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Chapter 1
Introduction

This compendium should be considered as an introduction to power system stability and
control. A more detailed and comprehensive discussion and presentation may be found
in the references given in this compendium.

The function of an electric power system is to produce electricity and to transmit
it to customers. Thus, an electric power system may be divided into three parts, one
concerned with generation, one with transmission, and one with consumption as shown
in Figure 1.1. Electricity is produced at lower voltage at a generator. The generator
then feeds its electric power into the transmission system via a step-up transformer in
order to increase the voltage from the generation level (10 to 25 kV) to the transmission
level (hundreds of kV). Then at the load center, it is stepped-down to lower voltages
for distribution to customers.

Generating _@7 Transmission 4@7 Customer
Station System (Load)

Generator step-up Substation step-down
transformer transformer

Figure 1.1. Basic structure of an electric power system.

Since modern society is strongly dependent on electricity, high reliability of supply and
high level of system security are of fundamental importance. However, in an electric
power system electricity cannot easily and economically be stored in large quantities.
This special property implies that electricity must be produced the instant it is used
that is the produced power must be in balance with the consumed power. Furthermore,
power systems are frequently subjected to various types of disturbances which may be
small, in the form of load changes and control actions, or large in the form of a short
circuit on a transmission line or loss of a large generator. The system must however
be able to adjust to the changing conditions and operate satisfactorily despite these
disturbances. Thus, to keep the high reliability of supply and high level of system
security will be a challenge for system operators.

By using computing and analysis tools, power system security analysis is a major
activity for power system operators to determine the robustness of the power system
to the occurrence of certain disturbances. This analysis normally concerns:

e Static security analysis which deals with operating and engineering constraints
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such as overloading of transmission lines, transformers and other equipments, and
also bus voltage magnitudes in a post-disturbance state.

e Dynamic security analysis which deals with power system dynamic response
to disturbances. For instance, after a disturbance whether the system will survive
the ensuing transient and move into a secure state.

Therefore, the operation of a power system must be subject to security and reliable
standards developed by the system operator. A main principle underlying these stan-
dards is the so called N-1 criterion.

Definition 1.1 The N-1 criterion states that the power system must be operated at
all times such that after an unplanned loss of an important generator or transmission
facility it will remain in a secure state.

Furthermore, when a loss occurs the system must be returned to a new N-1 secure state
within a specified time (normally within 15-20 minutes) to withstand a possible new
loss.

The modern (interconnected) electric power systems are often considered as the most
complex man-made dynamical systems for use in daily life (far away as just “two
holes in the wall”). They consist of many individual elements connected together
to form a large, complex system capable of generating, transmitting and distributing
electrical energy over a large geographical area. Because of this interconnection of
elements, a large variety of dynamic interactions are possible, some of which will only
affect some of elements or parts of the system, while others may affect the system as a
whole. Therefore, it is crucially necessary to have knowledge about how a power system
behaves (or responds) to different disturbances, and also to understand the dynamics
of the system.

Power system dynamics are mainly initiated by a disturbance, and they occur in dif-
ferent time scales. Based on their physical character these dynamics may be fast,
relatively slow or very slow. The fast dynamics (known as electromagnetic dynamics)
are those associated with fast electromagnetic changes in the electrical machines or
operation of the protection system. The time frame of these fast dynamics is from
milliseconds to a second. The relatively slow dynamics (known as electromechanical
dynamics) are those associated with the oscillation of the rotating masses of the gen-
erators and motors. The time frame of the electromechanical dynamics is from around
a second to several seconds. Finally, the very slow dynamics are those associated with
the system frequency control (due to the turbine governing systems), and the ther-
modynamic changes (due to boiler control action in the steam power plants). In this
compendium, the main focus is on the electromechanical dynamics.

In general, mathematical models are used to analyze dynamic behavior of power sys-
tems. One interesting feature of classifying the power system dynamics, as introduced
above, is that it will be easier to derive an appropriate mathematical model including
components relevant to the specific dynamic (particularly due to the time frame of



the specific dynamic). For instance, a disturbance may eventually excite all of the
above mentioned dynamics in a power system, but for the same disturbance we may
have different mathematical models to adequately describe the specific dynamic. If a
mathematical model which describes the electromagnetic dynamic will also be included
in the mathematical model of the electromechanical dynamic, then the model will ob-
viously result in unnecessary high computation time, and it will not give any useful
information when only the electromechanical dynamic is of concern.

Since the main focus of this compendium is on the electromechanical dynamic, only
the mathematical models of this dynamic will be derived to be able to study and
understand the concept of power system stability.

Power system stability is of fundamental importance concerning system security, and
it has been defined in many different ways. However, in this compendium we use the
definitions presented by IEEE/CIGRE Joint Task Force in [1].

Definition 1.2 Power system stability is the ability of an electric power system, for
a given initial operating condition, to regain a state of operating equilibrium after be-
ing subjected to a physical disturbance, with most system variables bounded so that
practically the entire system remains intact [1].

To facilitate analysis of stability, power system stability has been classified into different
categories in [1] as follows:

e Rotor angle stability refers to the ability of synchronous machines of an in-
terconnected power system to remain in synchronism after being subjected to
a disturbance. Instability that may result occurs in the form of increasing an-
gular swings of some generators leading to their loss of synchronism with other
generators. Loss of synchronism can occur between one machine and the rest of
the system, or between groups of machines, with synchronism maintained within
each group after separating from each other.

Rotor angle stability may be characterized as follows:

— Small-signal stability which is concerned with the ability of the power
system to maintain synchronism under small disturbances. The disturbances
are considered to be sufficiently small that linearization of system equations
is permissible for purposes of analysis.

— Transient stability which is concerned with the ability of the power system
to maintain synchronism when subjected to a large disturbance, such as a
short—circuit on a transmission line. Transient stability depends on the
initial operating conditions of the system as well as the type, severity and
location of the disturbance.

e Voltage stability refers to the ability of a power system to maintain steady
voltages at all buses in the system after being subjected to a disturbance from a



given initial operating condition. Instability that may result occurs in the form
of a progressive fall or rise of voltages of some buses.

Depending on the time scale the voltage instability may be classified as fast (a
couple of seconds) or slow (tens of seconds to minutes).

e Frequency stability refers to the ability of a power system to maintain steady
frequency following a severe system upset resulting in a significant imbalance
between generation and load. It depends on the ability to maintain/restore equi-
librium between system generation and load, with minimum unintentional loss of
load. Instability that may result occurs in the form of sustained frequency swings
leading to tripping of generating units and/or loads.

Since mathematical models are used to describe power system dynamics, power system
stability will also be defined based on the mathematical theory concerning stability
of dynamical systems. In the evaluation of stability the concern is to the dynamic
behavior of the power system when subjected to a disturbance.

Figure 1.2 shows the basic structure of a power generating unit. In this compendium,
the dynamics and mathematical models of the components shown in the figure will be
presented.

(éjref
.
Exciter [« AVR
E B AU
Valve/gate f U
NS : R /y\ Power
—— X |~ Turbine ~ >
Water I < T \__/ 7 system
or Shaft
steam A
. Governor <
A

set

Figure 1.2. Block diagram of a power generating unit.

Three mathematical models to describe the dynamics of a synchronous generator will
be presented. Those models are referred to as classical model, one-axis model and two-
axis model. In the classical model, the generator is represented by a voltage source
with constant magnitude behind a reactance. However, in the two other models the
magnitude of the voltage is considered as a state variable and also a function of the
field voltage Ey. This voltage can be controlled by the generator excitation system
which consists of an exciter and an Automatic Voltage Regulator (AVR). The primary
function of an exciter is to provide a dc source for field excitation of a synchronous
generator, and the AVR controls the excitation voltage. A control on excitation voltage



results in controlling the field current (or £) which in turn controls the terminal voltage
U and reactive power.

To get an insight into power system stability, the power system indicated in Figure 1.2
will be represented by an equivalent model to analyze the behavior a generator con-
nected to an infinite bus. This system is known as Single Machine Infinite Bus (SMIB)
system based on which transient stability will be discussed, and also the concept of
Equal Area Criterion will be presented.

Then, power system stability analysis will be applied to a general multi-machine power
system. Due to the load models (which will also be discussed) the dynamic of a multi-
machine power system may be described by a set of differential-algebraic equations
or only by a set of differential equations. The first model is refereed to as Structure
Preserving Model (SPM), and the second one is referred to as Reduced Network Model
(RNM).

For studying transient stability of a multi-machine power system, there are several
methods two of which will be briefly discussed in this compendium. The first method
is known as Transient Energy Function (TEF) method (termed also the direct method)
which is based on Lyapunov’s direct method. The second method is known as SIn-
gle Machine Equivalent (SIME) method which transforms the trajectories of a multi-
machine power system into the trajectory of a single machine equivalent system. Then,
by refreshing the parameters of the single machine equivalent system at each integra-
tion time-step, the SIME method numerically assesses the transient stability of this
equivalent system based on the Equal Area Criterion.

Small-signal stability analysis is also discussed in this compendium. This analysis deals
with small disturbances, and it is applied to linearized system models. It provides
valuable information about the inherent dynamic characteristics of the power system.
Moreover, by this analysis, the excitation system can be designed to enhance the small-
signal stability in a power system.

Finally, the dynamic of a hydro turbine and turbine governor will be discussed. The
objective of a turbine governing system installed in a generating unit is to produce a
desired power which is partly determined by the set value for the produced power and
partly by a contribution originating from the frequency control.






Chapter 2
Mathematical modeling

For being able to understand and analyze dynamic of a system, normally mathematical
models are derived to describe the dynamic of the system. Fortunately, for mechanical
and electrical systems (such as power systems) there are laws of nature which are basis
for deriving these mathematical models. For example, Kirchhoff’s laws, Newton’s laws,
Ohm’s law, induction law and etc. Applying these laws, the dynamic of the system
can then be described by a set of differential equations of the form

d .
S at) = & = f(z) (2.1)

where x is the n,—dimensional state vector belongs to the Euclidean space R™, and
f is a vector-valued function f : D — R™ which is continuous and has continuous
first-order partial derivatives with respect to  on a domain D C R" into R™*. The
solution to (2.1) is designated by z(t) with z(t,) as an initial state at initial time ¢t = ¢,.

2.1 Definitions and notations

Definition 2.1 Any x, for which & = f(z,) = 0, is termed equilibrium point (e.p).

Definition 2.2 A system is in a steady-state, if the system is settled to an e.p, i.e
&= f(z,) =0.

Definition 2.3 A system is in a dynamic-state if & = f(z) # 0.

One of the important issues regarding dynamical systems is to characterize and study
stability of equilibrium points since stability theory plays a central role in systems
theory and engineering. Stability of equilibrium points is usually characterized in the
sense of Lyapunov, a Russian mathematician and engineer (1857-1918) who laid the
foundation of the stability theory which now carries his name.

Three concepts are introduced to characterize stability of an equilibrium point, namely:

e Stability in the sense of Lyapunov, (Definition 2.4).
e Lyapunov’s indirect method, (Theorem 2.1).
e Lyapunov’s direct method, (Theorem 2.2).
Definition 2.4 An equilibrium point is Lyapunov stable (or stable in the sense of

Lyapunov) if solutions that start near the equilibrium point remain near the equilibrium
point for all time. More precisely, the equilibrium point x, of (2.1) is
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o stable if, for each € > 0 (no matter how small), there exists a v = ~y(e) > 0 such
that, (see Figure 2.1)

lx(ty) —zol| <v = |z(t) —x|| <€ , Vt>t,

Figure 2.1. The equilibrium point z, is stable.

o unstable if not stable.
e asymptotically stable if it is stable and v can be chosen such that, (see Figure 2.2)

|x(t) — x| =0 as t— o0

Figure 2.2. The equilibrium point x, is asymptotically stable.

Note that in the above figures, x, = x,(t) , Vit > t,.

Example 2.1 Consider the system shown in Figure 2.3. The system has two equi-

librium points, v, = P1 and x, = P2. By applying Definition 2.4, characterize the
stability of these points.



P1

Figure 2.3. A simple system with two equilibrium points.

Assuming there is no friction in the system, and releasing the ball from any initial
position xz(t,) sufficiently close to x, = P1 within a circle of radius 7 centered at
r, = P1, the motion of the ball will then be limited within a circle of radius € centered
at x, = P1, see Figure 2.4. Since there is no friction in the system, the ball will move
(or oscillate) around z, = P1 for ever within the circle. Therefore, z, = P1 is a stable
e.p, and the ¢ — v requirement is satisfied. However, if there is friction in the system,
the ball will eventually stay at x, = P1 which is now asymptotically stable.

Next, releasing the ball from any initial position z(t,) sufficiently close to z, = P2, the
ball will leave the circle of radius e. Therefore, x, = P2 is unstable since the ¢ —
requirement, cannot be satisfied.

Figure 2.4. Stability of equilibrium points based on Definition 2.4.

