

With these values of Z, and Zgs, the equivalent in Figure 8.7 can be used, together with
equation (8.63), to calculate the voltage drop between the phases and the return conductor
(= Up, — Uy, ) as a function of the phase currents (=1Iy,).

Note that the equivalent cannot be used to calculate e.g. UE) — U, or U; — U, but only e.g.
(U = TUg) = (Ua — T).

Example 8.3 Solve Example 2.5 by using symmetrical components.

— Ta ZL U’ _(1

Ke > — o —
— [b ZL U[: b

fie = E— o -
— [_( ZL (7/ Z(?
U.o > E— o L
_ [0 ZL() U, (;
U,0 = E— o

Figure 8.8. Network diagram of the system in Example 8.3

Solution

According to the solutions in Example 2.5, the impedances of interest are Z; =234+ 40.16
Q, Z10=234+70.03Q, Z, =479+ j4.81 Q, Z,, = 15.97 + j1.60 Q, Z. = 23.96+752.40 Q2.

The symmetrical components of the line will first be calculated. Note that the line in the
example is given in the same way as the equivalent. The symmetrical components can be
calculated by using equation (8.65) :

Z_1 - 7_2 == 7L == 23 +]016 Q
Zg

= Z1+3710=92+30.250Q (8.67)
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which gives that

Z4 0 0 2.3+ 50.16 0 0
Zs=| 0 Z, 0 |= 0 2.3+ j0.16 0 (8.68)
0 0 Zy 0 0 9.2 +50.25

The symmetrical components for the load can be calculated by using equation (8.57)

1 e a? Z, 0 0 1 1 1
ZiDs = 3 1 a® « 0 Z, 0 a2 a 1| =
11 1 0 0 Z, a o 1

29.28 4+ j2.94 9.09+ j3.24 9.55 — j1.37
= | 955—41.37 29.28+42.94 9.09+ 324 | Q (8.69)
9.00 + j3.24 9.55 — j1.37 29.28 + j2.94

The applied voltage is symmetric, i.e. it has only one sequence, the positive one :

220/0°
U,=T'U, =| 0 % (8.70)
0

The equation for this un-symmetric three-phase network can be described as

Us = (Zs + Zypps)1s (8.71)
which can be rewritten as
8.11/ — 5.51°
I, = (Zs + Zyps) 'Ug = | 2.22/149.09° A (8.72)

1.75/ — 155.89°
The symmetrical components for the voltage at the load can be calculated as

201.32/ — 0.14°
Urps = Zipsls = | 5.13/-26.93° | V (8.73)
16.10/25.67°

The power obtained in the radiators can be calculated by using equation (8.24)
S = 3U; p If = 4754 + j477 VA (8.74)
i.e. the thermal power is 4754 W.

As given above, only the voltage drop at the load and the load currents can be calculated by
using the symmetrical components. The ground potential at the load cannot be calculated,
but that is usually of no interest.

Previously, in Example 2.5, 4.1 and 4.2, the ground potential at the load has been calculated
by using other types of circuit analyses. It should be pointed out that the value of the ground
potential has no physical interpretation if the value of Z; and Z, has been obtained by
using the symmetrical components of the line according to equation (8.66). As given by
the solutions, the load demand, phase voltages at the load and the currents at the load are
physically correct by using either one of the four methods of solution.
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Shunt capacitance of a three-phase line

The line resistance and inductance are components that together form the series impedance
of the line. The capacitance that is of interest in this section, forms the shunt component.

The series component, usually the inductance, gives a limit on the maximum amount of the
current that can be transmitted over the line, and by that also the maximum power limit.
The capacitive shunt component behaves as a reactive power source. The reactive power
generated, is proportional to the voltage squared, which implies that the importance of the
shunt capacitance increases with the voltage level. For lines having a nominal voltage of
300-500 kV and a length of more than 200 km, these capacitances are of great importance.
In high voltage cables where the conductors are more close to one another, the capacitance
is up to 20-40 times larger than for overhead lines. The reactive power generation can be a
problem in cables having a length of only 10 km.

There is a fundamental law about electric fields saying that the electric potential v at a
certain point on the distance d from a point charge ¢, can be calculated as :

v = d
4dmepd

where ¢y = 8.854 x 10712 F/m, permittivity of vacuum. This law gives that there is a direct
relationship between the difference in potential and accumulation of charges. If two long,
parallel conductors are of interest, and if there is a voltage difference, v; — vy, between the
lines, an accumulation of charges with different sign, +@Q and —@), will take place. The
magnitude of the total charge () depends mainly on the distance between the lines but also
on the design of the lines. For cables, the material between the conductors will also have an
influence on the charge accumulation. The capacitance between the two conductors is equal
to the quotient between the charge () and the difference in potential :

Q

V1 — Vg

(8.75)

C =

(8.76)

For a three-phase line, the corresponding capacitance is located between all conductors.
When having a difference in potential between a conductor and ground, an accumulation of
charges will also occur in relation to the magnitude of the capacitance. In Figure 8.9, the
different capacitances of a three-phase overhead line are given. A line is normally constructed
in a symmetrical way, i.e. the mean distance between the phases are equal. Also, the
mean distance between a phase and ground is the same for all phases. In Figure 8.9, this
corresponds to the case that ¢, = cpe = coc and ¢,y = g = ¢y When the entire line is of
interest.

In the same way as given earlier for the series impedances, the positive-, negative- and
zero-sequence capacitances can be calculated. Only the results from the calculations will be
presented here.

2

C=C, = % F/m (8.77)
In [ATEJ

Co = —2™0 iy (8.78)

n [2HA2]

Teqa?
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Figure 8.9. Capacitances of a three-phase overhead line without earth wires

where, according to Figure 8.10

C_1 = positive-sequence capacitance
C_, = negative-sequence capacitance
C_y = zero-sequence capacitance

H = \3/ H1 H2 H3
A = \3/ A1A2A3
a = +/G12013023

Teq = the equivalent radius of the line = e~'/* x real radius of the line

Ground level

Figure 8.10. Geometrical quantities of a line in the calculation of capacitance

Note that C] is equal to Cs, but Cy has a different value. When having a closer look
at the equations for C, it can be seen that 2H/A =~ 1 according to Figure 8.10, which
means that the distance to ground has a relatively small influence. If the conductors are
located close to one another, then 2H = A. The line model described in section 6.1.2, uses
only the positive-sequence capacitance C; for the line. In principle, this can be regarded
as a A-Y-transformation of the capacitances between the phases since they are the main
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contributors to the positive- and negative-sequence capacitances. The coupling to ground is
of less importance. In cables, the positive- and negative-sequence capacitances are usually
higher owing to the short distance between the phases.

For C_g, the coupling to ground is very important. When calculating C_g, all phases have
the same potential by the definition of zero-sequence. This implies that the capacitances
between the phases cup, Che, Cae are not of interest. However, the electric field is changed
since all three conductors have the same potential. As given in the equation, the distance
to ground is very important (power of three inside the In-sign) in the calculations of the
zero-sequence capacitance.

8.3 Analysis of unbalanced three-phase systems

As discussed in section 8.2, lines and transformers can be represented by their positive-
, negative- and zero-sequence impedances. These sequences are decoupled which implies
that for instance a certain zero-sequence current will only cause a zero-sequence voltage
drop whereas positive- and negative-sequence voltages will be unchanged. Also three-phase
generators can in an equivalent way be described by decoupled positive-, negative- and zero-
sequence systems.

This property implies that the entire system including generators, lines and transformers
can be represented by three decoupled systems.

8.3.1 Connection to a system under unbalanced conditions

In subsection 6.1.3, the connection to a network under symmetrical (or balanced) conditions
was discussed. It has been shown that by applying the Thévenin theorem the entire linear
balanced system (as seen from a selected point) can be represented by a voltage source
behind an impedance. The value of the impedance can be calculated when knowing the
three-phase short circuit current at the selected point.

A balanced power system as seen from a selected point p can be described by three de-
coupled single-line sequence systems (or networks) termed as positive-, negative and zero-
sequence systems. The model of the positive-sequence system is indeed the single-line system
of a balanced three-phase system that has been studied in chapters 5-6, i.e. in these chapters
we have studied the positive-sequence system of a balanced three-phase system.

Assuming a linear balanced three-phase power system, the sequence systems can be repre-
sented by their Thévenin equivalents as shown in Figure 8.11. Note that there are no voltage
sources in the network for the negative- and zero-sequence systems. Thus, the negative- and
zero-sequence systems only consist of impedances.

From Figure 8.11, the following can be obtained in pu:

Up—l = UThp - 7Thp—l Tp—l

Up—o = 0—=Zrppol,s (8.79)
U;n—O = 0- ZThp—O [p—O
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p-1 p IP_2 p IP_O p
= L » o = ——»—0 . ——O
z Thp—1 _ 4 Thp=2 _ Z Thp—0 —
UThp Up_l Up_z Up—()
O O O

a) Positive-sequence b) Negative-sequence

¢) Zero-sequence

Figure 8.11. Thévenin equivalents as seen from a selected point p in the system.

8.3.2 Single line-to-ground fault

Assume that a single line-to-ground fault through an impedance Z; occurs at a point p in

the system, as shown in Figure 8.12.

Three-phase power system

p

" Phase a

1 Phase b — =
.\\]fb =0
.. Phase ¢ —
\Ifc =0 ,/'/

Figure 8.12. Single-phase short circuit in phase a

Based on equation (8.11) the following is obtained:

Tp_l 1 1l «o a2 Tfa 1 Tfa
L = (1,2 |= A a? 0 | =3 Iy,
o 11 1 0 Tta
- - - 1
= Ip—l = Ip_2 = Ip—O = §[f“

From Figure 8.12, we have U,, = Z 1 4,.

(8.80)

Using the first row in equation (8.14) and equations (8.79)-(8.80), the following is obtained

in pu:

Upa :Up_l + Up_z + Up_o = 7f7fa = 37]071,_1 =
.

= UThp - 7Thp—l Tp—l - 7Thp—z Tp—l - 7Thp—o Tp—l = 37f7p—1 pu

(8.81)
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Thus,

_ _ 30U
Tra=3T, 1 == _ The _
Zrhp—1+ Zrhp—2 + Lrhp—o +3Z¢

If the quantities are expressed in their physical units (i.e. kV, kA and ), then

pu (8.82)

T UThp

pa — \/g

— Zrnp—1 Lp1 — Zrnp—2 L1 — Zrnp—o Lp—1 = 3ZI,-1 kV

ST, (8.83)

Tra=3T,,= V3
fa=31p1 == — — —
Zrhp—1+ Zrhp—2 + Zrhp—o+3 25

If the equivalent diagram of a line shown in Figure 8.7 is used, and if U; in the figure is
connected to Ué through an impedance Z ¢, then by virtue of equation (8.66) the current I,
can be obtained as

7 Us—Uyp

a

7.~ Ty 3(T, — T)
Z_

057—1 +Z, 2+ Z_o+3Z

 Zat+Zs+Zy  Zo 4+

(8.84)

which is similar to equation (8.83). To calculate the current of a single line-to ground fault,
the equivalent in Figure 8.7 can be used if Zrpp—1 = Zrpp—o.

Example 8.4 At a 400 kV bus, a solid three-phase short circuit occurs, giving a fault current
of 20 kA per phase. If a solid single line-to-ground fault occurs at the same bus, the fault
current will be 15 kA in the faulted phase. The Thévenin impedances in the positive- and
negative-sequence systems at the bus can be assumed to be purely reactive and equal. (This
1s mormal for high voltage systems since the dominating impedances origin from lines and
transformers which have dominating reactive characteristics, equal for positive- and negative-
sequences). Also the zero-sequence impedance can be assumed to be purely reactive. Calculate
the Thévenin equivalents for the positive-, negative- and zero-sequences at the fault.

Solution

A solid short circuit means that Z; = 0. Since all impedances are purely inductive, the fault
currents will also be inductive, i.e.

Ty = —j20 kKA T, = —j15 kA (8.85)

Three-phase fault :
Based on equation (6.25),

— — U 400 .

Zrhot1 = Zypo = \/ng;q) = 5 () = j11.55 Q (8.86)
Single-phase fault :
From equation (8.83),

— 3Urn 3400

Zrho= ——— —Tap 1 —Zgpo—32r=———— —2.(511.55) = j23.09 Q (8.87
Th—0 \/gjsclq> Th—1 Th—2 f \/§ (—j15) (] ) J ( )
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8.3.3 Analysis of a linear three-phase system with one unbalanced
load

As discussed in subsection 8.3.1, the three sequence systems are decoupled when having a
balanced system. However, in the case having unsymmetrical loads, these three sequence
systems will not be decoupled.