Stability of the equilibrium point of (2.1) can also be defined by examining the lin-
earized system. This approach is known as Lyapunov’s indirect method. Linearizing
the nonlinear system (2.1) around the equilibrium point z,, we obtain

Ai = AAx (2.2)
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where
of1(x) L. of1(x)
ox1 al‘nx
A= [82—(@} = ST (2.3)
4 T=To afnx (1:) R afnx (l‘)
ox1 OTny T=x,

which is also called the Jacobian matrix at x,. The eigenvalues of A (i.e., ) are
obtained by solving
|A=A1]|=0 (2.4)

where 1 is an identity matrix.
Theorem 2.1 Let x, be the equilibrium point of the nonlinear system (2.1). Then,

(i) z, is asymptotically stable if all eigenvalues of matriz A have negative real parts.

(i) =, is unstable if any eigenvalue of matriz A has a positive real part.

A more qualitative approach to stability analysis is Lyapunov’s direct method. The
method requires finding a scalar function which has some very special properties.

Theorem 2.2 The equilibrium point x, of (2.1) is stable if a continuously differen-
tiable scalar function V(x) can be found satisfying the following conditions:

(ii) V(x) > 0 for all x € D, except at x,,

(i) V(x) = 81;531) - f(x) <0 forallx €D.

The equilibrium point x, is asymptotically stable if conditions (1)-(ii) hold, and
(iv) V(z) <0 for all x € D, except at x, where V(x,) = 0,
or, alternatively

(v) V(z) <0, provided that V(z) is not identically zero on any solution z(t) in D,
except at x,.

A function V(z) satisfying the above conditions is called Lyapunov function. The
proofs of the above theorems can be found in [2].

Thus by applying Theorem 2.1, the local stability or instability of an equilibrium point
of a nonlinear system (2.1) can be characterized based on the stability or instability
of the linearized system (2.2). However, it should be noted that the statement (i) in
Theorem 2.1 is generally not applicable if some (complex) eigenvalues have zero real
parts, and for these cases Lyapunov’s direct method (i.e. Theorem 2.2) can be applied
to characterize the stability of the equilibrium point.
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Figure 2.5. A simple pendulum system.

Example 2.2 Consider the simple pendulum system shown in Figure 2.5, where a
spherical mass with weight m is attached to a rod of negligible weight with length L.

Assuming a rigid pendulum (i.e. the length [ is fized), the mass moves along a circle
of radius l. The position along this circle is given by 10. There is also a damping (or
frictional) torque Tp resisting the motion which is assumed linearly proportional to the
speed of the mass, i.e. Tp = D6 where D > 0 is a damping constant.

Describe mathematically the dynamic of this system. Also, find its equilibrium points,
and characterize their stability.

Applying Newton’s second law of motion, the following mathematical model (also
termed equation of motion) can then be obtained:

M 6 4 mglsin(@) + D6 = 0 (2.5)

where M = ml? is moment of inertia and ¢ is the acceleration due to gravity. Note
that 6 is the angular velocity.

Let
. xl
Ci=mgl , w=0 and z=[z x)" = (2.6)
€2

Taking the state variables as #; = 6 and 5 = § = w, then (2.5) and (2.6) give

jfl 9 X2 fl(x)
i = =| | = —~ = f(z) (2.7)
l"g 0 ﬁ(—C’l sin(xl) - DZL‘Q) fg(l‘)

which is of the form given in (2.1) with n, = 2. According to Definition 2.1, the
equilibrium points of the system are given by f(z,) =0, i.e.

T1 T20 f1<.1’0) 0

l"g ﬁ(—Cl sin(xlg) — DZL‘QO) fQ(ZL'O) 0
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Thus, 29, = 0 and z1, = *£km, where k is any integer. From the physical description
of the pendulum, it is clear that the pendulum has only two equilibrium positions
corresponding to the equilibrium points

To = [T10 T20)t =[0 07 and z,=[r10 29,7 =[r 0]F

Other equilibrium points are repetitions of these two positions which correspond to
the number of full swings the pendulum would make before it rests at one of the two
equilibrium positions.

Linearizing system (2.7) around its equilibrium point z,, the matrix A is obtained as

a.gl(m) agl(x) O 1
8 1 i)
A= { f@} - - (2.9)
or |, Of2(x)  Ofa(a) _K _D
Ox1 Oxa T=x, M M

where K = C cos(x1,).

Based on (2.4), the eigenvalues of A are given by

K
M
(2.10)
K
M

It is obvious that K = C; > 0 with z;, = 0, and K = —C; < 0 with z;, = 7. Thus,
both eigenvalues of the matrix A have negative real parts with z, = [0 0]T. However,
the real part of Xy is positive with z, = [ 0]T. Applying Theorem 2.1, it can be
found that z, = [0 0]” is asymptotically stable, but x, = [r  0]T is unstable.

By applying Theorem 2.2, it can also be shown that z, = [0 0]7 is asymptotically
stable. Lyapunov’s direct method is closely related to the energy of the system. In
many physical systems the total energy of the system is a good candidate for a Lya-
punov function, and these energy-based functions are known as energy functions in the
literature. The energy function for the system in Example 2.2 is given by

1 “
V() =Wk +Wp = éng +/ C sin(y) dy
1 0 (2.11)
= §Mx§ + C1 (1 — cos(xy))
1

where Wy = $Mua3 is the kinetic energy and Wp = Cy(1 — cos(xy)) is the potential

energy of the pendulum.

Next, it will be shown that the function V(z) satisfies the conditions of Theorem 2.2
for z, = [0 0]".

e V(x,) = 0. Thus, condition (i) is satisfied.
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e The gradient of V(z) is given by

)%
VV(z) = 8;:6) = [83;;?) 83;;:)} = [Cysin(z1) M ]

Since VV(z,) = 0, the function V(z) has a local extremum at z, = [0 0]7. Tt
will now be shown that this extremum is a local minimum, that is V(z) > 0.

Obviously, this extremum is a minimum if the Hessian matrix of V(z) is positive
definite. The Hessian matrix of V(z) is given by

2V(x)  9%V(x)

0*V(x) 0 Om1dz Cicos(zy) 0
H — g —
Oz20x1 023

which is a real symmetric matrix.

‘H is a positive definite matrix if all its eigenvalues are positive. It can be shown

that the eigenvalues of H are \; = M and Ay = C cos(z1). Since M is a positive
T s
constant, H is positive definite if ) <z < —.

2
Thus, V(z) > 0 in a neighborhood (i.e. D) of z,. Therefore, condition (ii) is also
satisfied.
e The time derivative of V(z) is given by
: )Y
V) =22 i = V() s(a) =
Ox
s (2.12)
=[Cy sin(x1) M xo] - =-Dux; <0

(—=Cysin(zy) — Dxy)

L
M

Since @ = f(x) # 0 (or more precisely #o = fo(x) # 0 ) on z9 = 0 except at
T,, condition (v) is also satisfied. Thus, the equilibrium point z, = [0 0] is
asymptotically stable.

Assume that D = 0. The eigenvalues are then given by

K
Al ==+ i
By virtue of Theorem 2.1, it can still be shown that z, = [r 0]? is unstable. But,

Theorem 2.1 cannot characterize the stability of z, = [0 0]7 when D =0 (why?).

By applying Theorem 2.2, we may however be able to characterize the stability of
r,=1[0 0]T.
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It has already been shown that the energy function (2.11) satisfies conditions (i)-(ii).
With D = 0 the time derivative of V() is then given by

@) =2 s~ vy - i) =
) (2.13)
=[Cysin(xy) M xs] - =0

L (—Cy sin(z1))

which satisfied condition (iii). Therefore, z, = [0 0]7 is stable (but not asymptot-
ically). Henceforth, a stable (or an asymptotically stable) equilibrium point will be
designated by z7, and an unstable equilibrium point by z?.

Assume that the pendulum is settled on its stable e.p 5 = [0 0]7. At time t = ¢, a
torque T' (as a disturbance) is applied to the pendulum, and at time t = ¢, the applied
torque (or disturbance) is removed.

8

X, (rad./s)
o

—100 —80 —60 —40 -20 0 20 40 60 80 100
x, (deg.)

Figure 2.6. Phase portrait of the pendulum system.

Figure 2.6 illustrates phase portrait of the pendulum system due to the applied distur-
bance. The curve in the figure is termed the system trajectory (or motion). The stable
e.p of the system is indicated by “*”. During disturbance the system trajectory (i.e.
the pendulum) moves from its stable e.p towards the point indicated by “o” where the
disturbance is removed. This point is the initial point of the post-disturbance system.
Note that in this example, the pre-disturbance system and the post-disturbance system

have the same stable e.p.

When the system is frictionless (or undamped), i.e. D = 0, 25 is not asymptotically
stable. Thus, the trajectory of the post-disturbance system (blue line) oscillates around
x5. However, when the system is damped, i.e. D > 0, zJ is asymptotically stable.
Therefore, the trajectory (red line) tends to z¥ as t — oo.
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Consider now the damped pendulum system. In Figure 2.7, the initial points are
indicated by “0”, and x by “*”. Moreover, the unstable equilibrium points z%! =
[—180 0]" and z*? = [180 0] are indicated by “+”.

As shown in the figure, the trajectories whose initial states (or points) lie within the
shaded region converge to 2. However, the trajectories whose initial states (or points)
lie outside the shaded region will never tend to z3.

Figure 2.7. Stability region of the damped pendulum system.

The shaded region is termed the stability region of x5. Boundary of the stability region
is termed the stability boundary.

Definition 2.5 The stability region of x; is a region in the state space from which
all trajectories converge to x;. Furthermore, the trajectory whose initial point lies on
the stability boundary will never leave the stability boundary and will converge to the
unstable equilibrium point on the stability boundary as time goes to infinity.

The stability region of the undamped pendulum system is illustrated in Figure 2.8.
Since 7 is not asymptotically stable, trajectories starting within the stability region
will only oscillate around z. However, trajectories starting outside the stability region
will diverge that means the pendulum rotates (not oscillates).

Figure 2.9 illustrates variation of the total energy (see equation (2.11)) in the pendulum
system. When the system is damped the total energy of the post-disturbance system
decreases that is the system is a dissipative system (see equation (2.12)). However,
when the system is undamped the total energy is constant that is the system is a
conservative system (see equation (2.13)).
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Energy

Figure 2.8. Stability region of the undamped pendulum system.

D>0 D=0
\ Total Energy (black dashed line)
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5]
8
0
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Figure 2.9. Variation of energy in the pendulum system.



Chapter 3
Synchronous machines modeling

Synchronous machines play an important roll in power systems. Nowadays almost all
power generators are synchronous generators. They convert mechanical power into
electrical form, and feed it into the transmission system. Many large loads are also
driven by synchronous motors. Furthermore, in large sizes, synchronous condensers
may be used to provide a very convenient and continuous control of reactive power and
voltage. These machines can be classified as either high-speed machines with cylindrical
rotors (or round-rotors) driven by steam or gas turbines, or low-speed machines with
salient-pole rotors driven by hydro turbines.

Synchronous machines are the most important components in the analysis of electrome-
chanical oscillations in power systems. Further, as discussed in Chapter 1, rotor angle
stability relies on keeping interconnected synchronous machines in synchronism after
a disturbance. Therefore, it is of fundamental importance to understand the behavior
and dynamics of synchronous machines in power system stability study.

Figure 3.1 illustrates simply a generating unit which is an electromechanical system
that can be divided into an electrical part (synchronous generator) and a mechanical
part (shaft and turbine).

Generator
I
- T o, T Stator n P
o, < Rotor | |7 —
Turbine Stator
Shaft I

Figure 3.1. A simple illustration of a generating unit.

The synchronous generator can also be divided into two parts, one static part called the
stator (or armature) and one rotating part called the rotor (or field). The stator has
a distributed winding which is connected to the ac power system. The stator winding
(called also the armature winding) consists of three identical phase windings which are
120 electrical degrees apart. These windings carry the load current and supply power
to the system. The rotor has a winding (called the field winding) which carries a direct
current (provided by an exciter) to produce a magnetic flux.

Figure 3.2 shows a simplified salient-pole synchronous generator. The ends of each
of the phase windings are denoted by a and o' (phase a), b and ¥ (phase b) and ¢
and ¢ (phase ¢). The stator is represented by three magnetic axes a, b and ¢ each
corresponding to one of the phase windings. However, the rotor is represented by two
axes, namely: the direct axis (d-axis), which is the magnetic axis of the field winding
(known as pole axis), and the quadrature axis (g-axis), which is the axis of symmetry

17
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a-axis

a-axis

Figure 3.2. Symbolic representation of a synchronous generator.

between two poles (known as the interpole axis). In this compendium, the g-axis is
located 90 electrical degrees behind the d-axis.

The rotor can also be equipped with additional short-circuited damper windings to
reduce the mechanical oscillations of the rotor. Figure 3.3 shows a salient-pole syn-
chronous generator with one damper winding on the d-axis of the rotor, and one damper
winding on the g-axis of the rotor.

Figure 3.3. A simplified salient-pole synchronous generator with damper windings.

The mechanical rotor angle 3, (also called the mechanical angle of the shaft) defines
the instantaneous position of the rotor d-axis with respect to a stationary reference.
The a-axis is here chosen as the reference. Thus, this angle is defined by

Bm = Wpt + Bmo (31)

where w,, is the mechanical speed (or angular velocity) of the rotor (or shaft), and 3,,,
is the initial position of the rotor, i.e. at t = ¢y = 0 the position of the rotor is given by
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Bm(to) = Bme With respect to the a-axis. The rotor angle can be expressed in electrical
radians (or degrees) by

B=% b (32)

where [ is the (electrical) rotor angle measured in electrical radians (or degrees), and
p is the number of the poles. Note that 8 = f3,, when p = 2.

Similarly, the electrical speed of the rotor (i.e. wy) can be obtained by

Wy = gwm (3.3)

dp

where w, = T 2rf, and f is the electrical frequency of the system given in (Hz).
Based on equations (3.2)-(3.3), the following can therefore be obtained

p p p
Bzéﬁmzéwmt+§6m0:wgt+ﬁo

ap

o =W (3.4)
d?s _duwy

a2 dt

Positive direction of rotation is counter-clockwise, and positive angle (,, (or 3) is mea-
sured in the positive direction of rotation. Since [ is measured with respect to a
stationary reference axis on the stator, it is an absolute measure of rotor angle. Conse-
quently, it continuously increases with time. In the steady-state, the rotor rotates with
a speed corresponding to the system nominal frequency fs (in Europe f; = 50 (Hz2),
and in USA f; =60 (Hz)) that is

b _

I =Wy = W, = 27 f

where w; = 27 f, is a constant normally called (electrical) synchronous speed. There-
fore, in the steady-state the rotor angle ( increases uniformly with time. Due to
practical issues, it is more convenient to measure the angular position from the g-axis
with respect to a reference axis which rotates at synchronous speed, i.e ws. This new
angular position is defined by

- wst - (wg - ws)t + (/BO - z)

5:<5_g)_wst:w9t+@;—z 2 (3.5)

2
= (wy — ws)t + 0,

Note that in the steady-state w, = ws, and § = , which is a constant. Moreover,

2—5:5: (Wg —ws) =w

25 (3.6)
d_é_(';'_i( —w,) =W, =d

gz =0= W —w) =w, =0

that is, § = w represents the deviation of the rotor speed from synchronism.
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The rotor mechanical synchronous speed is however given by w,,s = 27n,, where n, is
given in revolution per minute. Note that

p
= 2m _ m (3.7)

p
Ws mes Wms

Yg

3.1 Swing equation

Consider again Figure 3.1. When the rotor is rotated by the turbine, a rotating mag-
netic flux is produced in the air gap. The magnetomotive force (mmf) produced by the
field current in the filed winding combines with the mmf produced by currents in the
stator winding. The resultant flux across the air gap between the stator and rotor in-
duces voltage in each phase of the armature winding. These induced voltages have the
same magnitudes, but are phase-shifted by 120 electrical degrees. The resultant flux
also provides the electromagnetic torque (or the electrical output torque denoted by
T. (Nm)) between the stator and rotor. This electromagnetic torque (developed in the
generator when it delivers power) opposes the torque of the turbine (or the mechanical
input torque denoted by 7}, (Nm)).

One of the most important factors in studying electromechanical dynamics of a power
system is the motion of the rotor during and after a disturbance. The dynamic of this
motion is described by a set of differential equation based on Newton’s second law

026y _ dwy,

J a2 " dt

=T, —T. (3.8)

where J (kgm?) is the total moment of inertia of the turbine, shaft and generator.
Equation (3.8) is known as the swing equation. Multiplying the swing equation with
w,, the following can be obtained

dw
md —= = P, — P. )
Wi — (3.9)

where
P,, = wy, 1), is the mechanical power input given in (W)
P, = w,, T, is the three-phase electrical power output given in (W)

Next, the inertia constant H of the generator is defined by

WKs . OSwans

H p—
Sy Sy

(s) (3.10)

where Wi, is the total kinetic energy stored in the generator in the steady-state (or
stored kinetic energy in the rotating inertia at speed wy,,), and S,, is the generator
rated three-phase VA. Typically, H ranges between 3 and 6 seconds, depending on the
size and type of generator. The inertia constant states how many seconds it would take
to bring the generator from synchronous speed to standstill if rated power is extracted
from it while no mechanical power is supplied by the turbine.
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Substituting J from equation (3.10) into the swing equation (3.9) yields
2HS,, dwy,

=P —P A1
“m w2, dt "o (3:11)
or by virtue of equations (3.3)-(3.7)
2HS,, d s
Zome S0 2 (p, — P,) (3.12)

Wy dt Wy

During the electromechanical dynamics of a power system, the rotor speed is near
w

synchronous speed, i.e. =2 ~ 1 and it has a negligible effect on the right hand side of
w

(3.12). Therefore, the following swing equation is commonly used for analysis of the
electromechanical dynamics (or transients) of a power system,

2HS,, dw,  ws
Wy dt — w

(P, — P.) ~ P,, — P. (3.13)

g

Dividing both sides of (3.13) with an arbitrary three-phase base power ngse results in

dw P,—P
M—L="" c=p_.—P (3.14)
3 mpu epu
dt Sba?se
where S5 S
M = 5 S;;g (3.15)

Applying equation (3.6), the motion of the rotor is then described by

0 = (Wg — ws) = w
1 (3.16)
M(Pmpu - Pepu)

Furthermore, the contribution of mechanical friction in the bearings and/or damping
power provided by damper windings may be included in the swing equation (3.16).
This power is denoted by Pp = D (wy — ws) = Dw, where D = :l, and D’ is a small

positive constant. Including the damping, (3.16) is then rewritten as

w =

0 =w
1 (3.17)
W= M(Pmpu — P.,u — Dw)
However, with w expressed in (pu), then (3.17) is rewritten as
0 = We Wpu
o , (3.18)
Wpu = M(Pmpu = Pepu — D" wpu)

where, M’ = w, M and D' = w, D.

Note that since the effect of —2 on the right hand side of (3.12) is negligible, it has

S

w .. )
been assumed that =2 ~ 1. However, the small variations of w, are sufficient to
w

produce significant rotor angle deviation. Therefore, it is not justified to assume that
= (wy —ws) =w=0.
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3.2 Electrical equations

Consider again the synchronous generator shown in Figure 3.3.
mathematical model the following assumptions are made:

e The magnetic circuits are linear (i.e., no saturation).

e Magnetic hysteresis is negligible.

In developing the

e The stator magnetomotive force (mmf) and flux are sinusoidal.

Since the windings are magnetically coupled with each other, the flux linkage of each
winding is due to its own current and the currents in all the other windings. The flux

linkage of each winding is therefore given by:

wa_ Laa Lab Lac | Laf LaD LaQ ia

’g[)b Lba Lbb Lbc | Lbf LbD LbQ ’ib stator
’QZ)C Lca ch Lcc | ch LcD LcQ ic
= = = = = =

Uy Lia Ly Lye | Lyp Lip Lyq| | iy

()5} Lps Lpy Lpe | Lps Lpp Lpg| |ip| rotor
ol [Lae Lov Loe | Loy Lop Legl lie]

or

Q7Z}ab0 _ Labc,abc Labc,fDQ iabc
VD@ Lipqgabe Lfpq,rpQ] |ifpQ
or in more compact form

wsrf = Lsrf Z.srf

(3.19)

(3.20)

(3.21)

where srf stands for stator reference frame that is the flux linkage equations are given

in the stator reference frame.

In (3.19), Laa, Ly and L., represent the self-inductances of the stator three phase
windings, and L¢¢, Lpp and Lgg represent the self-inductances of the rotor field and
damper windings. The mutual inductance between two windings m and n is given by

Ly Tt should be noted that Ly, =Lym, and Lape, rpo = L?DQ,abc'

It can be shown that all the elements of Ly abe, Labe, fpg and L¢pg. ape vary as functions
of the rotor angular displacement 3 (i.e., they are functions of time). However, all the

elements of Lypg, rpg are constants. Also, Lyg = Lpg = 0, [3]-[6].

Using the voltage polarities and current directions of Figure 3.3, and also applying
Kirchhoft’s voltage law, the voltage equations for the stator and rotor windings are
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KN (v, 0 0 | 0 0 0 /[i,] [, |
Uy 0 rn O | 0O 0 O i up | stator
d Ve 0O 0 7. | 0O 0 O le U
I I e i | B I I (3.22)
’(/Jf 0 0 0 | Ty 0 0 ’if —Uur
Up 0 0 0 | 0O rp O ip 0 | rotor
| Y0 | [0 0 0 | 0 0 7o | |iog] | 0 |
or
d ,lvz)abc Rabc 0 iabc Uabe
— = — ) — 3.23
di L/’fDQ} { 0 RfDQ] LfDQ UfpQ (3.23)
or in more compact form
dwsr / .
dt { = wsrf = - (Rsrf Lsrf + usrf) (324)

which is a set of differential equations describing the electrical behavior (or dynamic)
of a synchronous generator. However, (having replaced 1 in (3.24) with (3.21)) this
set of differential equations will be containing time-varying coefficients (since most of
the elements of L are functions of time) which make the analysis of the generator
dynamics more difficult.

Fortunately, this problem can be overcome by the so called Park’s transformation. This
transformation consists in transforming the phase quantities of the stator (for instance,
Uabes Tabe a0 Ygpe) into three new quantities called dgo-components (i.e., Uggo, tag0 and
Yaq0)- The d- and g-components rotate together with the rotor, with the d-component
laying along the d-axis of the rotor, and the g-component laying along the ¢-axis of
the rotor. The o-component vanishes under balanced operation. Thus, by Park’s
transformation the quantities in the stator reference frame (srf ) are transformed to
the rotor reference frame (rrf). This transformation is made by the matrix P, where

[cos () cos (6 — 2{) cos (6 + 2{)_

p= /2 |sn() sin(f-%) sin(5+%) (3.25)
1 1 1
L V3 NG Vi

It should be noted that P~* = PT i.e. P is orthogonal.

The voltages, currents and flux linkages in the rotor reference frame are obtained by

Udgo =P Ugbe
idqo =P Labe (326)
Q7Z}dqo =P Q7Z}(zbc
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The quantities in the rotor reference frame can also be transformed to the stator ref-
erence frame by the inverse transformation as follows

Ugbe :Pil Udgo = PT Udgo
Labe :P_l idqo = PT Z.dqo (327)
,lvz)abc =p! wdqo =P’ ¢dqo

Applying (3.27) to (3.20), the following are obtained

|:PT wdq0:| _ |: Labc,abc Labc,fDQ :| [PT idqo:| -

VfDQ Lpgave Lipg,rpQ| | typq (3.28)
PT 0 wdqo _ Labc,abc Labc,fDQ PT 0 idqo
0 1] |¥spg Lipgae Lipg,fpo|| 0 1||ifpo
Let
P 0
Then,
|:1/}dqo :| - p |: Labc,abc Labc,fDQ :| P—l |: Z.dqo :| (329)
VypQ “Lrpgae Lypg.rpe]” “ |ifp
or in more compact form
wrrf = Pem LsrfP Zr’r’f = erfirrf (33())
where
[ L, 0 0 | kMg kMp 0 ]
0 L, 0 | 0 0 k Mg
0 0 L, 0 0 0
)’ o quo,dqo quo,fDQ o o - - 7|7 - - -
" | Lipgade Lypaypo] |
JPQdgo HIDQIDR kM; 0 0 | Ly Lgp 0
kMp 0 0 | Lps Lpp 0
| 0 EMg O | 0 0 Lgq |
with k& = % . Note that the inductance matrix L,,; is symmetrical, and all the

elements of this matrix are constants (i.e., independent of time) which is the main
advantage of Park’s transformation.

Equation (3.29) (or (3.30)) may be written in detail to give

" KM kMp] [ia
Yp kMp Lypp Lpp | |ip
) = b el i)
= ) 3.32
L/)Q kMg Log | |ig (3.32)

Yo = Loio (3.33)
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These equations describe three magnetically decoupled winding sets. Under balanced
operation i, is zero. Since we are dealing with symmetrical three-phase systems in this
compendium, the winding set (3.33) is omitted.

Figure 3.4 shows a pictorial representation of Park’s transformation. The winding set
(3.31) is laying on the d-axis of the rotor. The windings f and D (in red) are the
physical field and damper windings of the rotor shown in Figure 3.3, while the winding
d (in blue) is a fictitious winding representing the effect of the stator windings on
the d-axis, and it rotates with the field winding. The winding set (3.32) is laying on
the g-axis of the rotor. The winding @ (in red) is the physical damper winding of
the rotor shown in Figure 3.3, while the winding ¢ (in blue) is also a fictitious winding
representing the effect of the stator windings on the g-axis. Note that these two winding
sets are magnetically decoupled (as shown in Figure 3.4) which is another advantage
of Park’s transformation.

v
A

\ 19 Rotation

Figure 3.4. Representation of the salient-pole synchronous generator based on
Park’s transformation.
Equation (3.24) can also be transformed to the rotor reference frame by applying

wsrf - Pe;l ,QZ)W"f 5 'L.srf - Pe;1 irrf and Ugrf = Pe;l Uprf
Then, the following can be obtained
. ) d 1
wr'rf = - Rr’rfzr'rf+ ur’rf+ Pea: Epeg; Qpr'rf (334)

Note that %Pe_xl # 0, since P! is a function of 3 (i.e. a function of time).