Assume a linear power system with an unbalanced load. The system is composed of a voltage
source, lines and transformers. This system can be analyzed as follows:

1. Draw the impedance diagrams of the positive-, negative and zero-sequence systems,
for the entire network excluding the unbalanced load.

2. Find the Thévenin equivalents of the positive-, negative- and zero-sequence systems as
seen from the point the unsymmetrical load is located.

3. Calculate the positive-, negative- and zero-sequence currents through the unbalanced
load.

4. Calculate the positive-, negative- and zero-sequence voltages at the points of interest.

5. Calculate the positive-, negative- and zero-sequence currents through components that
are of interest.

6. Transform those symmetrical components to the phase quantities that are asked for.

The abovementioned points can be treated in different ways which will be shown in the
following example.

Example 8.5 Consider again the system described in Example 6.2. The following additional
data is also given:

o Transformer is A-Y0 connected with Y0 on the 10 kV-side, and Z, = 0.

o The zero-sequence impedance of the line is 3 times the positive-sequence impedance,

1.€. 721_0 == 3721_1.

o The zero-sequence shunt admittance of the line is 0.5 times the positive-sequence shunt
admittdnce, 1.€. ysh—Zl—O =0.5 ysh—Zl—l'

o When the transformer is disconnected from bus 3, a solid (i.e. Z; = 0) single line-to-
ground applied to this bus results in a pure inductive fault current of 0.2 kA.

e The positive- and negative-sequence Thévenin impedances of the power system are iden-
tiC(Zl, 1.€. ZTh—l = ZTh_g.

o The load is Y0-connected with Z, = 0. Furthermore, half of the normal load connected
to phase a is disconnected while the other phases are loaded as normal, i.e. it is an
unsymmetrical load.
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Calculate the voltage at the industry as well as the power fed by the transformer into the
line.

Solution

1) Start with the building of the impedance diagram of the positive-, negative- and zero-
sequence for the whole system excluding the unsymmetrical load, see Figure 8.13.

Positive- and negative-sequence components in per-unit values (from the
solution to Example 6.2):

power system
a) Positive-sequence system

N
N

(=2 21-2

4 : :|:ysh—2]—2 )_;sh—21—2:|:

power system - -

b) Negative-sequence system

1 I Ysh-21-0 ysh—ZI—OI

power system - -

¢) Zero-sequence system

Figure 8.13. Positive-, negative- and zero-sequence systems.
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Urh =Urgppu = 1/0°
Zrh-1=Zrh—2= Zrnpu = j 0.0137
Zor =Z10 = Zypu = 5 0.004
o1 =Zo1_g = Zglpu = 0.0225 + 7 0.0075

_ _ _ 70.003
Ysh—21—-1 = Ysh—21—2 = Ysh—21pu — o (8.88)

Ap1=A,2=4, , B,.i1=B,.=B]
C’L I—CL 2—CL 5 DL—IIDL—2:EL
A, =A,=4 |,
C,=C_o=0C |, D1

U:JI

Sl U:J|

=B_,
D_,

Zero-sequence components in per-unit values:
0.2/-90° 0.2/ -90°

scrp = = = 48.5437/ — 90°
e Ii7o 0.00412 85437 =90

7Th—0 = = - 27Th—1 - O == j 00344
sC1®

Zio=211 =70.004 |, since Z,=0
Zo1—0 =3 Zoy—1 = 0.0675 + 50.0225

_ _ 70.003
Ush—o1—0 =0.9Ygp_91-1 = 4

Ap 0 =14Tg 910 Z21—o = 1.0000 + 5 0.0001

B _o=2Z_9=0.0675+ j0.0225

CL0=Tan o102+ Uep_21_0 " Z21—0) = 0.0000 + 5 0.0015
Dy_o=A;_¢=1.0000+ 50.0001

(8.89)

2) Next step is to replace the networks with Thévenin equivalents as seen from the in-

dustry connection point (bus 1), i.e. Urhiusts ZThiusi—1 Z Thiusi—2 A0d ZThbusi—0, SE€
Figure 8.11.

The twoport of the entire positive-sequence network between bus 4 (which represents
the voltage source) and bus 1 (the industry connection point) is given by (see also
Example 6.2):

[753;:] - {
:L

Based on Figure 8.11 a),

Z E— Ubusl—l -
U ﬁ— :| [ Tbusl—l B (890)
0.9999 + 50.0000 0.0225 + 50.0252 ] { Upusi—1 ]

0.

0000 + 70.0030 1.0000 + 70.0000 Thus1—1

Thiusi—1 1S obtained by setting Ipus1_1 = 0 as follows:

Ury, 2 Urhpusii +B_1-0 =

(8.91)

‘Q:I h>|

Uthpusi—1 = — 1.0001/ — 0.0019°

|

-1
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3)

The Thévenin impedance Zpppus1—1 is obtained by setting Upj, = 0 as follows:

0= Z_l Ubusl—l + E—1 Tbusl—l =

Upsi—1  B_ 8.92
Sbustol 2ol (0.0225 + 50.0252 (8.92)
[busl—l A—l

ZThbusl—l = -

To set Up, = 0, it means that bus 4 is short circuited. Therefore in this case, the
positive-sequence system will have a configuration similar to the negative-sequence
system as shown in Figure 8.11 b). Furthermore, since Zi1n =249, Zio-1 = Zi2—o
and Yy, 011 = Ysp_21_o, they imply that A ;| = A 5 and B_; = B_,. Thus, in a
similar way as shown in equation (8.92), the Thévenin impedance Z rhibusl—o is obtained
as follows:

0=A oUps12+B olpys12 =
B, B, —
=2 = 2l T pesi—1 = 0.0225 + j0.0252

-1

(8.93)

Ubusl—2

]busl—2 A—2

ZThbusl—2 = -

b

Based on Figure 8.3 d), the zero-sequence of a A-YO0-transformer should be modeled
as an impedance to ground on the Y0-side, as shown in Figure 8.13 ¢). As seen in the
figure, the feeding network (i.e. power system) is not connected to the industry load
from a zero-sequence point of view. The twoport of the network from the transformer
(bus 3) to the connection point of the industry (bus 1) is given by

|: ?busi&—o :| _ [ . 0 :| _ |i 1 7t—O :| |i EL—O EL—O :| |i gbusl—o :| _
Ibus3—0 L [bus3—0 0 1 CL—O DL—O [busl—O

_ [ Z—0 E—O Ubusl—o _

B L U—O E—0 :| [ 7busl—O B (894)

[ 1.0000 4 50.0001 0.0675 4 50.0265 | [ Upus1—o
~ | 0.0000 + 50.0015 1.0000 + j0.0001 | | Tpus1—o

The Thévenin impedance Zpppusi—o is obtained as follows:

0 :Z_o Ubusl—o + E—O 7busl—O =

Tyro B 8.95
“usl=0 220 — 0.0675 + 50.0265 (8.95)
[busl—O A—O

ZThbusl—O = -

From Example 6.2 the per-unit value of the load (i.e. Z1p) is known. At the half load
in phase a (i.e. Zpp, =2Z1p), the impedance matrix of the symmetrical components
is calculated based on equation (8.34) :

2Zp 0 0
Zips =T ' Zipp, T=T7" 0O Zwp 0 |T
0 0 Zip
1.0667 + 50.8000 0.2667 + j0.2000 0.2667 + j0.2000

= | 0.2667 + 70.2000 1.0667 + 70.8000 0.2667 + j0.2000
0.2667 + 70.2000 0.2667 + j0.2000 1.0667 + j0.8000

(8.96)
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The equation of the entire system is now given by

UThbusl
Upy = 0 = (Zs —+ ZLDs) I (897)
0
where
Zrhpusi—1 0 0 Lpusi—1
Zs = 0 Zrhpusi—2 0 and L= | Tousi—
0 0 Z Thius1—0 Tyusi—o

The symmetrical components of the currents through the load can be calculated as:

0.8084/ — 37.1616°
Iy = (Zs + Zrps) ' Upn = | 0.1596/142.3433° (8.98)
0.1541/143.7484°

The symmetrical components of the voltage at the industry (bus 1) are given by
Upusi—1 0.9733/ — 0.3126°
Ubusls - Ubusl—2 — ZLDS IS — 00054[1063400 (899)
Upusi—o 0.0112/ — 14.8199°

The positive-, negative- and zero-sequence voltages and currents (in per-unit values)
at the transformer connection to the line (bus 2) are given by

[ Upuso1 | [ Az21 Bro1i || Upusion | [ 0.9915/ — 0.6607°

| D21 | | Ot Dpoy || Tpusion | | 0.8066/ — 36.9937°

[ Upusoo | [ Ao Bro ][ Upsia | [ 0.0028/52.3414° (8.100)
| Tuso2 | | Cr—2 Dro || Tusio | | 0.1596/142.3414° '

[ Upusz—o | [ Ao Br—o | [ Upusizo | [ 0.0006/53.7455°

| Tyuso0 | | Cno Dio || Tusio | | 0.1541/143.7455°

The symmetrical components of power (in physical units) fed by the transformer into
the line can be expressed by

Shus2—1 = Ubusa—1 Tpyeo 1 Shase = 0.3221 + 5 0.2369 MVA
Shusz—2 = Ubusa—2 Tpyso o Spase = 0 — 5 0.0002 MVA (8.101)
Sbus2—-0 = Upusa—0 Tyusa—o Sbase = 0 — j0.00005 MVA
Based on equation (8.14), the line-to-neutral voltages can be obtained. To express
these quantities in physical units, they must be multiplied with the corresponding

base voltage, then divided by /3, since the base voltage is based on line-to-line voltage.
Thus,

Ubusia U 5.7122/ — 0.4154°
Upustv | = T Upusts - —er® = | 55918/ — 119.9774° (8.102)
Upusic V3 5.5535/119.4555°

Based on equation (8.26), the total power fed by the transformer into the line is given
by
S = Shusz—1 + Spusz—2 + Spusz_o = 0.3221 + j0.2366 MVA (8.103)



128

8.4 A general method for analysis of linear three-phase
systems with one unbalanced load

In larger unsymmetrical systems, it is necessary to use a systematic approach to analyze
system voltages and currents. In this section, all system components except one load, are
symmetrical. In the demonstration below, a small system is analyzed in the same way as
can be performed for a large system. The example given below is identical to the one in
section 6.2 but with the difference that the load which will be connected to bus 2 is assumed
unbalanced. The voltage source is represented by bus 3. All quantities are expressed in
per-unit values.

Consider the simple balanced system shown in Figure 8.14. For a balanced system, all system
quantities and components can be represented only by their positive-sequence components.
The only difference between this system and the system studied in section 6.2 is that here
we use index -1 which has been omitted in section 6.2.

Figure 8.14. Single-phase impedance diagram of a symmetrical system.

The Y-bus matrix of the positive-sequence system is identical with Y in section 6.2, i.e.

zbusl—l
{bus2—1 =L =Y, U; =
Ibus3—1 ( )
1 1 1 — 8.104
Zrp1-1 Z121 _71271 0 Ubusl—l
_ __1 _1 1 _ 1 U
- Z2171 22171 1 Zt,1 th—l _bus2—1
0 _Zt71 Zi1 Ubus3—1
This Y-bus matrix can be inverted which results in the corresponding Z-bus matrix :
U1 - Yl_l Il - Zl Il (8105)

Since Tyusi—1 = Ipuso—1 = 0, the third row in equation (8.105) can be written as

Ubus3—1 = Zl<37 3) : Tbus3—1 =
T Ubus?)—l (8106)

Ibus?)—l =77 79 o\

Z1(3,3)
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where Z;(3,3) is an element in the Z-bus matrix. With this value of the current inserted
into equation (8.105) all voltages are obtained.

Upusic1r = Z1(1,3) - Tpusz—1 (8.107)
Ubus2—1 - Z1(2>3)'Ibus3—1 (8108)

So far, all calculations are identical to those in section 6.2. Corresponding calculations can
be performed for an arbitrary large system having impedance loads and one voltage
source. Assume a system with a voltage source at bus ¢. The current at bus ¢ and the
voltage at another bus r can then be calculated as:

T Ubusi—l

I uSi— = . 8.109
’ ' Zl (Za Z) ( )

Ubusr—l - UThbusr = Zl(ra Z) . 7busi—l (8110)

Now assume that an unsymmetrical impedance load is connected to bus 2 which apparently
leads to the changes of the system voltages and currents. The actual voltages can be obtained
by using the theorem of superposition, i.e. as the sum of the voltages before the connection of
the load and with the voltage change obtained by the load connection. This can be expressed
by using symmetrical components as:

U,1 = Uprel + UAl
U, = Uprez+ Uaz (8.111)
U::) = UpreO + UAO

where, (below with all buses it means all buses in the system excluding the bus
connected to the voltage source)

U} is a vector containing the positive-sequence voltages at all buses (i.e. bus 1 and bus 2
in this example) due to the connection of the unsymmetrical load.