Assuming 7, = 1, = 7. = r (which in most cases is true), it can be shown that

Rr’rf - Pea: Rsrf Pe;l - Rsrf with Rabc - quo - ’I"l

Having determined P,, [% Pe_xl} , it can be shown that (by expanding equation (3.34))
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g = — (g + 17ig + wy1hy)
1/}q = — (ug +1rig —wya) (3.35)
Q/'}o = - (uo +7"L’o)

and

by =up —ryiy
’(/)D = —TD iD (336)
Yo =—rqlq

Equation (3.35) is known as stator transients, since only stator quantities are involved
in this equation. Note that ug, ug, 4, 4, ¥4 and 9, are the rotor-equivalents of the
stator voltages, currents and flux linkages. Once again, dealing with symmetrical three-
phase systems, then u, = i, = 0. Therefore, 1, can be omitted. Equation (3.36) is
known as rotor transients, since only rotor quantities are involved in this equation.

Equations (3.35)-(3.36) (i.e., equation (3.34) in compact form) together with equations
(3.31)-(3.33) (i.e., equation (3.30) in compact form) describe the electrical dynamic of
a synchronous generator in the rotor reference frame. These equations together with
equation (3.13) determine the behavior of the synchronous generator during different
disturbances in a power system.

In order to make a qualitative analysis of the behavior of a synchronous generator, it is
often meaningful to use models that comprise more simplifications and approximations
than those detailed model given by (3.35)-(3.36) and (3.31)-(3.33). Therefore, the
following assumptions are made:

1. Only balanced operation is considered that is the third equation in (3.35) is
removed, and also only positive-sequence quantities are considered.

2. The stator transients are neglected that is 1)y = ’qu = 01in (3.35). This assumption
is justified since they are numerically small compared to w, ¢4 and w, ¥, [3].

3. All the stator resistances are neglected that is r = 0 in (3.35). This assumption
is justified since they are very small.

w

4. During the transient-state the rotor speed is near synchronous speed, i.e. =% ~ 1
S

(note however that these variations are sufficient to produce significant rotor

angle deviation).

5. The rotor transient saliency is neglected that is x ~ z;. It should be noted that
if there is no rotor winding on the ¢-axis of the rotor, then :1:; = 4.

6. There are no damper windings on the rotor that is ip = ig = 0.
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Based on the above assumptions, equations (3.31)-(3.32) may be rewritten as
Q/Jd = Ld 1q + k Mf if
Vg = Lyig

and equations (3.35)-(3.36) may be rewritten as

Ug = —WsWy = —ws Lyt
Ug = Ws ’ll)d = Ws (Ld g + k Mf Zf) (338)
Yy = up—ryiy

Figure 3.5 (a) shows a synchronous generator connected to a transmission network via
its terminal bus. The voltage at the terminal bus is U and the current injected to this
bus is /. Note that U is the generator line-to-neutral terminal voltage.

Imaginary-axis

A
|
I _
! U
dg-frame U Im A
Generator .+ U _
. Transmission .1.
Network - 7
. . .. ¢
Network-frame 1, [‘>7
> » _R_e:':\ I_a_ﬁs ‘> a)s
IRC URe
(a) (b)

Figure 3.5. Single-line diagram of an SG connected to a transmission network,
and the phasor diagram of U and I in the network reference frame.

In the transmission network, the voltages and currents are obtained and defined in the
network reference frame which rotates at synchronous speed w; (see Figure 3.5 (b)).
However, as seen from the generator, the stator equivalent quantities are defined in the
rotor reference frame (dg-frame) based on Park’s transformation which rotates at the
rotor electrical speed w.

Using the Real-axis as the reference, the following can be obtained in the network
reference frame.

U="Ue" = Ucos(8) + jUsin(d) = U, + jUrpm

I’ = I cos(y) + jIsin(y) = Ipe + jlm (3.39)
0—~

I
¢
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Under balanced operation, the instantaneous phase voltages and currents at the ter-
minal bus in the network reference frame are given by

Uy = V2 U cos(wst + 0) . dg = V21 cos(wst + )
uy = V2U cos(wst + 6 —120) , 4y = /21 cos(wyt + v — 120) (3.40)
Ue = V2U cos(wst + 6+ 120) , i, = V21 cos(wst + v + 120)

Next, an interface (or a relationship) between the components of U and I in the rotor
reference frame and the network reference frame is derived.

3.3 Steady-state model

In equation (3.38), uy and u, may be rewritten as

Ug = — ws Lgiqg = —a41,

V3 (3.41)
—e

V2!

where e, = wyM; iy is the stator equivalent electromotive force (emf) corresponding
to if, ¥g = wslLq is the d-axis synchronous reactance, and z, = wsL, is the g-axis
synchronous reactance. For the round-rotor generator x4 = z,, and for the salient-
pole generator x4 > z,. However, it may be assumed that z, ~ z, if saliency is
neglected. Furthermore, note that ug, u,, iq and i, in equation (3.41) are interpreted

as the instantaneous quantities of the fictitious windings in d- and g-axis due to Park’s
transformation.

Ug = WsLgiq + kwsMpip = x4iq +

Applying equation (3.26) (i.e. Park’s transformation) to equation (3.40), and measur-
ing the rotor position from the g-axis by the new angle d, then by setting 8 = 5 + 0
the following can be obtained

Uy, = V3Ucos((wy —w)t+0—0) , i;= V3Icos((wy—ws)t+6—7)

3.42
ug = —V3Usin((wy, —w)t +6 —0) , ig=—V3Isin((wy —we)t + 35 —7) (3.42)
In the steady-state w, = w;,, and equation (3.42) may be rewritten as
u,= V3Ucos(6 —0) , i,= V3Icos(d—7) (3.43)
ug = —3Usin(6 —0) , ig=—V3Isin(0—7) '
Next, consider the following complex quantities
Uy + jug =V3U [cos(d — ) — j sin(d — 6)] (3.44)
= V33U e 900 — \/3[] 90 '
and
ig+ jia =31[cos(0 —~) — j sin(d —
gt Jia [cos(6 =) = j sin(6 — )] (3.45)

— 3T 0) = /300
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It can be shown that [4]-[5]

U‘d uq Zd iq eq
O A R A A N DR 3.46
T3 T3 T3 T3 =5 340

where Uy, U,, I, are I, the components of U and I along the dg-axes. These components
and E, are also referred to the per-phase rms stator equivalent of the rotor referenced
magnitudes uq, u,, t4, iq and e,. Furthermore, E, is also known as field excitation.
Note that, Uy, U,, I are I, are different from ug, u,, tq and 7.

Based on (3.46), the following is obtained from equation (3.41)

U,
Us= — .1, = [q:—x—d
“ (3.47)
Uq — Eq
Uq:xd]d+Eq = Iyj=——
Zd
and from equations (3.44)-(3.45)
U=Uge+ jUpn= (U, +jUs) e’ =U e + jUse” = U, + U, (3.48)
I =Tpe+ jlpm=(I,+j1) e =1,e +j1,¢° = I, + I '

Equation (3.48) gives the relationship (or interface) between the components of U and
I in the dg-axes reference frame (based on Park’s transformation) which is rotating at
speed w, and in the network reference frame which is rotating at synchronous speed
ws. This interface is also shown in Figure 3.6. The position of the g-axis with respect
to the synchronous reference frame is given by 6 = (w, — ws)t + g, see equation (3.5).
Note that in steady-state w, = w,, and J = d.

Im-axis q-axis
A 4

Uy N _

U
Ulm I 4
/
5 /i
/ |
/ |
d-axis A
... / |
/ |
/ |

""" ¢ / J Re-axis
= - > -
- \‘_LL/ URe

U -

Figure 3.6. Generator-network interface.

The interface between the generator reference frame and the network reference frame
may be given in matrix form as

R e e | ol R e T
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The inverse relation is given by
Ure | | cos(d) —sin(9) U,
Upm | | sin(d)  cos(d) Uy

By virtue of (3.49), equation (3.47) can then be rewritten as

U sin(0 — 9)
[ = -2 9)
Lq
U cos(f —0) — E,
I; =
Tq

From equations (3.47)-(3.48), we have

= —jagjlye?® + E el — ju,I,e°
= —jaala+ Ey—jx,l, (V)
or
E,=U+jazqlg+jxgl, (V)

U=U,+jUs) e = 2gIg¢” + Eye?® — j x 1,7

(3.50)

(3.51)

(3.52)

(3.53)

Usually, the position of the g-axis is not known (i.e. § is not known). However (based
on the load flow calculation), U and I are known. Therefore, the position of the g-axis
with respect to the network reference frame can be obtained by some mathematical

manipulation in equation (3.53) as follows

Ly

+jagly+ jug (I — 1)
+jxg I +j(xg —4)1a
Eg+j(xg—xq)l4 (V)

U
U

The phasor diagram of equations (3.53) and (3.54) is shown in Figure 3.7.

g-axis

d-axis

Re-axis

»

O I ]

(=) T,

Figure 3.7. Phasor diagram representing equations (3.53) and (3.54).

(3.54)
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In equation (3.54), Eq =U + jx,I can be easily calculated since U and [ are known.
Subsequently, F, can be easily calculated. Note that £y and E, both have the phase

angle §. Another mathematical manipulation in equation (3.53) gives
E,=U+jag(I 1)+ jz,1,
=U+jwal —j(xa—124)l4 (V)

or
E=E,+j(xg—a)l,=U+jagl (V) (3.56)

where E is termed the generator internal voltage behind the d-axis synchronous reac-
tance. The circuit representation of equation (3.56) is shown in Figure 3.8.

JXg

¥~

&y

Figure 3.8. Per-phase equivalent circuit of a synchronous generator in steady-state.

By virtue of equations (3.47)-(3.51), the three-phase (complex) electrical power output
of the generator is given by

S.=3U0I"=3U,+jUs) (I, —jls)=3U,1,+Usly)+ 33 Usl, — U, 1)

3.57
=P, + .] Qe (VA) ( )
where
Pe :3(Uq[q —+ Ud[d)
U?sin(d — 60) cos(d — 0) E,Usin(6 — 0) — U?sin(§ — 6) cos(d — 6)
- +3
Zq g (3.58)
_ o EgUsin(6 —0) L3 U?sin(2(6 — 0)) (i B i) (W)
Ty 2 Ty T4
and
Q. =3(UgI, — U, I,)
5 —U?sin*(6 — 0) L3 E,Ucos(6 —0) — U?cos*(6 — 0)
B 7, Tq (3.59)
_ 32 <sin2(5 —0) N cos®(6 — 9)) +3 E,Ucos(6 —0) (VAI)
Lq Ty Ty

Since r = 0, the generator three-phase active power (F,) can also be obtained by

P, =Real [3E I"]
3 E Usin(d —0) +3 U?sin(2(6 — 6)) ( 1 1 ) W) (3.60)

Ty 2 Ty T4
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If saliency is neglected, i.e. 24 &~ z,, then E, = Eg = E, and

E,Usin(é — 0)

P.=3
T4
3.61
Qe:_gUZ—Echos(é—H) (3:61)
T4
3.4 Transient-state model
3.4.1 Classical model
From (3.37), the following can be obtained
—kM;i
iy = Y=k Myt - AL (3.62)
Ir
Substituting i from (3.62) into u, in (3.38), the following is obtained
k? M3 ws M V3
Uy = ws | Lg — f) g+ k— fz/z =2 ig+—=¢€ (3.63)
! < if Ly TR
/ Ws Mf . . . . . .
where, e, = 1y is termed the g-axis transient emf which is proportional to the
If
' ) ws k> M3 ws k* M7 '
field flux linkage v¢, and 2y = ws Ly — —— = x4 — —— is termed the d-axis
Lyy Lyy

transient reactance.

Note that r; < x4, and zj = x4 since there is no rotor winding on the g-axis. Then,
for the classical model we have

Ug = — Tqlq

V3 (3.64)

A /
uq—xdzd+—26q

where, €] is constant since ¢y is assumed constant in the classical model. This implies
that in the classical model there is no electrical dynamic since the only dynamic in
equation (3.38) will be set to zero, ¥y = 0.

Based on the assumption 4 above, equations (3.43)-(3.53) will be also valid for the
classical model with the exception that FE, and x4 will be replaced by E; and z,
respectively. Thus, for the classical model

e Equation (3.51) is modified to

U sin(f — 9)
b=
q
U cos(f —0) — E (3.65)
I; = -

Ly
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e Equation (3.53) is modified to
' =U+jayla+ jagl, (V) (3.66)

The phasor diagram of equations (3.53) and (3.66) is shown in Figure 3.9.

g-axis

Re-axis

»

O I ]

)Ty

Figure 3.9. Phasor diagram representing equations (3.53) and (3.66).

Note that from the figure the following can be obtained

Eq = Eé — ({L‘d - l‘;l) Id (367)

e Equation (3.56) is modified to
E =FE, —j(xq—ay)ly=U+jayI (V) (3.68)
where E’ is termed the generator transient internal voltage behind the d-axis

transient reactance. The phasor diagram of equation (3.68) is shown in Figure
3.10, where 0’ is the phase angle of E’. Note that 0 = ¢’ + /.

Re-axis

.
| o

Figure 3.10. Phasor diagram representing equation (3.68)
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Since 1)y is assumed constant, £’ and o' are also constant with respect to the
rotor axes [5], and in the classical model the generator is represented by a voltage
source with a constant magnitude E’ behind its d-axis transient reactance z/; as
shown in Figure 3.11 (a).

4 4
JXa JXa

| A
Yy~

=y
Cl

E
Cl

(a) (b)

Figure 3.11. Equivalent circuit of a synchronous generator for transient-state studies.

The generator three-phase active power is then given by

P, =Real 3 E' I*] = 3(U,l, + Ualy) = 3(E} I, + (z}, — x4) 14 1,)
_3E;Usm<5 9) U?sin(2 (5 9)) (_ 1 ) W) (3.69)

= / /
Ly Lg Ty

Based on the assumption 5, 2/, & z,. This assumption results in £/ = E' (i.e. § = ¢’
and o/ = 0), and in Figure 3.11 (a) the voltage source (E') is replaced by E! = E; ¢/°
as shown in Figure 3.11 (b) based on which

=U+ja)1 (V) (3.70)

and (since r = 0)

U sin(d — 0) (W) (3.71)

P.= Real 3E! '] = 3E,1,= 3

The dynamic of a synchronous generator represented by the classical model is then
described only by the swing equation (3.17), i.e

d=w
L1 (3.72)
w = M(Pmpu — P.,, — Dw)

where, P, is assumed to be constant and F,, is the per unit value of P. in equation
(3.71) which is defined in Section 3.5.
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3.4.2 One-axis model

In the classical model, 1y is assumed constant which implies that e} (or Ej) is also
constant. This assumption is justified if the generator is located long away from the
disturbance point.

In the one-axis model (also known as flux-decay model), the variation of ¢y is however
considered (although it changes slowly). This change can be determined by differenti-

s M N
ating e, = waff Yy (, and substituting s from (3.38)) as follows:
. Wy Mf . Wy Mf .
- - - 3.73
“=I, =L, (ug —rypif) (3.73)

which can be rewritten as

Ly wsM

e = 2wy My i (3.74)
Ty Ty
Let

o=t e My
do T ’ f T

where, 77, is termed the d-axis transient open-circuit time constant, and e; is an emf
proportional to the field voltage u;. Then, equation (3.74) is rewritten as

Tel =er — e (3.75)

ur and from (3.41) e, =ws Myiy

Let also
e
B =" Ef:% and Eq:% (3.76)

where, £, Ey and FE, are the rms values of e, e; and ¢,.

Substituting equations (3.76) and (3.67) into (3.75) and using (3.65), the dynamic of
E; (with rms quantities) is obtained as follows

T) Ll =Ep — B, = Ep — El + (z4 — 214

doq
— 3.77
_Ef—x—flE;erd/:CdUcos(é—Q) (3.77)
Tq Lq
The dynamic of the generator using the one-axis model is then given by (in (pu))
0=w
D= (P~ P — D)
W= ——Impuy — Lepy — VW
MY ! (3.78)
. 1 Tdpu Tdpu — Tapy
B gpu = T (Efpu - B + Tp Upu cos(d — 0)
do dpu dpu

where, P.,, is the per unit value of P, in equation (3.71), and EY,, is constant. The
per unit variables are defined in Section 3.5.

The one-axis model is widely used in voltage stability analysis, and also small-signal
analysis for designing Power System Stabilizer (PSS). The impact of PSS on damping
of electromechanical oscillation will be discussed further in this compendium.
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3.4.3 Two-axis model

In the two-axis model, it is assumed that the g-axis of the rotor is equipped with
a short-circuited damper winding. This winding may also represent the effect of the
rotors of the high-speed generators which are driven by steam or gas turbines, and have
cylindrical (or round) rotors made up of solid steel forging. A high-speed generator
often does not have special damper windings. However, the solid steel rotor body acts
as a damper winding in the g-axis by offering paths for eddy currents [5]-[6].

Having a short-circuited damper winding in the g-axis of the rotor then ig # 0 in the
assumption 6, and equations (3.37) and (3.38) are rewritten as
’g[)d = Ldid+k}Mf’if
Vg = Lgig + kMgig (3.79)
. . : —kMgi
Yo =kMqis+ Logiq = ig= Yo~ kMol
Loq

and
Ug = — WsWg = —Ws (Lqiq"_kMQiQ)

Ug = Ws wd

. , (3.80)
Yy =up—Tyif
Yo = —1QiqQ
Substituting i¢ from equation (3.79) into u, in (3.80), the following is obtained
ws k? M2 wg M, V3
s Q . s Q /- /
Ug=—|wg Ly — ——= | i, — k =—x 1, +—¢€ 3.81
d ( q LQQ ) q LQQ Q/JQ q ' \/5 d ( )
. M, ws k? M2 ws k2 M3
where, e/, = _ 70 Vg, and ), = ws Ly — = Q9 _ T, — Z° " @ This reactance
L L
QQ QQ

is termed the g-axis transient reactance. Note that zj < z,.

Equation (3.64) is then modified as

3
%egz—x;¢q+\/§E;
(3.82)

3
U, = x;id+£e;:xfﬂd+\/§E‘;

V2

/-
Ug = —T,lq +

or

Ui B,
Ty
U, E,

/
Ly

Us= 2, I, + B} = I,=
(3.83)

Uq: :L‘élld+Eé = Id

where, £, = —2
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Following a procedure similar to that for the one-axis model, the dynamic of £, (with
rms quantities) is obtained as follows

: x Ty — X
T),E, = —E) — (v, — a)) 1, = ==L Ef — 21— U sin(6 — 0)
Lq Lq
/ LQQ . . . . ol
where, qu = —= is termed the ¢-axis transient open-circuit time constant.
rQ

Thus, the dynamic of the generator using the two-axis model is given in (pu) by

d=w
. 1
W= M(Pmm — Py — Dw)
- 1 Tdpu 1 Tdpu — x:jpu (384)
E gy = = Efpu — == By + —————= Upy cos(6 — 0)
do xdpu xdpu

: 1 x Topu — T,

/ — apu. 1/ qpu qpu .

E gpy, = 7\ "% Eqp — - Upusin(d — )
q0 apu apu

where, P, is the per unit value of
P.=3U,1,+Usl;) = 3(E; I,+ E, L+ (2, — x;)ld 1,) = 3(E; I,+ E) 1)
4 E,U sin(0 — 0) + E; U cos(d — 0) (3.85)

/
Ly

since z;, = ry based on the assumption 5. The two-axis model is widely used in transient
stability analysis especially for modeling generators with round rotors.

Table 3.1 gives the typical values of generator parameters (depending upon the size of
generator). Reactances are expressed in (pu) based on the generator rated values, H
is given in (s) based on the generator rated three-phase MVA, and time constants are
given in (s).

Parameter | Round Rotor | Salient-Pole Rotor

Ty 1.0-2.3 06 -1.5
T4 1.0-2.3 04-1.0
x, 0.15-04 0.2-0.5
T, 0.3-1.0 —

T, 3.0 -10.0 1.5-9.0
Tq’o 0.5 - 2.0 -

H 2.5 -10 2.0-4.0

Table 3.1. Typical values of generator parameters [6].
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3.5 Per unit conversion

As described in [3]-[4], it is more convenient to normalize the generator quantities based
on the following base values.

S;fse = the generator rated per-phase VA
UEN = the generator rated line-to-neutral rms terminal voltage
Sle ULN (3.86)
[base = bg}gve and Zbase = base =
Ubase [base
Sl}jse = Ublcliye Ibase and Ulijsve = Zbase Ibase

Applying the above base values to equation (3.70), then

E! U oI _ _ 4 _
UI)L?V - UbLN * J Zbasj[base = E/qpu - Upu + J xfipu -[pu (387)
where
_ E! _ U _ I zl,
B =goy - Un=ggy o+ =g ad wpu=gin B89
Also, (3.71) can be converted to (pu) as follows
Pe E(/] U . E(/] U Zbase
S;¢ :3leUbLage[bms6 sin(6 —0) =3 UIN UIN o, (6—0) =
ase 7 oU (3.89)
Pepu,, =3 —2—" sin(5 — 6)
'rdpu
If the generator rated three-phase VA (ngse =3 ngse) is used as the base power, and

the generator rated line-to-line rms terminal voltage (UL: = /3 ULN

base hose) 1s used as the
base voltage, then

Sgie =V3 Ulfzge Tpase
Sye 35,
Thyuse = ase_ — 222 (i.e., th ical val in (3.86
b V3ULL ~ BULY (i.e., the same numerical value as in (3.86)) (3.90)
LL \2 LN
Zvase :<[§’§;e> = [I];’ase (i.e., the same numerical value as in (3.86))
base ase

Also, if the line-to-line rms voltage (U*" = \/3U) of the terminal bus is considered
in Figure 3.11 (b), then the equation (3.70) is written as

UL B _ _
=" vjayl = V3E =U" 4 jai V31 (3.91)
Applying the base values given in (3.90) to equation (3.91), then
V3E, UM W31 o ]
— iy Elpu = U+ gty L 3.92
Ub%%e Ub%%e Zbase \/g I base ” g dpe ( )
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where
_ V3E! E!
Elypu = ——7+ = 1% (Le., the same numerical value as in (3.88))
Ubase Ubase
- [LL i
Unw = w57 = =75 (i.e., the same numerical value as in (3.88))
Ubase Ubase
_ I , @ . . :
L, = 7 and 1z, = 7 (i.e., the same numerical values as in (3.88))
base base

However, for the active power the following is obtained

P, V3E/\3U V3E, UL Z..

= sin(o — 0) = sin(6 —0) =
S, mvAUE L T O O e T
7oU . (3.93)
u —pu .
Pepu3¢ = ‘11’/ —— sin(d — 0) = 3 Pepuw

'rdpu

Henceforward, the three-phase power and the line-to-line voltage at each bus will be
considered, and the superscripts ”3¢” and 7 LL” will therefore be omitted. Moreover,
the normalization of the quantities will be based on

Shase = an arbitrary three-phase base power

Upase = a line-to-line base voltage

. - (3.94)
base base
ase — and Z ase —
’ 3 Ubase ’ Sbase
Thus,
wt Ubase ’ w Ubase ’ apu Ubase ’ T Ubase
Ld Ty Lq g
xdpu Zbase ’ x;lpu B Zbase ’ xqpu B Zbase ’ ,qpu B Zbase (395)
U I P, P
U w— 77 I u 5 Pe u -
P Ubase P Ibase v Sbase \/g Ubase [base

Here-onward, if not otherwise explicitly stated, all used quantities in the compendium
(apart from w) are expressed in (pu), and the subscript ”pu” will therefore be omitted.

Next, based on the above base values and considering the terminal voltage U as line-
to-line voltage, the electric power in (pu) for the classical model and the one-axis
model is given by
— , E,U
P, = Real [qu } =FE, I, = p
d

(pu) (3.96)

sin(d — )
since !, = x,. Furthermore, the equivalent circuit of a generator represented by one of
those two models is shown in Figure 3.11 (b), where

E,=E,e’=U+jzyI (pu) (3.97)
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For the two-axis mode, the electric power in (pu) is given by

B U sin(6 — 0) + EyU cos(d — 0)

/
Ly

P.= Real [E'I*| = E,I,+ Ejl, = (pu) (3.98)

since x;; = . The equivalent circuit of a generator represented by the two-axis model
is similar to that shown in Figure 3.11 (a), but with

E'=(E,+jE)e’=U+ja,I (pu) (3.99)

3.6 Excitation systems

The generator excitation system consists of an exciter and an Automatic Voltage Reg-
ulator (AVR). The primary function of an exciter is to provide a dc source for field
excitation of a synchronous generator, and the AVR controls the excitation voltage. A
control on excitation voltage results in controlling the field current (i.e. i in Figure
3.3, or Ey in equation (3.78)) which in turn controls the generated voltage and reactive
power. This action contributes to the enhancement of system stability.

In general, there are two types of exciters, namely rotating and static exciters. The
rotating exciters make use of either dc generators or ac generators with rectifiers as
sources to provide dc current to the field winding of the generator. Figure 3.12 illus-
trates basic structure of the excitation systems with rotating exciters.

A

dc exciter Synchronous generator
. Slip ring Field Stator
Field : K )
: -H 1 f = i\
i y .
S . Lu . L1
N (]
| X |
i ! !
|
! ! Input data i
I
| |
! 1

—————————————— Voltage regulator fe-----—-———————————————— !

Input data
ac exciter Synchronous generator
Slip ring Field Stator
Field Stator Rectifier x —> .
% i M e
. ol | u o S,
. N (]
! 1 } ﬂ f < R
l : X :
! 1 1
l : l
: ¥ Input data !
I I
! |

—————————————————— Voltage regulator - ----—-————————— -]
Input data

Figure 3.12. Basic structure of the excitation systems with rotating exciters.