U, is a vector containing the negative-sequence voltages at all buses due to the connection
of the unsymmetrical load.

Uj is a vector containing the zero-sequence voltages at all buses due to the connection of
the unsymmetrical load.

Upre1 is a vector containing the positive-sequence voltages at all buses prior to the connec-
tion of the unsymmetrical load.

Upre2 is a vector containing the negative-sequence voltages at all buses prior to the connec-
tion of the unsymmetrical load. All elements of this vector are zero, since the system
is under balanced conditions prior to the connection of the unsymmetrical load.

Upreo is a vector containing the zero-sequence voltages at all buses prior to the connection
of the unsymmetrical load. All elements of this vector are zero, since the system is
under balanced conditions prior to the connection of the unsymmetrical load.

UAa: is a vector containing the changes in the positive-sequence voltages at all buses due to
the connection of the unsymmetrical load.
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Ua2 is a vector containing the changes in the negative-sequence voltages at all buses due
to the connection of the unsymmetrical load.

Uao is a vector containing the changes in the zero-sequence voltages at all buses due to the
connection of the unsymmetrical load.

Equation (8.111) can be rewritten by expressing the voltage changes by a Z-bus matrix
multiplied with the current changes injected into the buses as follows:

U,1 = Uprel + ZAl IAl
U, = 0 +Zazla (8.112)
U:J - 0 + ZAO IAO

where

Z 1 is the Z-bus matrix of the positive-sequence system with the shortened voltage source.
Z - is the Z-bus matrix of the negative-sequence system.
Z o is the Z-bus matrix of the zero-sequence system.

IA1 is a vector containing the injected positive-sequence current changes into the buses. In
this example only Ia1(2) # 0, since the load is connected to bus 2.

IA2 is a vector containing the injected negative-sequence current changes into the buses. In
this example only Ia2(2) # 0.

Iao is a vector containing the injected zero-sequence current changes into the buses. In this
example only Iao(2) # 0.

Figure 8.15 shows the positive-, negative- and zero-sequence systems which will be used to
calculate the voltage changes due to connection of the unsymmetrical load at bus 2. The
difference between the positive-sequence system in Figure 8.15 and the A-system used in
section 6.2 is that the load is now represented by the currents injected into the buses. The
infinite bus (bus 1) is assumed to be directly connected to ground and the transformer is
Y0-YO connected. The admittance matrices of the sequence networks shown in Figure 8.15
can be formed as

_ 1 _ 1 __ 1
Yar = ZLDl;l L Z21-1 L Z21711
L Z21-1 Z21-1 Zi—1 |
i _ 1 _1 __1 T
o Zrp1— Z21-2 Z21-2
Yar, = LD1_2 Lo 1 1 (8.113)
L Z21-2 Z21-2 Zi—2 |
i _ 1 _1 __1 T
Yao = ZLDl;() L Z21-0 L Z21-0 )
L Z21-0 Z21-0 Zi—o |

Note that Ya; = Yi(1 : 2,1 : 2), i.e. the row and column corresponding to the bus
connected to the voltage source (bus 1 in this example) are removed, see also Y a in section
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Positive-sequence
with shortened
voltage source

Negative-sequence

LD1-2

0
/ Zero-sequence
=0

LD1-0
20(2) IA()(I)

Figure 8.15. Positive-, negative- and zero-sequence diagrams for calculations of the
voltage changes.

6.2. Furthermore, Yaz = Y a1 for a system that is only composed of lines, transformers and
symmetrical impedance loads, since their positive- and negative-sequence components are
identical.

From the above Y-bus matrices the corresponding Z-bus matrices can be calculated as

Zar = Y3
Zaz = Yas (8.114)
Zao = Yao

Since only the sequence components of the injected currents (i.e. Ia) into the bus to which
the unsymmetrical load is connected (bus 2 in this example) are nonzero, these currents are
of interest and will be calculated as follows. Based on equation (8.112), we have

U;us2—1 = Uj(2) = Upusa—1 +Za1(2,2)1a1(2)
——
from eq. (8.110)
Upuara = Up(2) = 0 + Za2(2.2) 1aa(2) (8.115)
U;us2—0 = Ui)(2) = 0 + ZA0(272) IA0(2>

Assuming that the unsymmetrical load is connected to bus r (r = 2 in this example), the
equations can be summarized as

U;usr—l
ULr) = | Uprs | = Upre(r) + Zalr,r) Ia(r) = (8.116)
U;usr—o
[ UThbusr ] ZAI(Ta T) 0 0 ZAI(T)
= 0 |+ 0 Zas(rr) 0 Tas(r)
i 0 ] 0 0 Zao(r,r) Tao(T)
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It should be pointed out that equation (8.116) indeed describes the Thévenin equivalents
as seen from bus r, where the voltage behind the positive-sequence impedance is Urhpusr =
Upusz—1 and the three Thévenin impedances are Za1(r,7), Zaz(r,7) and Zao(r, 7).

Assume that ihe unsymmetrical load is YO-connected with Z 7 ppusre i phase a, Z 1 ppusrs il
phase b and Z ppusre in phase c. The voltage drop over the load is

gLDbusra ZLDbusra - 0 0 {LDbusra
Urpbustp, = | ULpbusry | = 0 Zrpbusry 0 Trpbusry | =
ULDbusrc 0 0 ZLDbusrc ILDbusrc
= ZLDbusrph ILDbusrph (81 17)

By introducing symmetrical components, this can be converted to

/ -1 -1
Us (T) = Ubusr 2 =T .U-LDbusrp}1 =T ZLDbusrp}1 :[LDbusrpl1 =

= E[‘_l ZLDbusrphrI:ILDbusrs = _ZLDbusrs IA (T) (8118)

Vv
=Z1,Dbusrs

Note that Iippusrs 1S injected into the load, however I (r) is injected into the bus. Therefore,
ILDbusrs = _IA (T)

Next based on equations (8.116) and (8.118), the current Ia(r) can be expressed by
IA(T) == [ZA(Ta T) + ZLDbusrs]_1 Upre(r) (8119)

These values of the symmetrical components of the current at bus r can then be inserted
into equation (8.112) where the symmetrical components of all voltages can be calculated.
The voltage at bus k can then be calculated as :

U/l(k‘) = Uprel(k) —|— ZAl(k:,r) IAl(r)
Uy(k) = Zaag(k,7)Taz(r) (8.120)
Uy(k) = Zao(k,7)Iao(r)

Example 8.6 Consider again the system described in Example 6.5. The following additional
data is also given:

o The infinite bus (i.e. bus 1) has a grounded zero connection point.
o Transformer T1 is A-Y0 connected with Y0 on the 10 kV-side, and Z,, = 0.
o Transformer T2 is Y0-Y0 connected with Z,, = 0.

o The zero-sequence impedances of the lines are 3 times the positive-sequence impedances,
and the zero-sequence shunt admittances of the lines are 0.5 times the positive-sequence
shunt admittances.

o The load LD1 is A-connected.
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e The load LD2 is Y0-connected with Z, = 0. Furthermore, half of the normal load

connected to phase a is disconnected while the other phases are loaded as normal, i.e.
LD2 is an unsymmetrical load.

Calculate the efficiency of the internal network operating in this unbalanced condition.
Solution

1) Start with the building of the impedance diagram of the positive-, negative- and zero-
sequence networks for the entire system excluding the unsymmetrical load, see Figure
8.16.

2 Zzs-l :|;
[7T/1 = l — l | 72
-1 14_ Yn-2311 _>l Zpi
1 - 45 57
24-1 | 12-1
l I
L“ Vor-2asi "L
a) Positive-sequence system
2 _23—2 3|
I |
L [ | Ty
lefz l‘_ Ysn-23-2 _>l !ZLD12
= 2 4 7 5 -
242 | 12-2
1 I
l" 3_731172472 "l

2 22370 ?|)
S . 1!
Z,, L‘_ Ysn-23-0 _>L
24-0 | 12-0
. !
l“ Y 2470"1

¢) Zero-sequence system

Figure 8.16. The sequence networks of the system in Example 8.6

Positive- and negative-sequence components in per-unit values (from the
solution to Example 6.3):
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Uprp,=U, =1/0°

71&1—1 :7t1—2 = 7tl;zm =) 0.0438
71&2—1 :7&—2 = 7t2;zm = j 0.1333
723_1 :723_2 = 7231,“ = 0.0017 + ] 0.003
_ o o _ J0.0013 (8.121)
Ysh—23—1 = Ysh—23—2 = Ysh—23pu = 9
724_1 :724_2 - 724pu == 00009 + j 00015
_ _ _ 70.00064
Ysh—24—1 = Ysh—24—2 = Ysh—24pu = 9
Zipi-1 =Z1pi-2 = Zrpipu = 0.64 + 5 0.48
Zero-sequence components in per-unit values:
Zy_o=2Zy_1 =70.0438 , since Z, =
Zioo=Zp_1 =70.1333 , since Z, =
723_0 == 3723_1 - 00051 + j 0009
_ _ 70.0013
Ysh—23-0=05Ygp 931 = 4 (8.122)
724_0 - 3724_1 == 00026 + j 00045
_ _ 70.00064
Ush—24—0 =0.0Ygp_941 = 4

Zr1pi—o =00 , since A-connected

Next, the admittance matrix of the positive-sequence network (i.e. Y;) will be formed
in a manner described in section 8.4. Bus 1 is included in order to determine the
voltage at all buses prior to the connection of the unsymmetrical load. However, the
load LD2 is not included in the Y-bus matrix since it is unsymmetrical. It implies
that Y] is identical with the admittance matrix Y in Example 6.3 with the exception
of the fifth diagonal element in which the unsymmetrical load LD2 is not included, i.e.
Y] =Y with Y5 = i, see equation (6.49).

2) Next step is to replace the sequence networks with Thévenin equivalents as seen from

bus 5, i.e. UThbusE)a7Thbus5—177Thbus5—2 and 7Thbus5—07 see Figure 8.11.

First, the Z-bus matrix is calculated as follows:

Z1:Y1_1:

0.6429+50.5264
0.6429+50.4827
0.6412+50.4797
0.6429+50.4827
0.6429+50.4827

0.6429+50.4827
0.6429+50.4827
0.6412+50.4797
0.6429+50.4827
0.6429+50.4827

0.6412+450.4797
0.6412+450.4797
0.6412+450.4797
0.6412450.4797
0.6412450.4797

0.6429+450.4827
0.6429+450.4827
0.6412+4-50.4797
0.6437+50.4842
0.6437+50.4842

0.6429+450.4827
0.6429+450.4827
0.6412+450.4797
0.6437+50.4842
0.6437450.6175

Then, based on equation (8.110), the Thévenin voltage Urhbuss can be obtained as

UThbusS = Z1(5> 1)Tbusl—l = Z1(5> 1)

U
_—Th _ _0.968/ — 2.413°

Z:(1,1)

(8.123)
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Based on equations (8.113)-(8.114), the positive-sequence impedance of the Thévenin
equivalent can be obtained from the Z-bus matrix of the positive-sequence system
with voltage source shortened. This implies that in forming Y a1, the row and column
corresponding to the bus connected to voltage source (i.e. bus 1) in matrix Yy are
removed. Thus,

Yo, - -2 0
221 1 _ Zao3—1 Z24-1
—= Y334 0 0
_ Z23-1 N
Yar = A 0 v 1 (8.124)
Zog—1 441_1 th271
0 0 —= -—
Zi2-1 Zi2-1
The matrix Za; can now be obtained as follows:
0.0018450.0423  0.0018+50.0421  0.0018+30.0423  0.0018+;0.0423
_ 0.0018450.0421  0.0036+50.0449  0.0018+30.0421  0.0018+50.0421
Za1i =Y, = (8.125)

0.0018+30.0423
0.0018+50.0423

0.0018+50.0421
0.0018+4-50.0421

0.0026+350.0438
0.0026+350.0438

0.0026+350.0438
0.0026+50.1771

Note that the element (4,4) corresponds to bus 5 since the row and column correspond-
ing to bus 1 is removed. This implies that

Zrnpuss—1 = 0.0026 + j0.1771 (8.126)

The Thévenin impedance of the negative-sequences Zpppuss—2 can be calculated using
the corresponding matrix of the negative-sequence. The only difference between the
positive- and negative-sequence networks is that there is no voltage source in the
negative-sequence system.