A dc exciter may be driven by a motor or the shaft of the generator. It supplies dc
current to the field winding of the synchronous generator through slip rings ( a slip
ring is a rotary continuity electromechanical device to transfer electrical power and
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electrical signals from a stationary to a rotating structure). These excitation systems
belong to early systems. Due to their obsolescence, and also the needs of today’s power
systems to high speed excitation systems on all grid connected generating units with
high-field forcing capability, many older dc exciters are being replaced by ac or static
type systems. In an ac excitation system, the ac output is rectified to provide the dc
current required by the field winding of the synchronous generator. If the rectifier is
stationary slip rings will be needed. With rotating rectifiers, the need for slip rings is
however eliminated.

Figure 3.13 shows the basic structure of static excitation systems. The rectifiers are
directly fed from the generator terminals (or the station auxiliary bus) via a step-down
transformer to provide the dc current required by the field winding of the synchronous
generator. In these excitation systems, slip rings are needed, and the rectifiers are
controlled directly by a voltage regulator. By far, most excitation systems installed
nowadays are of this type.

Synchronous generator

Slip ring Field Stator

Rectifier
M +
= ﬁ “y
j

!

)

i

by
AN

X

v Input data

e

---| Voltage regulator [€-----——---------————————

Input data
/

Exciter transformer

Figure 3.13. Basic structure of static excitation systems.

As mentioned before, the above figures only illustrate the basic structure of these
different types of excitation systems. Each type has however different configurations
which are comprehensively described in [3]-[6], and related references therein. Figure
3.14 shows the block diagram of a simple excitation system which will be used in this
compendium (especially for small signal analysis).

Ure.‘j‘ Ef;nax
+i K, £,
—
1+Ts
Uinput J
E,

Figure 3.14. Block diagram of a simple excitation system.

In the figure, K, and T, represent the gain of an amplifier and the time constant of
exciter, respectively. Further, U,.; is the set value and Uj,p, is the voltage which
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will be contrglled. Uinput 1s indeed the output ofithe block diagram shown in Figure
3.15, where U is the generator terminal voltage, I is the current flowing out from the
generator, and U = |U].

YU =R+ x| Y]

input

1+T,s

Figure 3.15. Block diagram of load compensation and transducer.

The first block is known as load compensator, and Z¢ = Re + jX¢ ~ jX¢ is known
as the compensation impedance. If the voltage at the generator terminal will be con-
trolled, then Zo = 0 that is Us = U. However, if the voltage at a point beyond the
generator terminal will be controlled, then Zg # 0 which represents the electrical dis-
tance between that point and the generator terminal. The negative sign means that the
point at which the voltage will be controlled is closer to (or within) the transmission
system. The positive sign is however used if several parallel generators (equipped with
AVR) are connected to the same terminal bus via a common step-up transformer. By
this compensation, the voltage at an (artificial) point within each generator will be
controlled which results in an adequate and stable reactive power productions between
the generators. The second block is known as transducer which represents the delay
due to measuring, rectifying and filtering of the signal. T is usually very small, and
this block can therefore be omitted. In this compendium, the load compensation is
also omitted since the control of the terminal voltage is of concern that is Ujp, = U.

It will be shown that excitation system with high gain will introduce very poor or nega-
tive damping in electromechanical oscillations which can lead to angular instability. To
eliminate this effect and to improve the system damping in general, a supplementary
damping device known as Power System Stabilizer (PSS) is added in the excitation sys-
tem. This device provides an additional supplementary signal to the voltage regulator
at the summing junction as shown in Figure 3.16

Ef;nax

K, E,
1+Ts

Tv )

Efmin

PSS

Figure 3.16. Block diagram of a simple excitation system with PSS.

Figure 3.17 shows the block diagram of a PSS.

U, K TWS 1+T;S 1+T;S upss
- > - > -
P 1+T,s 1+ 7T,s 1+T,s

\

Figure 3.17. Block diagram of a PSS.
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w;p is the input signal. The generator speed deviation (i.e w) or the generator real
power (i.e. P.) is the most commonly used input signal. Kpgg is the stabilizer gain
which determines the magnitude of damping provided by PSS. The first block in the
figure represents a high-pass filter (known as washout block). The purpose of this filter
is to stop contribution from a steady-state deviation of the input signal. The second
and third blocks are known as phase compensation blocks which are indeed lead-lag
type transfer functions. The purpose of these blocks are to shift the phase by setting
T1-T), at values so that a positive contribution to damping is obtained. Normally, the
second phase compensation block will be used if the phase angle of the first phase
compensation block is greater than a given maximum value. Then, T} = T3 and
T, = T,. However, if the phase angle of the first phase compensation block is less than
the given maximum value, then the second phase compensation block will not be used
(i.e. T3 = T}). The tuning of a PSS is discussed in Chapter 6.

3.6.1 Omne-axis model with AVR and PSS

It has already been shown that the dynamic of the generator k represented by the
one-axis model is given by

5k = Wk
. 1 1 Elk Uk .
W = E(Pmk — Pep — Dywy) = E(Pmk - ;&k sin(dx — 6) — Dywr) (3.100)
: 1 —
Eyg=——|Em— % B+ M Uy, cos (6 — 6)
T ok T Tk

where Eyj, is constant.

Using the AVR shown in figure 3.16, then Fy; is not longer constant and its dynamic

is given by
1

Tek

Efk = <_Efk + Kay (Ukref + Upssk — Uk)) (3101)

If no PSS is utilized then wu,ss; = 0.

Using the PSS shown in figure 3.17, if the washout block and the second phase com-
pensation block are omitted, and also the generator speed deviation (i.e wy) is used
as the input signal, then the output signal w,ss; can be considered as a state variable
whose dynamic is given by

. 1 .
Upssk =7 (—Upssk + Kpssi wi + Tix Kpssk wi)
Tai (3.102)
1 P — Pep — Dywy, '
=7 | TUpssk + Kpsskwi + Ty Kpssi i
ok 2

In general, by using the following equivalent block diagram shown in Figure 3.17 for a

PSS,
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u, K Ts |G ¢ [1+75| G Cy |1+Ts| “pss
PSS 1+T,s 1+T,s 1+ T,s
Uu. S + S C + S u
in 1 1 ¢ T LG, 1 2 3 T, TN Cy 1 3 pss
—»f Kp > I —> -+ >z L) —» - > —» o : ) —>
rss s | N T, 1+EST<T>+ T, 1+T,s| +

Figure 3.18. The equivalent block diagram of the PSS.

the following differential equations can be obtained and added to the dynamic model
of the generator k,

Sik =7 (Wink Kpssk — Sik)

wk
. 1
Sor =7 (cor — Sak) (3.103)
2%
. 1
Ssi, =7 (cary — Sai)
4k
where,
Cik =UWink Kpssr — Stk
T
cor =C15(1 — T—;Z)
T (3.104)
C3k =Cik T—;: + Sox
T3y,
—car (] — 228
Cak C3k( T4k)
and finally
T
Upsske = C3 Fi”; + S (3.105)

Thus, the dynamic of the generator k£ with the one-axis model and the proposed AVR
and PSS models is given by equations (3.100)-(3.105).

Next, using (3.104) in (3.103) the following is obtained

Stk = Sy, Wink — S1.,,91k
Sok = 82, Wink — 52,1, 91k — 52,0102 (3.106)
Sak = 83, Wink — 53,1, 91k T 53,0052k — 534 O3k
where,
1
Slslk = T & ? Sluink = SlslePSSk
w
1 Ty
S2401 y 821 = 52401 1 - » S2ink — SQSlePSSk (3107)
1o, 1oy,
S —1 S =35 (1 —Tgk) S =5 <—T1k) s =353 K
33k ) O3s2k  O3s3k - ) 9351k O3s2k ) OBuink  °3s1 1> PSSk
m Ty, 1oy,
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Furthermore, (3.105) is rewritten as

T T, T T, 15y,
= K ink — S — 5. S 3.108
TorTus PSSkUink TorTus 1k T Tur 2k + O3k ( )

Substituting (3.108) in (3.101) gives

: 1 K 4y, K g,
Epp = = Eppt == Ukrey = = Up €550 Wink = €0, 51k €050k € 1,5, 531 (3.109)
Tek Tek; Tek
where,
KAk Tgk le
Cfop — 7 Cfsor = Cfarmm 0 Cfar = Cfsomm 0 Cluink — efslePSSk <3110)
Ter Ty Toy,

Note that, if the first lead-lag filter is only used (i.e. T3 = Tyy), then the third equation
in (3.106) is removed, and also (3.108) is modified as follows

T} T
Upssk = T—;I:KPSSkUink - T—;I:Sw + Sa (3.111)

To summarize, the dynamic of a generator k represented by the one-axis model, and
equipped with an AVR and a PSS with 2 lead-lag filters is given by

o = wy
1 Elk Uk
W = — (P — —2 sin(d, — 0) — Dyw
k Mk< k o (0k — Or) KWk )
' 1 T, Ty — T,
dok L g L g
. 1 Ky, K ap,
Ep = —7 kEfk + T—kUkref T Uk =+ €finpWink — €f,1,91k + €50, 2% + €5, S3k
Stk = 81, Uink — 51,1, 1k
Sop = Sy Wink — 52,1, S1k — 52,552k

Sar = 83, Wink — 53,91k 1 530,92 — 53,4, 93k
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Chapter 4
Transient stability of an SMIB system

Transient stability analysis of a power system is an extensive and complicated task.
However, it turns out that many of the most important phenomena and mechanisms
can be captured by simple systems. In large and complicated systems it is often
hard to distinguish the fundamental and decisive phenomena from the more irrelevant
ones. It is therefore of importance to study simple systems to get an insight into and
understanding of the basics, that can be used in the analysis of more complex systems.
Therefore, this chapter focuses on transient stability of an SMIB system.

Consider the Single-Machine-Infinite-Bus (SMIB) system shown in Figure 4.1.
N

| | Infinite
— ‘ ‘ Bus

Figure 4.1. SMIB system.

For the above SMIB system, the following assumptions are made:

1. The classical model is applied to the synchronous generator, i.e. the synchronous
generator is modeled as a constant emf (F}) behind its transient reactance .

2. The system is lossless and the transmission line is modeled by a series reactance.

3. Voltages and currents are symmetrical.

4. The mechanical power P, is constant.

5. The voltage at bus N is given by Uy = Uy £ 6y where both Uy and 0y are fixed.
Based on the above assumptions, we redraw the SMIB system in Figure 4.1 as shown

in Figure 4.2, where x;, is the sum of the reactances of the transmission line and the
two transformers.

‘E/5 : Uy486,

e i | Jx

P JXg 1ot | Infinite

I — >

T
SG

Figure 4.2. Proposed SMIB system for transient stability study.

The dynamic of this system is given by the swing equation

47
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0=w
W = i(Pm — P, — Dw) (4.1
where B Uy
P, = m sin(d — Oy) = Pepae sin(0 — Oy)

4.1 Analysis of the swing equation

In order to make a qualitative analysis of the swing equation, some simplifications and
notations will be made as follows. Let

5 =0 and o= |71 = |7]

X2

Then, the swing equation (4.1) is rewritten as

iy o w
| 9 w ﬁ(Pm — Pz sin(d) — Dw)
(4.2)
[ T3 fi(x)
- - =
|7 (P — Peao sin(zy) — D a) fo()

Thus, we are dealing with a nonlinear system of the form & = f(x) defined in equation
(2.1) with n, = 2. Based on Definition 2.1, the equilibrium points (e.p) of equation
(4.2) are given by

fl (.TO) T2, 0
flao) = - - (43)
fZ(xo) ﬁ(Pm - Pemax Sin(xl,o) - D x2,o) 0

Obviously, x5, = 0 and x1, is given by P, = P.(21,) = Pemas sin(x1,).

In the steady-state (see Definition 2.2), the generator rotates with a speed that cor-
responds to the system frequency (i.e. w =0 = w, = w;), and also the mechanical
power is equal to the electrical power (i.e. P, = P,).

Figure 4.3 shows variations of P.(0) versus the rotor angle §. Due to practical issues,
the interval of interest is 0 < § < 7.

Obviously, for

1. P, > Pepaa, there is no value of x4 .
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Pe(B):Pemaxsin(S)

P_(5)

QN === = e e e e e - - - -
QN === = e e e e - - - -

Figure 4.3. Variations of the electrical power versus the rotor angle.

s
2. P, = Pepaa, there is only one value of x; ,, that is 21, = 7

3. Py, < Pepnaw, there are two values of z,, as shown in Figure 4.3, i.e. 27, = 0
and z1, =0, = T — 0.

Since point (3) is dealing with a normal operation it is of interest for the following
analysis. As was mentioned, for point (3) there are two equilibrium points, that is

_ Tl Js _ _ | T1o| 0y
Ty = Ty = [@J = {O} and 7z, =, = szo] = {0} (4.4)

The question remained to be answered is which one is a stable equilibrium point (s.e.p).

4.1.1 Stability of the equilibrium points of the SMIB system

Stability of the equilibrium points (4.4) may be characterized by a similar argumenta-
tion as was given in Example 2.1. It may also be characterized by applying Theorem
2.1 as follows, see also Example 2.2.

The Jacobian of (4.2) at = z, is given by

ofi(x) Ofi(x)

oxy Oxa 0 1
A= - (4.5)
Ofa(z)  Of2(x) _K _D
81'1 8:)32 M M

T=x,
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where K = P4, cos(21,). The eigenvalues of (4.5) are given by

D D\° K
A172:‘mi\/ (m) ] (4.6)

By analogy with the solution of Example 2.2, it can be shown that z, is asymptotically

T
stable if 0 < 21, < =. Therefore, z, = z, is asymptotically stable and z, = z, is

unstable. Note that D is a positive small constant.

If there is no damping in the system (i.e. D = 0), then the eigenvalues are given by

K
)\172 - :l: —M (47)

By virtue of Theorem 2.1, it can be shown that x, = z, is unstable (show that).
However, Theorem 2.1 cannot characterize the stability of z, = x5 when D = 0 (why?).
Therefore, Theorem 2.2 should be applied to characterize the stability of z, = ;.

Using the following energy function [7]
1 §
V(z) =Wk +Wp = 5]\4 w? + / (Pomaz sin(zq) — P,,) dzy
s

— %M w? — Pp(6 — 65) — Popaz(cos(8) — cos(6,)) (4.8)

1
— 5]\4 w? = Pyp6 — Pz cos(0) + C,

it can be shown that x, = x, is stable if D = 0. It can also be shown that z, = z,
is asymptotically stable if D # 0 (see Example 2.2). Note that in equation (4.8),
Cy = P05 + Popag cos(ds) is a constant such that V(xg) = 0.

Stability of 0, and §, may also be characterized as follows. Starting with 0, (see
Figure 4.4), assume that due to some disturbance § moves from d, to §; at which P,
is greater than P,, (and therefore w < 0). This causes the generator to decelerate,
and therefore the rotor angle ¢ starts to decrease and moves back to d,. Furthermore,
the electric power P, as a function of  moves back to P,,. Next, assume that due to
some disturbance § moves from J; to do at which P, is less than P,, (and therefore
w > 0). This causes the generator to accelerate, and therefore the rotor angle § starts
to increase and moves back to d,. Also, P. as a function of 4§ moves back to P,,.
To summarize, when § = d;, P, is greater than P,,. Then the generator decelerates,
and the rotor angle § decreases and moves back to d,. As 0 passes d,, P, becomes
less than P,,. Then the generator accelerates. However, due to the generator inertia
(M or H) § continues decreasing and after a while it swings and moves back to ds.
As 0 passes 0, again, P, becomes greater than P,,. Then the generator decelerates.
However, due to the generator inertia (M or H) ¢ continues increasing and after a
while it swings and moves back to ds. If there is no damping in the system, 9 oscillates
around ds. Therefore, J, is a stable e.p (but not asymptotically stable). If there is
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damping in the system, then ¢ will eventually be settled at d,. Therefore, the e.p. will
be asymptotically stable.

Next consider d,. Assume that 6 moves from this e.p to 3 at which w > 0 (why?).
This causes the generator to accelerate, and the rotor angle ¢ increases and moves
away from 0,. At § = d,, the rotor angle § decreases and moves away from 0, (why?).
Therefore, this e.p is unstable (see also Example 2.1).

Pe(5)=Pemaxsin(6) PC(S):Pcmaxsin(B)

: . B 4\
: . P . P
N m /. N
7
» ’
\ / N
\ ‘5\

1

1

1
\
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(©)

[ [

1
1
1
1
1
1
1
1
1
1
1 3
I \
|
d

F [
| mmm e - 4
-

5

»
o
(=4

1 4 u 3
Figure 4.4. Stable and unstable equilibrium points.

Up to now, the stability of the equilibrium points of the SMIB system was discussed.
Next, the transient stability of the SMIB system will be discussed.

Due to the dynamic and structure of the swing equation (4.2), only transient stability
(or first swing stability) is feasible in the SMIB system, and a physically based definition
of its stability may be given as follows:

Definition 4.1 The SMIB system is transiently stable if the generator remains in
synchronism with the infinite bus after being subjected to a large disturbance. Instability
that may result occurs in the form of increasing rotor angle (or speed) of the generator
leading to its loss of synchronism.

However, a mathematically based definition may be given as follows:

Definition 4.2 The SMIB system is transiently stable if the initial point of the post-
disturbance system lies within the stability region of the stable e.p of the post-disturbance
system.

Example 4.1 Consider the SMIB system shown in Figure 4.5. At timet =ty a three-
phase fault occurs at point ¥ very close to BUS 2 (i.e. it can be assumed that the fault
occurs at Bus 2). At time t = t; +t. the fault is cleared by opening the faulted line.
The system data is given as follows (Spase = Sng):

Generator: 2/, =0.15 (pu), H =4 (s), D =0, and fs =50 (Hz)
Transformer: zp; = 279 = 0.10 (pu)

Line: x; = 0.50 (pu) and BUS N: Uy = UxZ 0y = 120 (pu)
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BUST BUSI1 i BUS2 BUSN
JXr

-
. Infinite

Jxr1 Jxr2
Figure 4.5. The SMIB system of Example 4.1.

Prior to the fault, the voltage at BUS 1 was U, = U/ 0 = 1/20.4873° (pu). Ezamine
transient stability of the system for the clearing times t. = 70 (ms), t. = 100 (ms) and
te =120 (ms), respectively.

Obviously, the system goes through three states, namely a pre-fault state (¢t < ty), a
during-fault state (t; <t < t;+1t.), and a post-fault state (¢t >ty +t.). The pre-fault
system is usually in a steady-state. Dynamic of the system in each state is given by

Pre-fault state:
B ey = ) =0 = at(t) = o+ / freaydt =t (49)

During-fault state:
i=fl(z) = oI@t)=a(;)+ / ff(x) dt (4.10)
Post-fault state:
i= frfx) = aPNt) =ty +t.) + / frot(a) dt (4.11)

where z(t) is the solution of the system. The question is if the post-fault system with
initial point z(¢; + ¢.) is transiently stable. To answer this question we must first
identify fP¢(z), f/(z), fP°!(x), and z¢ based on the given system data.

Pre-fault state:

In this state, the system is in a steady-state. Since U, is known prior to the fault, the
following can be obtained.
_ U,—-U
I = — % —10162£10.2437° (pu)
j(05 * Ty, + IL‘TQ)

El = B/ =j(zy+ o) ]+ 0, = 1.0747£33.9393°  (pu)

P, = Real[E/I']=1 (pu) or

7 E& —Upn
q - pre
J Lot
Eé Uy

= — e sin(0) = P, sin(60™)

tot

P, = PPe(5") = Real

= 1.7911 sin(33.9393°) = 1 (pu)
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In this state, & = fP"¢(x) is given by (in f(x), the angle is given in radian)

5 w w 0

@ L(P, — Pr) L(P,, — Pre_sin(5P")) 0

M emax

where
2H

Ws

e =a,+ap +05% 2, + 209 and M =

The stable e.p of the pre-fault system is given by x = [§77¢ 0]T
During-fault state:

In this state, because of the fault the voltage at BUS 2 is zero. Thus,

_ E -0 E

[ — q — q

! . . f
j(@y + a1 +0.5xxr) J ot

([ B\
B, | —
! jxfot

_ _ (4.12)
w ﬁ(Pm_Pef) Pﬁm

E/ 2
= Real {< ‘qic ] =0
—JTiot

P/ = Real[E] I7] = Real

and & = f/(z) is given by

Post-fault state:

In this state, since the faulted line is removed, there is only one transmission line. We
have then

P E, — Uy B Uy
P jahan o b)) Akt
. _(E—-Ux\| FEU
PPt = Real [Eé I;Ost] = Real | E} <7;xpostN> = qposi\’ sin(d)
tot tot

= PP sin(§) = 1.2643 sin(0)

emax

emazx post

emax

P,
P, = PP sin(6?") = " = arcsin (—) = 52.2740°

§Pot = 180 — 67", since Oy =0

and & = fP°'(z) is given by (in f(x), the angle is given in radian)

B w w
_ _ (4.13)
(P, — PPost sin(0))

1
M emax
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The stable e.p of the post-fault system is given by z% = [67°% 0], and the unstable e.p
of the post-fault system is given by z% = [6°5* 0]

Figure 4.6 illustrates variations of P ¢(d) and PP°s*(§) as functions of §. As shown in
the figure, the e.p of the system is the point at which the electric power P.(d) intersects
the mechanical power. Obviously, the pre-fault system and the post-fault system have
different equilibrium points. The reason is that the post-fault system has only one
transmission line which results in a higher total reactance than the pre-fault system.

prost
e

[<Y)) PP N
o
=

1

post

d (deg.)

Figure 4.6. Variations of PY" and PY 5 versus rotor angle ¢.

Next, by using some simulation tool (like MATLAB) we are able to study the stability
of the system for the given clearing time ¢.. Figure 4.7 illustrates phase portrait of the
SMIB system , and variations of the rotor angle § versus time for t. = 70, t. = 100,
and t. = 120 (ms). The stability region of the stable e.p of the post-fault system is
also shown in the figure (the shaded region).

0.018 t =120 (ms) 160

140} tC:]ZO (ms), red line
t= 100 (ms), blue line

120} =70 (ms), black line

1001

o (p.u)
o

S_ it
e xo—(S':’s ,0) 8o

8 (deg.)

T .
x::(ﬁzo",())
60f

401

201

-0.018 . . . . .
0 160 % 1 2 3 4 5 6
3 (deg.) Time (s)

Figure 4.7. Phase portrait, and variations of the rotor angle § versus time.

Based on Definition 4.2, the SMIB system is transiently stable for this fault with ¢, = 70
and t. = 100 (ms) since the initial point of the post-fault system lies within the stability
region of the 0. However, the system is unstable for this fault with ¢, = 120 (ms)
(why?). Next, in order to study the dynamic performance of the system for the given
fault the case t. = 70 (ms) is discussed below in details.
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Figure 4.8 shows variations of P.(d) as a function of 0 (the P, — 0 figure), and the phase
portrait of the system (the w — ¢ figure) during the fault. The shaded region indicates
the stability region of the stable e.p of the post-fault system. In pre-fault state (i.e.
in the steady-state), the system is at 22 = [6?" 0]T where P.(§) = PPre(6P¢) = P,,.
When the fault occurs the electric power (as determined above) becomes zero (i.e.
P.(§) = P/ =0), and the dynamic of the system is given by equation (4.12). Therefore,
the generator starts accelerating (i.e. w is increasing) since w = Pﬁm > (, and so does
the rotor angle  since w > 0 as shown in the w — ¢ figure.

< px(t)=(6,0)
/; X(O=(3(0.0(0)

=0

P,
o (p.u)
o

N .~
LRt N
e eee—-Te,

N

=
£

A
o

160

@
« G
=4

8 (de9) 5 (deg)

Figure 4.8. P. — § curve and phase portrait of the system during fault.

The fault is cleared at clearing time ¢ = ¢, = 70 (ms) which corresponds to point p;
in the w — 0 figure, and also 0 = ¢, in the P, — ¢ figure. The angle d. is termed the
clearing angle which is the corresponding rotor angle to the clearing time ¢..

The dynamic of the post-fault system is given by equation (4.13) with the initial point
p1 at which P,, > PP°" as shown in the P, —§ figure of Figure 4.9. Thus, the generator
continues accelerating since w = P,, — PP°" > (), and so does the rotor angle § since
w > 0 as shown in the w — ¢ figure of Figure 4.9.

o (p.u)
o

P,()

e 3 (deg.)
Figure 4.9. P, — 0 curve and phase portrait of the post-fault system (6. — dpaz)-

When § reaches 6% (i.e. when § = 0P°"), then P,, = PP°" which corresponds to
point py in the w — § figure at which w > 0. Therefore, the rotor angle § continues to
increase, and PP°*" as a function of § follows the direction indicated in the figure. When
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d passes 0Pt then P, < PP°' (i.e. w < 0). Thus, the generator starts decelerating,
and w decreases until it becomes zero which corresponds to point ps in the w — 9 figure.
However, since w is posmve between points ps and ps the rotor angle § continues to
increase. Note that § = w. Since w = 0 at point ps, then § is also zero at this point
which means the rotor angle ¢ has reached its maximum (indicated as d,,,, in Figure
4.9, see also the d—time figure of Figure 4.7).

Since P, < PP*' at § = 0,42, the generator continues to decelerate which results in
decreasing of w. When w decreases and passes zero the rotor angle ¢ starts decreasing
(or swings back), and PF°** follows the direction indicated in Figure 4.10. When §
reaches 675! then P,, = PP°*" which corresponds to point ps at which w < 0. Therefore,
the rotor angle § and PP°** continue to decrease. When § passes 6?5, then P,, > Prost
(i.e. w > 0). Thus, the generator starts accelerating, and w increases until it becomes
zero which corresponds to point p5. However, since w is negative between points ps and
ps the rotor angle ¢ continues to decrease until it reaches its minimum (indicated as

Omin in Figure 4.10 which corresponds to point ps, see also the d—time figure of Figure
A7),

o (p.u)
o

‘min s max 8 (deg.)

Figure 4.10. P, — § curve and phase portrait of the post-fault system (d;p00 — Ipmin)-

As shown in Figure 4.11, P,, > PF°*" at 6 = 0,i,. Therefore, the generator continues to
accelerate which results in increasing of w, and the system will have a similar behavior
as described based on Figure 4.9.

o (p.u)
o

‘min s max 8 (deg.)