Since all impedances (and thereby all admittances) in positive- and negative-sequence
networks are identical, the following is valid

Thus, B B
Zrhbus5—2 = ZLThbuss—1 = 0.0026 + 50.1771 (8.128)

The Y-bus matrix of the zero-sequence is different compared with the other sequences,
both owing to different numerical values but also because of the zero-sequence connec-
tions in transformers and loads.

V4 1 1
Y221_0 _Zaz o Z2i0 0
__ Yas_ 0 0
Yao=| Zzo 35’ 0 . ) (8.129)
Zoa—o 441_0 _Zfzfo
0 L P
where
Y ! + ! +7 + ! +7
2-0 = = = Ysh—23—0 T = T Ysh—24-0
Zyn—o  Za—o Zso
— 1
Yz 0 = = + Ysn—23—0
Z23-0
— 1 1
Yuo = = T Ysh—2a—0t =

Zia—0
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Corresponding Z-bus matrix is obtained as the inverse

0.0000+50.0438  0.0000+30.0438 0.0000+50.0438 0.0000+30.0438
0.0000+4-70.0438 0.0051+30.0528 0.0000+450.0438 0.0000+30.0438

Zao=Yahp = 1
A0 A0 0.0000-+50.0438  0.0000+0.0438  0.0026450.0483  0.0026+750.0483 (8.130)
0.0000+50.0438  0.0000+0.0438  0.0026450.0483  0.0026+50.1816
Note that element (4,4) corresponds to bus 5. Thus,
T rhvuss—o = 0.0026 + j0.1816 (8.131)

Next, since all Thévenin equivalents as seen from bus 5 are identified, the voltage vector
and impedance matrix expressed in equation (8.116) can now be obtained as follows:

[ U thbuss 0.968/ — 2.413°
Upre(5) = 0 = 0
.0 0
[ ZThbusS—l . 0 0
Za(5,5) = 0 Zrhbuss— 0 - (8.132)
L 0 0 ZThbusS—O
[ 0.0026 + j0.1771 0 0
= 0 0.0026 + 50.1771 0
i 0 0 0.0026 + 50.1816

3) Determine the symmetrical components of the unsymmetrical load by using equation
(8.118) and Zppap, from the solution to Example 6.3.

27 1.p2pu 0 0
ZLDbusSs = T_1ZLDbu55phT = T_l 0 7LD2;zm 0 T =
0 0 Z 1.D2pu
3.0083 + 70.9888 0.7521 + 50.2472 0.7521 + 50.2472
— | 0.7521 4+ j0.2472 3.0083 + j0.9888 0.7521 + j0.2472 (8.133)

0.7521 + j0.2472 0.7521 + 70.2472  3.0083 + j0.9888

The symmetrical components of the currents through the load can now be determined
by using equations (8.119) and (8.132).

0.3315/155.8442° Ia1(5)
Ian(5) = — [Za(5,5) + Zipbusss]  Upre(5) = | 0.0653/ — 26.5244° | = | Taa(5)
0.0653Z — 26.6221° Tao(5)

(8.134)

4) The symmetrical components of all voltages can be calculated by using equations
(8.110) and (8.120).
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Uj(2) = Z1(2,1) Tpusi1 + Za1(2,5)Ia1(5) = 0.96187 — 3.1760°
Uy(2) = Zaa(2,5)Ia2(5) = 0.0028/61.0623°

U,(2) = Zao(2,5)Ia0(5) = 0.0029/63.3779°

Ui(3) = Z1(3,1) Tpusi—1 + Za1(3,5)Ia1(5) = 0.9581/ — 3.2745°
Uy(3) = Zaa(3,5)Iaz(5) = 0.0028£60.9638°

Uy(3) = Zao(3,5)Ia0(5) = 0.0029/63.3778° (8.135)
Ui(4) = Zi(4, 1) Tpua1 + Za1(4,5)Ta1(5) = 0.9614/ — 3.1976°
U,(4) = Zaa(4,5)Ia2(5) = 0.0029/60.0356°

Uy(4) = Zao(4,5)Ia0(5) = 0.0032/60.3527°

U (5) = Z1(5,1) Tpusi—1 + Za1(5,5)Ia1(5) = 0.9465/ — 5.6970°
UL(5) = Zaa(5,5)Ia2(5) = 0.0116/62.6242°

U,(5) = Zao(5,5)Ia0(5) = 0.0119/62.5733°

Note that the element numbers given in the above equations are the bus numbers.
However, for Za matrices, since the row and column corresponding to the bus con-
nected to the voltage source (in this example bus 1) are removed, Za (k, ) corresponds
to the element Za(k — 1,7 — 1), i.e. with Za(2,5) it means the element Za(1,4).

Since Z, and i, are lossless, the system losses are in the lines, i.e. Zo3 and Zas. The
positive-, negative- and zero-sequence currents through these impedances are expressed

by
Ui(2) - Ui(3)

Tyo31 = L = 1.1972/ — 401209°
231
/ 17
Iy03_9 = U2(21 U2(3)20.0034z—24.1174°
Z23—2
- U,(2) — U,L(3
Tyo50 = O(l 0():0.00001153.37780 (8.136)
23-0
! 17
Tpou1 = Ul@ U1(4):O.33l41—24.1061°
Z24—1
/ 17
Tyoq 0 = Uz@ U2<4):O.06531153.4756°
Z24—2
! _ !
Tyou o = UO@ U0<4>:O.06531153.3779°
Z24—0

Positive-, negative- and zero-sequence powers injected into the line with impdance Z,3
are given by

Spos1 = UL(2)T 95, = 0.9203 + j0.6921

Syao = UL(2) 493 5 = (7.60 + j5.72) x 107° (8.137)
Szaso = Up(2)Tpp5 o =424 x 1072 4 j2.61 x 1071
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By using equation (8.25), the total power flowing through Z,3 is given by
S 793, = Sz23-1 + Sz93-2 + Sz23-0 = 0.4602 + 50.3461 (8.138)
In a similar manner, the following can also be obtained:

§224m = U/1(2)7*224—1 + U/2(2)7*224—2 + U:J(Q)T*ZM—O = 0.1489 + j0~0567
§Z23m = U/1(3)7;23—1 + U/2(3)7;23—2 + U{)(?’)T;z:’)—o = 0.4589 + 50.3461
Suonnn = UV 5ou |+ UL(DT 5y o + Up(4)T 50y o = 0.1488 + j0.0567

The efficiency can now be obtained as:

0. Real (S z03,,,) + Real(S z24,,,)

i il — 99.7911% (8.139)
Real(S z23,,) + Real(S z24,,)

77:

The efficiency can also be calculated as follows:

Sinj = U} (2) <_U—Th7_t 12/1(2) ) Uy <70 _Zfi@) ) LUy (*O _75_60(2) ) *

where, S;,; is the total power injected into the system by the infinite bus. Next, the
total load is calculated as follows:

_GG)P 10E)P

SLDw = = — +04+U(5)[-Ta1(5)]"+U3(5)[~Ia2(5)]"+Ug(5)[~Lao(5)]"
LD1-1 LD1-2
Thus, B
n = 100 - ZealS 10w o, (8.140)
Real(Smj)

Note that (8.139) is valid if the losses are only in the lines. However, (8.140) is a
general expression regardless of where the losses are.



Appendix A
Matlab-codes for Examples in Chapters 6-7

A.1 Example 6.2

clear

deg=180/pi;
rad=1/deg;

%——-- Example 6.2

% Choose the base values

Sb=0.5; Ub10=10; Ib10=Sb/Ub10/sqrt(3) ;Zb10=Ub10°2/Sb;
Ub70=70; Ib70=Sb/Ub70/sqrt(3);

%Calculate the per-unit values of the Thevenin equivalent of the system
UTh=70%exp (j*0*rad) ;

Isc=0.3%exp(j*-90%*rad) ;

UThpu =UTh/Ub70;

Iscpu =Isc/Ib70;

ZThpu =UThpu/Iscpu;

% Calculate the per-unit values of the transformer
Zt=j%4/100;Snt=5;
Ztpu=Zt*Sb/Snt;

%Calculate the per-unit values of the line
Z21pu=5%(0.9+j*0.3) /Zb10;
ysh21pu=5* (j*3*1E-6)*Zb10/2;

%Calculate the per-unit values of the industry impedance
cosphi=0.8;sinphi=sqrt(l-cosphi~2);
Un=Ub10;PLD=0.4;absSLD=PLD/cosphi;

SLD=absSLD* (cosphi+j*sinphi) ;

ZLDpu=Un"2/conj(SLD)/Zb10

% The twoport of the system
AL=1+ysh21pu*xZ21pu;

BL=Z21pu;

CL=ysh21pu* (2+ysh21pu*Z21pu) ;
DL=AL;

F_L=[AL BL ; CL DL];
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F_Th_tr=[1 ZThpu+Ztpu ; 0 11;
F_tot=F_Th_tr*F_L;

%The impedance of the entire system
Ztotpu=(F_tot (1,1)*ZLDpu+F_tot(1,2))/(F_tot(2,1)*ZLDpu+F_tot(2,2))
I4pu = UThpu/Ztotpu;

%The power fed by the transformer into the line
U2pu_I2pu=inv(F_Th_tr)*[UThpu; I4pu];
S2=U2pu_I2pu(1l,1)*conj(U2pu_I2pu(2,1))*Sb

%The voltage at the industry
Ulpu_Ilpu=inv(F_tot)* [UThpu;I4pul;
Ul=abs(Ulpu_Iipu(1l,1))*Ubl0,

A.2 Example 6.3

clear

deg=180/pi;
rad=1/deg;

%——-- Example 6.3

% Choose the base values

Sb=0.5; Ub70=70; Ib70=Sb/Ub70/sqrt(3);
Ub10=10; Ib10=Sb/Ub10/sqrt(3);Zb10=Ub10~2/Sb;
Ub04=04; Ib04=Sb/Ub04/sqrt(3);Zb04=Ub04~2/Sb;

%iCalculate the per-unit values of the inAnite bus
U1=70/Ub70;

%#Calculate the per-unit values of the transformer T1 and T2
Zt1=j*7/100;Snt1=0.8;

Zt1lpu=Zt1*Sb/Snt1;

Zt2=3j%8/100;Snt2=0.3;
Zt2pu=Zt2+Sb/Snt2;

%Calculate the per-unit values of Lineland Line2
Z23pu=2%[0.17+3j*0.3]/Zb10;
ysh23pu=2x* (j*3.2%1E-6)*Zb10/2;

Z24pu=1x[0.17+j*0.3]/Zb10;
ysh24pu=1*(j*3.2*1E-6)*Zb10/2;



%#Calculate the per-unit values of the impedance LD1 and LD2

cosphilD1=0.8;sinphilLD1=sqrt (1-cosphilD172);
UnLD1=Ub10;PLD1=0.5;absSLD1=PLD1/cosphilD1;
SLD1=absSLD1*(cosphilD1+j*sinphil.D1) ;
ZLD1pu=UnLD1"2/conj (SLD1)/Zb10;

cosphilD2=0.95;sinphilD2=sqrt (1-cosphilD2"2) ;
UnLD2=Ub04 ;PLD2=0.2;absSLD2=PLD2/cosphilD2;
SLD2=absSLD2* (cosphilD2+j*sinphilD2) ;
ZLD2pu=UnLD2"2/conj (SLD2) /Zb04;

%Y-BUS
Y22=1/Zt1pu+1/Z23pu+ysh23pu+1/Z24pu+ysh24pu;
Y33=1/Z23pu+ysh23pu+1/ZLD1pu;
Y44=1/7Z24put+ysh24pu+l/Zt2pu;

Ybus=[ 1/Ztipu -1/Ztlpu 0 0
-1/Zt1pu Y22 -1/Z23pu  -1/Z24pu
0 -1/723pu Y33 0
0 -1/224pu 0 Y44
0 0 0 -1/Zt2pu

Zbus=inv(Ybus) ;

%Calculate the efficiency
I11=U1/Zbus(1,1);
U2=Zbus(2,1) *I1;
U3=Zbus (3,1)*I1;
U4=Zbus (4,1)*I1;
U5=Zbus(5,1) *I1;

S1=Ul*conj(I1)*Sb;
1Z23=(U2-U3) /Z23pu;
1724=(U2-U4) /Z24pu;
PfLinel=real (Z23pu)*abs (IZ23) "2xSb;
PfLine2=real (Z24pu) *abs (I1Z24) “2*Sb;

eta=(real(S1)-PfLinel-PfLine2)/real(S1);

Z£4=0;

YD=Ybus(2:5,2:5) ;

ZD=inv (YD) ;
Isc4=U4xIb10/(Zf4+ZD(4-1,4-1));
absIsc4=abs(Isc4);
angIsc4=angle(Isc4)*deg;

-1/Zt2pu;
1/Zt2pu+1/ZLD2pul ;
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A.3 Example 7.10

% Start of file
clear,
clear global

deg=180/pi;
maxiter=10;
EPS=1e-4,;

k1=-0.2; k2=1.2; k3=-0.07; k4=0.4;

% Step 1
converged=0; iter=0; x=3/deg;

while “converged & iter < maxiter,

% Step 2
delta_gx=k4- (k1*x+k2*cos(x-k3));

% Step Final
if all(abs(delta_gx)< EPS),
converged=1;

iter=iter,
xdeg=x*deg
else
% Step 3
Jac=k1-k2*sin(x-k3); %Jac=dfx/dx;
% Step 4
delta_x=inv(Jac)*delta_gx;
% Step 5

x=x+delta_x;
iter=iter+i1;
end, % if all

if iter==maxiter,
iter=iter,
disp(’The equation has no solutions’)
disp(’or’)
disp(’bad initial value, try with another initial value’)
end, % iter
end, % while
% End of file
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A.4 Example 7.12

% Start of file
clear,Y%
clear global

Sbase=100; Ubase=220; deg=180/pi;
%Step 1

% la)
Ul=1;thetal=0;PLD1=0.2;QLD1=0.02;%
U2=1;PG2=1;PLD2=2;QLD2=0.2;

%1b)

Z212=0.02+j*0.2;%

Y=[1/Z12 -1/Z12 ; -1/Z212 1/712];%
G=real(Y); B=imag(Y);%
PGD2=PG2-PLD2;

hic)

theta2=0;

iter=0;%
while iter < 3,
iter=iter+i1;
%Step 2
h2a)
P2=U1xU2*%(G(2,1) *cos(theta2-thetal)+B(2,1)*sin(theta2-thetal) )+U2"2xG(2,2);
%h2b
deltaP=PGD2-P2;
%Step 3
Q2=U2*U1*(G(2,1)*sin(theta2-thetal)-B(2,1)*cos(theta2-thetal))-U2"2xB(2,2);
H=-Q2-U2"2*B(2,2);
JAC=[H];
%Step 4
DX=inv (JAC) * [deltaP];
delta_theta2=DX;
%Step 5
theta2=theta2+delta_theta?2;
end,

%Step final

P1=U1xU2*x(G(1,2) *cos(thetal-theta2)+B(1,2)*sin(thetal-theta2))+U1"2xG(1,1) ;%
Q1=U1xU2*(G(1,2)*sin(thetal-theta2)-B(1,2)*cos(thetal-theta2))-U1"2*B(1,1);
Q2=U2+U1*(G(2,1) *sin(theta2-thetal)-B(2, 1) *cos(theta2-thetal))-U2"2*B(2,2) ;
PG1=(P1+PLD1)*Sbase; QG1=(Q1+QLD1)*Sbase; QG2=(Q2+QLD2)*Sbase;

g=-G;b=-B;bsh_12=0;
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P_12=(U1"2xg(1,2)-U1*U2*(g(1,2) *cos(thetal-theta2)+b(1,2)*sin(thetal-theta2)))*Sbase;
P_21=(U2"2xg(2,1)-U2*U1*(g(2,1) *cos(theta2-thetal)+b(2,1) *sin(theta2-thetal))) *Sbase;
Q_12=((-bsh_12-b(1,2))*U1"2-...

U1xU2x(g(1,2) *sin(thetal-theta2)-b(1,2) *cos(thetal-theta2)))*Sbase;
Q_21=((-bsh_12-b(2,1))*U2"2-. ..

U2xU1x(g(2,1) *sin(theta2-thetal)-b(2,1) *cos(theta2-thetal)))*Sbase;

PLoss=P_12+P_21; %or PLoss=(PG1+PG2)-(PLD1+PLD2)*Sbase;

ANG=[thetal theta2]’*deg;
VOLT=[U1 U2]’x*Ubase;

% End of file

A.5 Example 7.13

% Start of file
clear,Y%
clear global

tole=1e-6;

Sbase=100; Ubase=220; deg=180/pi;
%Step 1

% la)
Ul=1;thetal=0;PLD1=0.2;QLD1=0.02;
PG2=1;QG2=0.405255;PLD2=2;QLD2=0.2;
%1b)

212=0.02+j*0.2;

Y=[1/7212 -1/712 ; -1/7Z12 1/712];
G=real(Y); B=imag(Y);
PGD2=PG2-PLD2;

QGD2=QG2-QLD2;

hlc)

theta2=0;

U2=1;

P2=U1xU2*x(G(2,1) *xcos(theta2-thetal)+B(2,1) *sin(theta2-thetal) )+U2"2xG(2,2);
Q2=U2*U1*(G(2,1)*sin(theta2-thetal)-B(2,1)*cos(theta2-thetal))-U2"2xB(2,2);
deltaP=PGD2-P2;
deltaQ=QGD2-Q2;

%Step 3
while all(abs([deltaP;deltaQ])> tole),
H=-Q2-B(2,2)*xU2"2;



145

N=P2+G(2,2)*U2"2;
J=P2-G(2,2)*U2"°2;
L=Q2-B(2,2)*U2"2;
JAC=[H N ; J L];

%Step 4

DX=inv(JAC) *[deltaP;deltaQ] ;

%Step 5

theta2=theta2+DX(1); %DX(1)=delta_theta2
U2=U2* (1+DX(2)) ; %DX (2)=delta_U2/U2
%Step 2

P2=U1*xU2*(G(2,1) *cos (theta2-thetal)+B(2,1)*sin(theta2-thetal))+U2°2*G(2,2) ;
Q2=U2%U1*(G(2,1)*sin(theta2-thetal)-B(2, 1) *cos(theta2-thetal))-U2"2*B(2,2);
deltaP=PGD2-P2;
deltaQ=QGD2-Q2;

end, %while

%Step final

P1=U1xU2*%(G(1,2) *cos(thetal-theta2)+B(1,2)*sin(thetal-theta2))+U1"2xG(1,1) ;%
Q1=U1*xU2%(G(1,2)*sin(thetal-theta2)-B(1,2)*cos(thetal-theta2))-U1"2xB(1,1);
Q2=U2*U1*(G(2,1)*sin(theta2-thetal)-B(2,1)*cos(theta2-thetal))-U2"2xB(2,2);
PG1=(P1+PLD1) *Sbase; QG1=(Q1+QLD1)*Sbase; QG2=(Q2+QLD2)*Sbase;

g=-G;b=-B;bsh_12=0;
P_12=(U1"2xg(1,2)-U1xU2*x(g(1,2) *cos(thetal-theta2)+b(1,2)*sin(thetal-theta2)))*Sbase;
P_21=(U2"2xg(2,1)-U2xU1*(g(2,1) *cos(theta2-thetal)+b(2,1) *sin(theta2-thetal))) *Sbase;
Q_12=((-bsh_12-b(1,2))*U1"2-. ..

U1xU2x(g(1,2) *sin(thetal-theta2)-b(1,2) *cos(thetal-theta?2)))*Sbase;
Q_21=((-bsh_12-b(2,1))*U2"2-. ..

U2xU1x(g(2,1) *sin(theta2-thetal)-b(2,1) *cos(theta2-thetal)))*Sbase;

PLoss=P_12+P_21; %or PLoss=(PG1+PG2)-(PLD1+PLD2) *Sbase;

ANG=[thetal theta2]’*deg;
VOLT=[U1 U2]’*Ubase;

% End of file

A.6 Example 7.14

% To run Load Flow (LF), two MATLAB-files are used, namely
% (run_LF.m) and (solve_1f.m)

% Start of file (run_LF.m)
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clear’,

clear global

Voo Too oo o oo fo o oo To o o foTo Jo o Fo o To o o o

tole=1e-9; deg=180/pi; rad=1/deg ;

oo Too oo o oo oo Jo o o

% Base values

Too oo oo o o o fo o Too o

Sbase=100; Ubase=220; Zb=Ubase~2/Sbase;

Voo oo o oo oo Jo o o

% Bus data

Voo oo to oo foTo fo oo

% Number of buses

nbus=4;

%Bus 1, slack bus

U1=220/Ubase; thetal=0xrad; PLD1=10/Sbase; QLD1=2/Sbase;
%Bus 2, PQ-bus

PG2=0/Sbase; QG2=0/Sbase; PLD2=90/Sbase; QLD2=10/Sbase;
%Bus 3, PQ-bus

PG3=0/Sbase; QG3=0/Sbase; PLD3=80/Sbase; QLD3=10/Sbase;
%Bus 4, PQ-bus

PG4=0/Sbase; QG4=0/Sbase; PLD4=50/Sbase; QLD4=10/Sbase;
Voo ot oo o foTo foToto

% Line data

Voo oo To oo oo Jo o o

Z12=(5+j*65) /Zb;bsh12=0.0002%*Zb; %

Z13=(4+j*60) /Zb;bsh13=0.0002%*Zb; %

Z23=(5+j*68) /Zb;bsh23=0.0002x*Zb; %

Z34=(3+j*30) /Zb;bsh34=0;

Too oo ot o fo o fo o fo oo

% YBUS matrix

oo Too oo o oo oo Jo o o

y11=1/Z12+1/713+j*bsh12+j*bsh13; y12=-1/212; y13=-1/Z13; y14=0;%
y21=-1/712; y22=1/712+1/7Z23+j*bsh12+j*bsh23; y23=-1/7Z23; y24=0;%
y31=-1/713; y32=-1/723; y33=1/Z13+1/723+1/234+j*bsh13+j*bsh23; y34=-1/Z34;%
y41=0; y42=0; y43=-1/734; y44=1/734;7

YBUS=[ 1;% Define YBUS

G=real (YBUS); B=imag(YBUS);

Voo oo oo o oo foTo Too o oo fo o fo o foo o oo fo o Fo o To foTo Fo o
% PGD for PU- and PQ-buses

oo Too To o To oo fo o Toa Jo o o fo o Jo o Fo o Fo o To Jo o Fo o To oo Fo o
PGD2=PG2-PLD2; % for bus 2 (PQ-bus)
PGD3=PG3-PLD3; % for bus 3 (PQ-bus)
PGD4=PG4-PLD4; % for bus 4 (PQ-bus)
PGD=[PGD2 ; PGD3 ; PGD4];

Voo ToTo oo o oo Jo o Toa To o o oo fo o To o To o o o
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% Define the column vector QGD for PQ-buses

Tolo o o o o o o o o o o o o o o o o o o o o o o o o

QGD=[ 1;

oo oo oo To oo To o To o To oo fo o Jo o Fo o o fo o Fo o To o To Fo o To o To fo o Fo o o Fo o Vo o To o Jo Fo o

% Use fsolve function in MATLAB to run load flow

ToTo ot to oo oo ToTo To oo fo o fo o Toa o o To fo o To o o o To Fo o To foTo fo o To o To Fo o Fo o To fo o o fo

% Unknown variables [theta2 theta3 theta4 U2 U3 U4]’;

% Define the initial values of the unknown variables

X0=[0 0 011 1]’; % Flat initial wvalues

s_z=size(X0);

nx=s_z(1,1); % number of unknown variables

% The function below is used for fsolve (type "help fsolve" in MATLAB)
options_solve=optimset(’Display’,’off’,’TolX’,tole, ’TolFun’,tole);

% Parameters used for fsolve
PAR=[nx ; nbus ; Ul ; thetall;’ Ul and thetal are known (slack bus).
[X_X,FVAL,EXITFLAG,QUTPUT]=fsolve(’solve_1f’,X0,options_solve,G,B,PGD,QGD,PAR);

if EXITFLAG™ =1,
disp(’No solution’),
EXITFLAG=EXITFLAG,
return

end,

% Solved variables X_X=[theta2 theta3 thetad4 U2 U3 U4]’;
ANG=[thetal X_X(1) X_X(2) X_X(3)]’;% Voltage phase angles
VOLT=[U1 X_X(4) X_X(5) X_X(6)]’; % Voltage magnitudes

ANG_deg=ANG*deg;% in degrees
VOLT_kV=VOLT*Ubase; % in kV

Tolo o o o o o o o o o o o o o o o o o o o o o o o Jo To o o T ToTo oo oo oo oo oo oo o o o Jo o o o T T o To o o oo oo oo
% The generated active and reactive power at slack bus and PU-buses
Tolo oo o oo o oo oo oo oo o oo T o o o o ToToTo o ToTo T o oo oo o o o o o o o T o o To T o o To T To T oo oo oo o o
g=-G;b=-B;
% At slack bus, bus 1
P12=g(1,2)*VOLT(1)"2-...

VOLT (1) *VOLT (2) *(g(1,2) *cos (ANG(1)-ANG(2) ) +b(1,2) *sin (ANG(1)-ANG(2))) ;
P13=g(1,3)*VOLT(1)"2-...

VOLT (1) *VOLT (3) *(g(1,3)*cos (ANG(1)-ANG(3))+b(1,3)*sin(ANG(1)-ANG(3)));
Q12=(-bsh12-b(1,2))*VOLT(1)"2-...

VOLT (1) *VOLT(2)*(g(1,2)*sin(ANG(1)-ANG(2))-b(1,2)*cos(ANG(1)-ANG(2)));
Q13=(-bsh13-b(1,3))*VOLT(1)"2-...

VOLT (1) *VOLT(3)*(g(1,3)*sin(ANG(1)-ANG(3))-b(1,3)*cos(ANG(1)-ANG(3))) ;%
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PG1=P12+P13+PLD1;Y%

QG1=Q12+Q13+QLD1;%

% You may also use equation (7.43) (Pk and Qk) to find PGl and QG1
PGl= ; 7% based on equation (7.43)

QGl= ; % based on equation (7.43)

PG1_MW=PG1*Sbase;%
QG1_MVAr=QG1#*Sbase;

o ToTo oo o To o o Jo o o To o oo o Jo o o oo o o o Jo o o o o Jo o o

o lo o oo o Too o

% Losses

oo oo oo To o o
PLoss_tot=(PG1+PG2+PG3+PG4) - (PLD1+PLD2+PLD3+PLD4) ;%
PLoss_tot_MW=PLoss_tot*Sbase;

PLoss_Sysl= ;% Find the power losses in System 1 (pu)
PLoss_Sys1_MW=PLoss_Sysl*Sbase;
PLoss_Sys2_MW= ; % Find the power losses in System 2 (MW)

% End of file (run_LF.m)

FotoTo oo To To o To To o To oo

% Second file

Do lo Voo To To oo To oo To o

% Start of file (solve_1f.m)

% This function solves g(x)=0 for x.

function [g_x]=solve_1f(X,G,B,PGD,QGD,PAR);

nx=PAR(1); nbus=PAR(2); U1=PAR(3); thetal=PAR(4);

PGD2=PGD (1) ; PGD3=PGD(2); PGD4=PGD(3); QGD2=QGD(1); QGD3=QGD(2); QGD4=QGD(3);
theta2=X(1); theta3=X(2); thetad4=X(3); U2=X(4); U3=X(5); U4=X(6);

ANG=[thetal theta2 theta3 thetad4]’ ; VOLT=[U1 U2 U3 U4]’;

% We have nx unknown variables, therefore the
% size of g(x) is nx by 1.

g_x=zeros(nx,1);



%Based on equation (7.43), find Pk and Qk
P2=
P3=
P4= ;
Q2= ;
3=
W=

% Active power mismatch (PU- and PQ-buses)
% Bus 2

g_x(1)=P2-PGD2;

% Bus 3

g_x(2)=P3-PGD3;

% Bus 4

g_x(3)=P4-PGD4;

% Reactive power mismatch (PQ-buses)
% Bus 2

g_x(4)=Q2-QGD2;

% Bus 3

g_x(5)=Q3-QGD3;

% Bus 4

g_x(6)=Q4-QGD4;

% End of file (solve_lf.m)

A.7 Example 7.15

% Changes in file run_LF.m

Voo oo to oo foTo fo oo

% Bus data

Voo oo oo o oo Jo o o

% Number of buses
nbus=4;

%Bus 3, PU-bus

PG3=0/Sbase; U3=220/Ubase; PLD3=80/Sbase; QLD3=10/Sbase;

FooTo To o To To o To To o
% Line data

Vololoto o o oo oo o

Tolo o o o o o o oo oo o
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% YBUS matrix
FotoTo oo To To o To To o To oo

Dot To Voo To oo To o To To oo fo o o Fo o o fo o o fo o o Fo o Fo o o Fa
% Define PGD for PU- and PQ-buses
TotoToTo T To To T To To T o To T o fo S o Foto o fo Jo o Fo oo Fo o Fo o o Fa Tl

Too oo to oo oo foTo oo o oo fo o fo o oo o oo o

% Define QGD for PQ-buses

Voo ToTo oo o oo To o To o To o o oo Jo o Fo o To o o o

QGD2=QG2-QLD2; % for bus 2 (PQ-bus)

QGD4=QG4-QLD4; % for bus 4 (PQ-bus)

QGD=[QGD2 ; QGD4];

oo oo oo To oo To o To o To oo fo o Jo o To o o oo To o To o To fo o To o To oo Fo o o Fo o Fo o To o Jo Fo o
% Use fsolve function in MATLAB to run load flow
oo oo oo To oo To o To o To oo Jo o Jo o To o o oo Fo o To o To Fo o To o To fo o To o o Fo o Fo o To o Jo Fo o
% Unknown variables [theta2 theta3 theta4 U2 U4]’;
% Define the initial values of the unknown variables
X0=[0 0 0 1 1]’; % Flat initial values

% Parameters used for fsolve
PAR=[nx ; nbus ; Ul ; U3 ; thetall;%

% Solved variables X_X=[thetal theta2 thetad U2 U4]’;
ANG=[thetal X_X(1) X_X(2) X_X(3)]1’;%
VOLT=[U1 X_X(4) U3 X_X(5)]1’;

Tolo oo o o o o o o o o o o o o o o o o o o ol o Jo To o o To o To oo oo oo oo oo oo o o o o o o o T T o To o o oo oo oo
% The generated active and reactive power at slack bus and PU-buses
Tolololo o o oo oo oo oo oo o o oo o oo oo ToToTo T ToTo oo oo oo o o o o o o o oo o To o T o To oo o oo 1o oo oo o o
g=-G;b=-B;

% At slack bus, bus 1

% At PU-buses, bus 3

QG3= ;%
QG3_MVAr=QG3*Sbase;

Fototo ot To Footh
% Losses

Vol oo o o o o o
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% End of file (run_LF.m)

Too oo oo fo o fo o Too o
% Second file
oo Too oo o oo oo Jo o o
% Start of file (solve_1f.m)

function [g_x]=solve_l1f(X,G,B,PGD,QGD,PAR);

nx=PAR(1); nbus=PAR(2); U1=PAR(3); U3=PAR(4); thetal=PAR(5);
PGD2=PGD(1); PGD3=PGD(2); PGD4=PGD(3); QGD2=QGD(1); QGD4=QGD(2);
theta2=X(1); theta3=X(2); theta4=X(3); U2=X(4); U4=X(5);
ANG=[thetal theta2 theta3 theta4]’; VOLT=[U1 U2 U3 U4]’;

% We have nx unknown variables, therefore the
% size of g(x) is nx by 1.

g_x=zeros(nx,1);

for m=1:nbus

for n=1:nbus
PP(m,n)=VOLT (m) *VOLT (n) *(G(m,n) *cos (ANG (m) -ANG (n) ) +B(m,n) *sin (ANG (m) -ANG(n) ) ) ;
QQ(m,n)=VOLT (m) *VOLT (n) *(G(m,n) *sin (ANG(m)-ANG(n))-B(m,n) *cos (ANG(m) -ANG(n)) ) ;
end, %for n

end, % for m

P=sum(PP’)’;

Q=sum(QQ’)’;

% Active power mismatch (PU- and PQ-buses)
% Bus 2

g_x(1)=P(2)-PGD2;

% Bus 3

g_x(2)=P(3)-PGD3;

% Bus 4

g_x(3)=P(4)-PGD4;

% Reactive power mismatch (PQ-buses)
% Bus 2

g_x(4)=Q(2)-QGD2;

% Bus 4

g_x(5)=Q(4)-QGD4;

% End of file (solve_lf.m)
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A.8 Example 8.5

clear

% 1) Start with the building of the impedance diagram of the positive-, negative-
% and zero-sequence for the whole system excluding the unsymmetrical load

Ex6_2, % Run Example 6.2

%Positive- and negative-sequence components in per-unit values (from the
%hsolution to Example 6.2):

UTh=UThpu;
ZTh_1=ZThpu;
ZTh_2=7Th_1;
Z2t_1=Ztpu;
221_1=721pu;
221_2=721_1;
ysh21_1=ysh21pu;
ysh21_2=ysh21_1;

AL_1=AL ; AL_2=AL_1;
BL_1=BL ; BL_2=BL_1;
CL_1=CL ; CL_2=CL_1;
DL_1=DL ; DL_2=DL_1;

1=F_tot(1,1) ; A
1=F_tot(1,2) ; B
1=F_tot(2,1) ; C
_1=F_tot(2,2) ; D
hZero-sequence components in per-unit values
Isclphi=0.2*exp(-j*90*rad)/Ib70;
ZTh_0=3xUTh/Isciphi-2*ZTh_1;

Zt_0=7t_1;

Z21_0=3%Z21_1,;

ysh21_0=0.5%ysh21_1;

AL_O=1+ysh21_0%Z21_0;
BL_0=Z21_0;
CL_O=ysh21_0* (2+ysh21_0%Z21_0) ;
DL_0=AL_0;

% 2) Next step is to replace the networks with Thevenin equivalents as seen
% from the industry connection point (bus 1)
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UThbus1=UTh/A_1;%
ZThbus1_1=B_1/A_1;
ZThbusl_2=ZThbusl_1;

F_tot_0=[ 1 Zt_0 ; 0 1]*[AL_O BL_O ; CL_O DL_0];
ZThbus1_0=F_tot_0(1,2)/F_tot_0(1,1);

% 3) Symmetrical components

alfa=exp(j*120*rad) ;

TT=[1 1 1 ; alfa"2 alfa 1 ; alfa alfa"2 1];
ZLDs=inv(TT)*[2*ZLDpu O O ; O ZLDpu O ; O O  ZLDpul*TT;
UTH=[UThbusl ; 0 ; 0];

Zs=[ZThbus1_1 0 O ; O ZThbus1_2 0 ; 0 O ZThbusl_0];
Is=inv(Zs+ZLDs)*UTH;

% 4-5) The symmetrical components of the voltage at the industry (bus 1)
Ubus1s=ZLDs*Is;

Ubus2_Ibus2_1=[AL_1 BL_1 ; CL_1 DL_1]*[Ubuslis(1l) ; Is(1)];
Ubus2_Ibus2_2=[AL_2 BL_2 ; CL_2 DL_2]*[Ubusls(2) ; Is(2)];
Ubus2_Ibus2_0=[AL_O BL_O ; CL_O DL_O]*[Ubus1s(3) ; Is(3)];
Sbus2_1=Ubus2_Ibus2_1(1,1)*conj(Ubus2_Ibus2_1(2,1))*Sb;
Sbus2_2=Ubus2_Ibus2_2(1,1)*conj(Ubus2_Ibus2_2(2,1))*Sb;
Sbus2_0=Ubus2_Ibus2_0(1,1)*conj(Ubus2_Ibus2_0(2,1))*Sb;

h 6)
Ubus1_Ph=[abs (TT*Ubus1s*Ub10/sqrt(3)) angle(TT*Ubusls*Ub10/sqrt(3))x*deg]
Stot=Sbus2_1+Sbus2_2+Sbus2_0

A.9 Example 8.6

clear,
Ex6_3,

% 1)

% Positive- and negative-sequence components in per-unit values (from the
% solution to Example 6.3)

UTh=U1;

Zt1_1=Ztlpu ; Zt1_2=Zt1_1;9%
Zt2_1=Zt2pu ; Zt2_2=7Zt2_1;%
Z23_1=723pu ; Z23_2=723_1;}
ysh23_1=ysh23pu ; ysh23_2=ysh23_1;Y%
Z24_1=724pu ; 724_2=724_1;
ysh24_1=ysh24pu ; ysh24_2=ysh24_1;Y%
ZLD1_1=ZLD1pu ; ZLD1_2=ZLD1_1;%
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%hZero-sequence components in per-unit values
Zt1_0=Zt1_1 ; Zt2_0=Zt2_1;%

Z23_0=3%Z23_1 ; ysh23_0=0.5%ysh23_1;%
Z24_0=3%Z24_1 ; ysh24_0=0.5%ysh24_1;%

b 2)

Yi=Ybus; Y1(5,5)=1/Zt2_1; Zi=inv(Y1);
Ibus1_1=UTh/Z1(1,1);
UThbusb5=Z1(5,1)*Ibusi_1;

YD1=Y1(2:5,2:5);

ZD1=inv(YD1);

ZD2=7D1;

% 3)

ZThbusb5_1=7ZD1(5-1,5-1); ZThbus5_2=ZThbusb5_1;

Y22_0=1/7Zt1_0+1/Z23_0+ysh23_0+1/Z24_0+ysh24_0;
Y33_0=1/7Z23_0+ysh23_0;
Y44_0=1/724_0+ysh24_0+1/7t2_0;

YDO=[ Y22 0 -1/723_0 -1/724_0 0;
-1/723_0 Y33_0 0 0;
-1/724_0 0 Y44_0 -1/7t2_0;

0 0 -1/7t2_0 1/Z2t2_0];

ZD0=inv(YDO) ;

ZThbusb5_0=ZD0(5-1,5-1);

UPre_5=[UThbus5 ; 0 ; 0];

ZD_5=[ZThbusb_1 0 0 ; O ZThbus5_2 0 ; O 0 ZThbus5_0] ;
alfa=exp(j*120*rad) ;

TT=[1 1 1 ; alfa"2 alfa 1 ; alfa alfa"2 1];
ZLDbusb5s=inv(TT)*[2*ZLD2pu O O ; O ZLD2pu O ; O O  ZLD2pul]*TT;
ID_b=-inv(ZD_5+ZLDbusbs)*UPre_5;

% 4)

Up2_1=71(2,1)*Ibusl_1+ ZD1(2-1,5-1)*ID_5(1);
Up2_2= 0 + ZD2(2-1,5-1)*ID_5(2);
Up2_0= 0 + ZD0(2-1,5-1)*ID_5(3);
Up3_1=Z1(3,1)*Ibusi_1+ ZD1(3-1,5-1)*ID_5(1);
Up3_2= 0 + ZD2(3-1,5-1)*ID_5(2);
Up3_0= 0 + ZD0(3-1,5-1)*ID_5(3);
Up4_1=Z1(4,1)*Ibusi_1+ ZD1(4-1,5-1)*ID_5(1);
Up4_2= 0 + ZD2(4-1,5-1)*ID_5(2);
Up4_0= 0 + ZD0(4-1,5-1)*ID_5(3);
Up5_1=21(5,1)*Ibus1_1+ ZD1(5-1,5-1)*ID_5(1);
Up5_2= 0 + ZD2(5-1,5-1)*ID_5(2);

Upb5_0= 0 + ZD0(5-1,5-1)*ID_5(3);
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1723_1=(Up2_1-Up3_1)/Z23_1;
1223_2=(Up2_2-Up3_2) /Z23_2;
1723_0=(Up2_0-Up3_0) /Z23_0;
1724_1=(Up2_1-Up4_1)/Z24_1;
1724_2=(Up2_2-Up4_2) /Z24_2;
1224_0=(Up2_0-Up4_0) /Z24_0;

S723_1=Up2_1*conj(1Z23_1);

S723_2=Up2_2%conj (1Z23_2) ;

S723_0=Up2_0*conj (1Z23_0) ;

SZ223_1in=5723_1+8723_2+3Z23_0;
SZ24_in=Up2_1*conj(IZ24_1)+Up2_2*conj(IZ24_2)+Up2_0*conj(IZ24_0);

SZ23_out=Up3_1*conj(IZ23_1)+Up3_2*conj(I1Z23_2)+Up3_0*conj(I1Z23_0);
SZ24_out=Up4_1*conj(IZ24_1)+Up4_2*conj(I1Z24_2)+Up4_O*conj(I1Z24_0);

eta=100%* (real (SZ23_out)+real (SZ24_out))/(real (SZ23_in)+real (SZ24_in))
Sinj=UTh*conj ((UTh-Up2_1)/Zt1_1)+Up2_2%conj ((0-Up2_2)/Zt1_2)+...
Up2_0*conj ((0-Up2_0)/Zt1_0);
SLDtot=abs(Up3_1) "2/ZLD1_1+abs(Up3_2) "2/ZLD1_2+0-. ..
Up5_1*conj (ID_5(1))-Up5_2*conj(ID_5(2))-Up5_0*conj(ID_5(3));

eta=100*real (SLDtot) /real(Sinj)
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Appendix B

Analysis of three-phase systems using linear
transformations

In this chapter, the possibilities of using linear transformations in order to simplify the anal-
ysis of three-phase systems, are briefly discussed. These transformations are general and are
valid under both symmetrical and un-symmetrical conditions. By generalizing the expres-
sions for a symmetric three-phase voltage given in equations (2.10) and (2.14), corresponding
expressions for an arbitrary three-phase voltage at constant frequency can be obtained as

ua(t) = Unppa cos(wt +7,) ga Udlve
up(t) = Unppcos(wt + p) Uy = Uyl (B.1)
uc(t) = U cos(wt + 7e) U. = Uy

where Uprq, Unp, Upre are peak values, U,, Uy, U. are RMS-values and ~,, 7, 7. are phase
angles of the three voltages. For the un-symmetrical currents, corresponding expressions
hold as
io(t) = Iprqcos(wt+ v, — ¢q) = I./7 — ¢,
ib(t) = I cos(wt + Y — ¢b) = ]bl’yg — O (B.Q)
ic(t) = Iyecos(wt+ 7. — de) I. = 1./7°— ¢,
where Iyq, I, Iy are peak values, I,, I, I. are RMS-values of the three phase currents

whereas ¢,, ¢p, ¢. are the phase of the currents in relation to the corresponding phase
voltage.

I,
I

The mean value of the total three-phase active power can be calculated as

o UMa ]Ma UMb IMb UMc IMC COS¢ (B 3)

Pg,—\/i\/5cosgzﬁa—l—ﬁﬁcosgbb—l-\/g\/g

whereas the total three-phase complex power is

S, = UJZ + UJZ + UJZ = (Uul, cos ¢ + UpIy cos ¢y + Ul cos ¢.) +
+ J(Uul,sin ¢, + Uplysin ¢y + U I, sin ¢,.) (B.4)

This phase representation is in many cases sufficient for a three-phase system analysis. There
are a number of important cases when the analysis can greatly be simplified by using linear
transformations.

This chapter discusses the following items. First, the advantages of using linear transfor-
mations in three-phase system analysis are generally discussed. Later on, some specific
transformations to be used in certain conditions are given. In order to really understand
the subject of transformations, the reader is referred to text books on the subject, e.g. in
electric machine theory or high power electronics. In chapter 8, one of the transformations
of interest, symmetrical components, is discussed in more detail. The purpose of chapter 77
is to show that the idea and the mathematics behind the transformations are the same. It
is only the choice of linear transformation, i.e. transformation matrix, that is different.
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B.1 Linear transformations

By using transformations, components are mapped from an original space (the original space
is here the instantaneous values or the complex representation of the phase quantities) to an
image space. A linear transformation means that the components in the image space are a
linear combination of the original space. The complex values of the phase voltages can be
mapped with a linear transformation as

UA = waaUa + wabUb + wacUc
UB = wbaUa + wbbUb + waUC (B5)
UC’ - wcaUa + wchb + wccUc

which in matrix form can be written as

UA Waq Wap Wee Ua
Up | = | Wea wWpp Wi Uy (B.6)
UC’ Weq Wep Wee Uc
or in a more compact notation
Uasc = WUapc (B.7)

The elements in matrix W are independent of the values of the original and image space
components. In this example, the components in the original space U,, U, and U, are
mapped by using the linear transformation W to the image space components U 4, Uz and
Uc. The original space components can be calculated from the image space components by
using the inverse of matrix W (W=1 =T), i.e.

Uape = W 'Uppc = TUagc (B.8)

The only mappings that are of interest, are those where W1 are existing. In the following,
the matrix T or its inverse T~! will represent the linear transformation.

B.1.1 Power invarians

A usual demand for the linear transformations in power system analysis is that it should be
possible to calculate the electric power in the image space by using the same expressions as
in the original space and that the two spaces should give the same result. A transformation
that can meet that requirement is called power invariant. Using the complex representation,
the electric power in the original space can be calculated by using equation (B.4), this gives

Sape = Uol, +UpI, +UI, = U, Toy . (B.9)

where “t” indicates the transpose.
In the image space, the corresponding expression is

Supc =Ualy +Uply+Ucly = Ulpclane (B.10)
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Power invarians implies that Sapc = Sape, i.€.

UZBCIZBC = U;bcI;bc = (TUABC)t(TIABC)* = UtABCTtT*IZBC (B.11)
This gives that the transformation matrix T must fulfill the following condition :
100
T'T* = ((T*)*T)*=1={0 1 0 (B.12)
001
which leads to
T ! = (T*)* (B.13)

If T is real, equation (B.13) implies that T is an orthogonal matrix.

B.1.2 The coefficient matrix in the original space

Consider a three-phase line between two buses. The voltage drop U over the line depends
on the current I, flowing in the different phases. The voltage drop can be expressed as

Ua 7(111 7(11) 7ac 7a
Uwbe= | Uy | = | Zba Zwv Zbe Iy | = Zapclabe (B.14)
Uc an 7cb 7cc 7c

where Z.pc is the coefficient matriz of the line. Note that each element in Z,p. is non-zero
since a current in one phase has influence on the voltage drop in the other phases owing to
the mutual inductance, see chapter 8.2.

Symmetrical matrices

A matrix that is symmetrical around its diagonal is called a symmetrical matrix (or more
precisely, Hermitian if the matrix contains complex entries). For the Z-bus matrix in equation
(B.14), this implies that Z,, = Zpy, Zae = Zea and Zype = Z o, i.€.

7aa 7ab 7ac
Zabc = 7ab be 7170 = Zgbc (B15)
7ac 7bc 7cc

An example of a symmetrical matrix is the one representing a line (or a cable) where the
non-diagonal element are dependent on the mutual inductance, which is equal between the
phases a—b and the phases b—a, see chapter 8.2.

Cyclo-symmetrical matrices

The Z-bus matrix in equation (B.14) is cyclo-symmetric if Zu, = Zoe = Zeay Zba = Zae = Zep
and Zoy = Zpp = Zee, i.€.
7aa 7(11) 76(1
Zabc - 7ba 7aa 7(11) (B16)

Zab 76(1 Zaa
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All normal three-phase systems are cyclo-symmetrical, i.e. if i,, 7, 7. are permuted to iy,
i, 1q, the voltages u,, up, u. will also be permuted to ug, u., u,. This implies that ordinary
overhead lines, cables, transformers and electrical machines can be represented by cyclo-
symmetrical matrices.

B.1.3 The coefficient matrix in the image space

If both sides of equation (B.14) are multiplied with the matrix T, the following is obtained
Uasc = T 'Uape = T Zabelabe = (T ZancT)Iasc = Zasclasc (B.17)

where

Zasc = T ' Zp T (B.18)

Z apc is the image space mapping of the coefficient matrix Z,pe. This gives that if Uagc
represents the image space voltages, and Ipgpc represents the image space currents then
Z apc will represent the impedances in the image space.

One reason of introducing a linear transformation may be to obtain a diagonal coefficient
matrix in the image space, i.e.

Zaa 00
Zapc=| 0 Zps O (B.19)
0 0 Zecc

By having a diagonal coefficient matrix, equation (B.17) can be rewritten as

Us =Zaala
Up =Zpplp (B.20)
Uo =Zcocleo

i.e. the matrix equation (B.17) with mutual couplings between the phases is replaced by
three un-coupled equations. If Zapgc is diagonal as in equation (B.19), both sides in equation
(B.18) can be multiplied with T and rewritten as

ZAA _O 0 B B B
TZasc = T, Ty T 0 Zpp 0 = | ZaaT\ ZppTy ZccTs | =
0 0 Zcoc
— ZweT=Zune | T2 To T (B.21)

where T7, Ty, T3 are the columns of T. Equation (B.21) can be rewritten as
Zabch - 7AA{TI =0

ZabcT2 - 7BBT‘2
ZabcT3 - 7C’CT3 =0

I
o

(B.22)
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i.e. Zaa, Zpp and Zoo are the eigenvalues of matrix Zape and the vectors Ty, Tb and T
are the corresponding eigenvectors. A transformation that maps the matrix Z to a diagonal
form should have a transformation matrix T having columns that are the eigenvectors of the
matrix Z. Note that eigenvectors can be scaled arbitrarily.

B.2 Examples of linear transformations that are used
in analysis of three-phase systems

In the following, four commonly used linear transformations will be briefly introduced. In
general, transformations can be presented in a little bit different way in different text books.
It is therefore of importance to understand the definitions used by the authors.

B.2.1 Symmetrical components

In the analysis of un-symmetrical conditions in a power system, symmetrical components
are commonly used. This complex, linear transformation uses the fact that all components
(lines, machines, etc.) in normal systems are cyclo-symmetrical, i.e. their impedances can
be modeled by equation (B.16). The power invariant transformation matrix and its inverse
for the symmetrical components are

1

1
Ts=—7]1
S\/gl

1
a2

a o V3

QS
o

-

|

|

2

1 1 1
1 a o (B.23)
1 o «

Q

where a = €/12°°. As given by the definition Tg' = (T%)* which corresponds to the assump-
tion of power invariant according to equation (B.13). By using this transformation, cyclo-
symmetrical matrices are transformed into a diagonal form as given in equation (B.19), i.e.
the columns of matrix Tg consist of the eigenvectors to a cyclo-symmetrical matrix. This
will simplify the system analysis as indicated in equation (B.20). Using the given phasor
voltages U,, Uy and U,, the power invariant symmetrical components can be calculated as

Uy B U,
US = Ul = Tganbc = —= 1 « 042 Ub (B24)
U, V3 1 a®> « U.

The three components Uy, U, and U, are called zero-sequence, positive-sequence and negative-
sequence, respectively. A cyclo-symmetrical impedance matrix according to equation (B.16)
can be diagonalized by using symmetrical components according to equation (B.18) as

7(1(1 7ab 76(1 70 0 O
Zs =Ts" | Zya Zaa Za |Ts=| 0 Z1 0 (B.25)

Zab 76(1 Zaa 0 0 72
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where
70 = Zm + 7ab + Z,a = zero-sequence impedance
71 = Zao+ &*Zy + aZy, = positive-sequence impedance (B.26)
Zoy = Zgo+ aZu + a*Zy, = negative-sequence impedance

The three impedances Z,, Z; and Z, are the eigenvalues of the cyclo-symmetrical impedance
matrix. For an impedance matrix that is both cyclo-symmetric and symmetric, i.e. Zp, =

Z a, the result after a diagonalization will be that
Zy = Zaa+2Za
Z1 = Zaa— Zab (B.27)
Zy = Zou—Zab
Transformers, overhead lines, cables and symmetrical loads (not electrical machines) can be
normally represented by impedance matrices that are both symmetrical and cyclo-symmetrical,

i.e. all diagonal elements are equal and all non-diagonal elements are equal. This gives that
the positive-sequence impedance and the negative-sequence impedance are equal.

In order to make the positive-sequence phasor voltage equal to the line-to-neutral phasor
voltage, a reference invariant form of transformation for the symmetrical components is
normally used. The reference invariant transformation matrix and its inverse are

11 1 11 )
Te=|1 o> a | =V3-Ts Tg'=3|1 a o |=—7 Tg' (B2
1 a o 1 o® « V3

The reference invariant transformation is not power invariant since Tg' = %(T’é,)t. The
name reference invariant means that in symmetrical conditions U; = U,. Note that trans-
formations of coefficient matrices, according to equation (B.18), are not influenced whether
the power invariant or the reference invariant matrix is used since

1
Zasc(eff —inv) = Tg'ZapcTs = <ﬁT§1) Zabe (\/gTs,) =
= Tg,IZabcTs/ = ZABC (ref — Z?’LU) (B29)

A third variation of the transformation matrix for the symmetrical components arises when
the ordering of the sequences is changed. If the positive-sequence is given first and the
zero-sequence last, the columns of the T-matrix and the rows in the T~! are permuted,
respectively. This results in the following reference invariant transformations matrices :

1 1 1 B a?
Tsr= | a? a 1 Ty, = 3 1 o® « (B.30)
a o 1 1 1 1

This form of the transformation matrices will be used in chapter 8 where symmetrical com-
ponents are discussed in more detail. The only thing that happens with the coefficient matrix
in the image space is that the diagonal elements change places.

As described above, a number of different variations of the symmetrical components can
be used, all having the same fundamental purpose, to diagonalize the cyclo-symmetrical
impedance matrices.
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B.2.2 Clarke’s components

Clarke’s components, also called o — S-components or orthogonal components, divides those
phase-quantities not having any zero-sequence into two orthogonal components. The word
zero-sequence means the same as when discussing symmetrical components, the sum of the
phase components. Components that do not have zero-sequence are those whose sum is equal
to zero. The power invariant (T~' = (T*)*, see equation (B.13)) transformation matrix and
its inverse for the Clarke’s components are

% 1 0 IS U

9 f L3 B 21 V2 V2 V2
Te=\/3|% "2 % T = 3|1 -3 -1 (B.31)

1 _v3 0 B _3

V2 2 2 2 2

Clarke’s components are a real orthogonal transformation that is mainly used in transfor-
mations of time quantities, e.g.

. 1 1 1 .

io(t) 5| vz v v ia(t)

ia(t) | =loap(t) = Tgiabe(t) = 3|1 -3 —3 i(t) (B.32)
is(t) 0 ¥ B ]| i)

where iy(t) is the zero-sequence component, i,(t) is the a-component and ig is the -
component for Clarke’s transformation of the phase currents i,(t), i,(t) and i.(¢). The reason
why the transformation is orthogonal is given by column two and three of T¢ (corresponds
to the a- and -components) since the columns are orthogonal.

For a symmetrical three-phase current given by equation (2.12)
io(t) = Ipcos(wt — @)

ip(t) = Ipcos(wt —120° — ¢) (B.33)
i.(t) = Ipcos(wt+ 120° — ¢)

the Clarke’s components are given by equation (B.32)

o) = (i i io(t) =
o) = 5 (alt) +ip(t) +ic(t) =0

() = g (z’a(t) - %z’b(t) _ %z’c(t)) _ \/gIM cos(wt — ) (B.34)

is(t) = ; (?z’b(t) _ ?uw) _ \/ng cos(wt — ¢ — 90°)

As given above, conditions not having any zero-sequence can be fully represented by Clarke’s
a- and [-components. Conditions not having any zero-sequence are quite common and
depends, among other things, on the type of transformer connection used.

Matrices that are both symmetrical and cyclo-symmetrical can be diagonalized by using
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Clarke’s transform as

7(111 7(11) 7(11)
Zc = T&' | Zay Zuo Zay | Tc=
Zab Zab Zaa
Zaa + 27(11) 0 0
= 0 Z oo — Zab 0 (B.35)
0 0 Zaa — Zap

For this type of matrices, the diagonalization based on Clarke’s components gives exactly

the same answer as the diagonalization based on symmetrical components, see equations
(B.25) and (B.27).

This gives that the matrix representation of transformers, overhead lines, cables and sym-
metrical loads (not electrical machines) can be diagonalized. The advantage of using Clarke’s
components is that the transformation is real which implies that the mapping of real instan-
taneous quantities are also real. The disadvantage is that electrical machines cannot be
represented by three independent variables by using Clarke’s components.

Clarke’s components are used in order to simplify the analysis of e.g. multi-phase short
circuits, transient system behavior, converter operation, etc.

B.2.3 Park’s transformation

Park’s transformation (also called dg-transformation or Blondell’s transformation) is a linear
transformation between the three physical phases and three new components. This trans-
formation is often used when analyzing synchronous machines.

In Figure B.1, a simplified description of the internal conditions of a synchronous machine
having salient poles, is given. Two orthogonal axis are defined. One is directed along the
magnetic flux induced in the rotor. The second axis is orthogonal to the first axis. The first
axis is called the direct-axis (d-axis) and the second axis is called the quadrature-axis (q-axis).
Note that this system of coordinates follows the rotation of the rotor. The machine given
in Figure B.1 is a two-pole machine, but Park’s transformation can be used for machines
having an arbitrary number of poles.

As indicated above, Park’s transformation is time independent since the displacement be-
tween the dg-axes and the abc-axes is changed when the rotor revolves. The Park’s trans-
formation includes not only the d- and g-components, but also the zero-sequence in order
to achieve a complete representation. The connection between phase currents i,, 7, and .
and the dq0-components is given by the notation given in Figure B.1

. 1. o
iy = —3(za+zb+zc)

\/7
ig = \/g (14 cos B + iy cos (8 — 120°) + i, cos (5 + 120°)) (B.36)
iy = \/g (iq sin B + i sin (8 — 120°) + i.sin (8 + 120°))
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D|rect|9n of a-axis
rotation
a-axis . .
d-axis g-axis
A
\\ + /,/
A u ya

b-axis . ' c-axis

Figure B.1. Definitions of quantities in Park’s transformation.

This equation can be written on matrix form as

‘o 21 V2 V2 V2 la L
lodg = | U | = 3 cosf cos (B —120°) cos (5 + 120°) iy | =Tp labe (B.37)
iq sin 3 sin (8 — 120°) sin (8 + 120°) le

The matrix Tp and matrix Tp' can be transposed as

cos 3 sin
cos (f —120°) sin (f —120°) | = (Tp")* (B.38)
—= cos (B +120°) sin (5 + 120°)

2
Tp = (Tp') ' = 3

sl

S

The transformation is hence power invariant according to equation (B.13). Park’s transfor-
mation is real and usable when transforming time quantities. Note that the Park’s trans-
formation is linear but the transformation matrix is time dependent. At constant frequency

,B:wt—Fﬁo.

The Park’s transformation is a frequency transformed version of Clarke’s transformation.
When § = 0 and the g-axis leads the d-axis, the transformation matrices are identical, i.e.
Tc=Tp(5=0).

B.2.4 Phasor components

Phasor components are mainly used at instantaneous value analysis when a single machine
or when several machines are connected together. The power invariant (T~1 = (T*)*, see



166

equation (B.13)) transformation matrix and its inverse for these components are

[ 1 e eI
1 2 6 —j6
TR = — |1 o%’ ae’’? (B.39)
311 el a2e it
1 1 1 1
TR = —= | e ae ¥ a2
V3 | e P ael

where a = ¢/129°, The phasor components of the three-phase currents i,(t), i,(t) and i.(t)
can be obtained as

io(t) . 1 1 1 ia(t)
is(t) | = losa(t) = Trlabe(t) = —= | e ae? a0 ip(t) (B.40)
i) VB it g2 aei || ()

where ig(t) is the zero-sequence component and i,(t) is called the field vector current, the
complex phasor of the current. The current i4(¢) is complex since the transformation matrix
is complex. By assuming that i,(t), iy(t) and i.(t) are real, the expression for 7,(t) can be
written as

- 1

i(t) = %eﬂ) (ia(t) + ®ip(t) + cic(t)) = (B.41)

= e (a0 + ady(t) + %)) | = T(0)

V3

i.e. i.(t) is known if the field vector i4(t) is known. Under conditions of no zero-sequence
components, the field vector is fully describing an arbitrary real three-phase quantity.

For a symmetrical three-phase current as given in equation (B.33), the phasor components
can be obtained according to equation (B.40)

1 . o
% (Za(t) + Zb(t) + Zc(t)) =0

—36
is(t) = % (ia(t) + cip(t) + a®ic(t)) = §1M6j<wt—¢—9> (B.42)

() = % (ia(t) + ®ip(t) + @ic(t)) = ?IMe—j(wt—‘f’—e) —=7.(t)

Finally, for 6 = wt the following is obtained

io(t) = 0
is(t) = nge—m (B.43)
i.(t) = ?lMeW:E:(t)

i.e. the field vector current i4(t) has a constant magnitude, independent of time.
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By assuming real phase currents having no zero-sequence, they can be calculated by using

the field vector current as

i) | = Triow(t) = ——
ie(t) 3
i (t)] +

= 1 ozz[ejefs(t)

[ 1 ed? e—19 0
1 o ae i(t) | = (B.44)
1 e’ a?e 7’ i.(t)
z%wagﬂ ) ﬁqwgﬁ}
+ [a?ed%,(t = — e [a?el?i,(t
|+ [a2ei,(1)] V3| Re [[aeﬂ’%s(t)}

Phasor components are a frequency transformed form of the symmetrical components. For
6 = 0 (phasor components), the transformation matrix for the phasor components and the

symmetrical components are identical, i.e. Tr(0 = 0)

=Tsg.