Figure 4.11. P, — § curve and phase portrait of the post-fault system (0,pin, — dmaz)-

Since there is no damping in the system (i.e. D = 0) the system trajectory will oscillate
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around the stable e.p of the post-fault system as shown in Figure 4.12. Therefore, the
system is transiently stable (or first-swing stable) for this fault with ¢, = 70 (ms). A
similar behavior can be found in case t. = 100 (ms).

o (p.u)
o

3 (deg.)

Figure 4.12. The dynamic behavior of the SMIB system for the given fault
with t, = 70 (ms).

Figure 4.13 shows the dynamic behavior of the SMIB system for the given fault with
te = 120 (ms). The fault is cleared at point p; where 6 = .. Since P,, > PP at
this point the generator accelerates which results in increasing of w, and also the rotor
angle 0 (since w > 0). When ¢ passes 0%, then P, < PP°'. Thus, the generator
starts decelerating, and w decreases. However, since w is still positive the rotor angle
increases, and PP follows the direction indicated in the figure until it reaches the
intersection point between PP°s" and F,, which corresponds to point py at which ¢ =
0Post and w > 0. Therefore, the rotor angle ¢ continues to increase, and PP follows
the direction indicated in the figure. When § passes 67!, then P,, > PP°*'. Thus, the
generator starts accelerating which results in increasing of w. Since w > 0 the rotor
angle 0 also continues to increase which leads to transient instability (or first-swing
instability). In power system literature, it is often said that the generator falls out of
step or loses synchronism (see also Definition 4.1).

P_(5)
-8}

o (p

o

'
Bi_"ey 5. 5 (deg)) Bzosl 5 (deg.)

Figure 4.13. The dynamic behavior of the SMIB system for the given fault
with t, = 120 (ms).

Next, assume that the fault is cleared at time t. = t.. at which the trajectory of the
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during-fault system intersects the stability boundary of the stable e.p of the post-fault
system as shown in Figure 4.14.

— 0.018

/ —
—~ )
&, oA T s 0
\
o ,‘/ : ,/ ! : \ E
h 1, I 1 \
;N ! | \
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1 : 1 \
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1 ! 1 A
1 ! 1
’ | : 1
1 | 1 N
I opf! 1 Y
. P ! Yo oot 5
pre” post
RN 5 (deg.) & 5 (deg))

Figure 4.14. The dynamic behavior of the SMIB system for the given fault with ¢, = t...

In the figure, the intersection point is indicated as p; at which 6 = d... Since p; (which
is the initial point of the post-fault system) lies on the stability boundary, the trajectory

of the post-fault system converges to z%P°*" as time goes to infinity (see Definition 2.5).

Time t.. is termed critical clearing time, and 9. is termed critical clearing angle cor-
responding to t.

Obviously, for any clearing time ¢, which is less than the critical clearing time (i.e.
te < te) the system will be transiently stable (or first-swing stable) since the initial
point (p;) of the post-fault system will lie within the stability region of the stable
e.p of the post-fault system. Consequently, if t. > t.. the system will be transiently
unstable (or first-swing unstable). Thus, the transient stability of the SMIB system can
be stated for a given clearing time t. without any numerical simulation if the critical
clearing time t.. is known.

For an SMIB system, the critical clearing angle .. can analytically be determined by
applying Equal Area Criterion (EAC). When the critical clearing angle d.. is known,
the critical clearing time t.. can also analytically be determined if the electric power
during fault is constant. However, if the electric power during fault is a function of
the rotor angle 0, the critical clearing time t.. can be determined only by numerical
integration.

4.2 Equal Area Criterion (EAC)

From Figure 4.7 (the d-time figure) it may be concluded that the SMIB system is
transiently stable (or first swing stable) if w becomes zero. Since § = w, the condition
w = 0 implies that the rotor angle reaches a maximum, and then swings back (hence the
name first-swing stability) as shown in Figure 4.15 for the cases t. = 70 and ¢, = 100
(ms). This observation may be expressed as
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A necessary condition for transient stability (or first-swing stability) of the SMIB sys-

tem is that at some time (t,,), i w(tm) = 0.
tc=70 (ms) tc=100 (ms)

140 ‘ ‘ ‘ ‘ ‘ 140

120} 1 1200

1001

3 (deg.)
d (deg.)

Time (s) Time (s)
Figure 4.15. Variations of § versus time.

Now, consider the swing equation

dw 1

i M< m — P.(6))

dé
Multiplying both sides of the swing equation by 7w the following is obtained

dw 1 dé
@ p —prn% 4.14
R L (1.14)
Integration of the (4.14) gives
W(tm) 1 Smaz 5 5
dw = — P, — P, do =
| e = 5 [ e )
1 1 Omaw

~(wltn)? = i (P, — P.(0))dd =

2 6max
W(tn) = \/M . (Pu=P() @5

The stability condition is that w(t,,) = 0 which leads to

/MM(Pm —P.(8)d5 =0 (4.15)

pre
S

The SMIB system is transiently stable (or first-swing stable) if there exists an angle
0 = Opmaz such that equation (4.15) holds.
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Let 6 = 0. be clearing angle which corresponds to clearing time t..

(4.15) can be rewritten as
de
/ (P, — PHyds +
spre
de
| pa=Pyds -
657"6
A, =
where

50
Aa:/ (P, — PH)ds
1

pre
S

6maac
/ (P~ PPN d5=0 =

5771(1{1)
/ (Pepost _p
dc

5ma.’lf
and Ay = / (PPt — P dé
dc

, equation

(4.16)

(4.17)

Thus, the SMIB system is transiently stable (or first-swing stable) if there exists an
angle 0 = d,,4, such that A, = A, (hence the name equal area criterion) as illustrated

in Figure 4.16, (P/ is assumed zero).
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Figure 4.16. The equal area criterion (clearing angle, ¢.).
But, what are A, and A47 (or what do they represent?)

Consider again equation (4.14) which is rewritten as

d
Mw® =

dt

Integrating the above equation, the following is obtained

/Mw—dt /(P ~P)—

w9 d w2 1
L.H.S = / Mot = / Mwdw = = M[w?]
A » 2

where

and

O
RH.S = / (P — P)Y
o1

o J

O
dt — / (P, — P)dS
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For 61 = 02", 69 = 0., w1 = 0 and wy = w,, i.e. during the fault, we have

1 1
L.HS = §M(w§ —w}) = §Mw62

(52 52
RIS — / (P, — PI)ds — / Podd = (8, — 07°¢) = A,
51 51

1
A, = =—Mu?
2

that is

e A, represents the kinetic energy injected into the system during the fault. It is
also called accelerating area.

In a similar way with 0; = 0., d2 = Opmaw, W1 = We, wo = w(ty,) = 0 and P, = PP it
can be shown that

e A, represents the ability of the post-fault system to absorb energy, i.e. potential
energy. It is also called decelerating area.

Setting Opmq: = 0£°%*) the maximum value of A, is obtained which is denoted by Agmas
as shown in Figure 4.17. Then, A, = Agna: gives the critical angle J.., and the SMIB
system is transiently stable if A, < Agmnasr (OF 0 < Occ).
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Figure 4.17. The equal area criterion (critical clearing angle, d..).

In general, an SMIB system is transiently stable if A; < Ay (or §. < d..) where

de
Ay :/ (P, — P1Yd§
6‘1;7‘8

. (4.18)
Ay = / (PPost — P.) d6
50

with 0,4, = 02°t. Furthermore, A; = Ay gives d,..
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Example 4.2 Consider the system and the case in Example 4.1. Determine the crit-
ical clearing angle (0..), the critical clearing time (t..).

The critical clearing angle .. is given by A; = Ay where

Oce
A= / (P = P1)d8 = P [3]355. = Prn(0cc — 07°)
6 S

pre
s

emax

5maz
Ay = / (PPost — P,)dd = —PP%" [cos(6maz) — €05(0ce)] — Prn(Omaz — Oee)
5CC

Py,

post
P, emax

Ay = Ay = e = arccos|[cos(Omaz) + (Omaz — 0F7¢)] = 0.8192(rad.) = 46.9370(deg.)
Since the electric power during the fault is constant (P/ = 0), the critical clearing time
t.. can be obtained as follows. During the fault, the dynamic of the system is given by
- dw 1
b=—=—(P,-PH ="
prialeydt )
Since P,,/M is a positive constant, the system has a constant acceleration during the
fault. The critical clearing time t.. can be obtained by integrating the above equation
twice. The first integration gives:

P, P, _dé_Pm
dW—ﬁdt = /dw—/ﬁdt = w-dt—Mt

The second integration gives:

d. t=tcc
cc P P 2M
dd = —mtdt = 500_5177'6 =" t2 = tcc = > 5@0 - 5?7“6 ~ 107.49
Jo = L I g = | =7 % 107100

The system is stable for this fault if ¢. < .. as shown in Fig. 4.18.

160

t =107.5 (ms), transiently unstable —
140¢ e

1201
100+

801

1C:IO7448 (ms), transiently stable —

3 (deg.)

60

401

201

0 . . . . .
0 0.5 1 1.5 2 25 3
Time (s)

Figure 4.18. Critical clearing time, t.. = 107.49 (ms).
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BUSI 037 BUS 2

- 0857 "N
0.37 |

E' 26 BUSI

q

L 037 BUS?
|+ x) 0857 "0

g |
| I,

037 |

Figure 4.19. The test system.

Example 4.3 Consider the test system shown in Figure 4.19 where BUS N is an
infinite bus and Uy = 0.9476£-44.6127, Z = R+ jX = 0.0673 + 50.6906, = x =
0.1, H=5, D=0 and £ = E; /) = E, /6 = 1.0932/10.5414.

Consider the cases below.

Case 1: A three-phase fault occurs at BUS 1, and the fault is cleared by opening one
of the lines between BUS 1 and BUS 2.

Case 2: A three-phase fault occurs at BUS 2, and the fault is cleared by opening one
of the lines between BUS 1 and BUS 2.

Case 3: A three-phase fault occurs in the middle of one of the lines between BUS 1 and
BUS 2, and the fault is cleared by opening the faulted line.

For each case, find the critical clearing angle and time (correct to four decimal places).
Also, plot variations of § for t. = t.. — 0.0001 (stable case) and t. = t.. + 0.0001
(unstable case). Furthermore, plot variations of PP, P/ and PP°' as a function of ¢,
and identify A, and Agmaz in the figure.

As shown in Exercise 1 and Exercise 3 (see the file ” Exercise_.EG2110.pdf”), the electric
power can be expressed by

Pe = K1 +K2 Sil’l(é—K:g)

where, Ki, K5, and K3 can be easily determined based on the known data. For all
three cases, the following are obtained (see Exercise 17)

_ E — Uy
I, = | —2 _ | = 1.0676/-20.4928
(J(x&+xt)+2>
P, = P =Real (E!1}) = 1.0000
K" = 01008 ; KF° =1.1598 ; K& = —0.7032
K = 0.0930 ; KJ*'=1.0388 ; K = -0.7010
o = 6V =10.5414  (deg.)
= 20.6665 (deg.)
= 79.0081 (deg.)
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Furthermore, J.. can be found by
600
A = / (P, — P/)do
5

pre
s

5ma:l:
Ay = / (PPt — P, do
dc
g(acc) - Al_AQZO

where ¢(d..) = 0 is solved for d.. by applying numerical methods such as Newton-
Raphson method.

In Case 1, we have K{ = Kg = 0. Thus,
Ay = Pp(de — 07
Ay = (K" = Pp)(0maz — 0ce) — KB [co8(Omaz — KE) — cos(8ee — KE*)]
dee = 15.5200 (deg.)

Since P/ = 0 is constant, the critical clearing time can be determined in a similar way
as shown in Example 4.2. Thus,

Py,

2M 2M
tcc = I —— 500 - 5§r6 - \/— 500 - 5§T6 = 0.0744 S
¢%_ﬁ< )= o, = o2) ©

phre
£ Casel
ppost
e
Admax

1
1

;\
— 1
S 1
(] 1
o I
1
1
1
1
1
1
1
1
1
:
% 1 2 3 4 5 6 ' :
) pre post =

Time (s) 9 dee 9 0 O™ Oy

Figure 4.20. Variations of § and P, for case 1.

In Case 2, we have

K/ =01307 , K]=0 = 6,=16.3096 (deg.)

Since P/ = K{ = 0.1307 is constant, the critical clearing time can analytically be
determined by

2M
tee = | ————(0ce — 05 ) = 0.0859 (s
¢%_M< ) )
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Case 2

¢ (deg.)
X0

(S S

T

1 1

1 1

. pre post -
Time (s) o deg s g O™ By

Figure 4.21. Variations of § and P, for case 2.

In Case 3, we have
K/ =01165 , K] =01458 , KJ=-07516 = 0,=17.1689 (deg.)

Since P/ = K{ + K sin(6 — K) is a function of § (i.e. it is not constant), the critical
clearing time cannot analytically be determined. We may apply Transient Energy
Function (TEF) method to estimate the critical clearing time as shown in Example
4.5.

tee = 0.0981 (s), from Example 4.5

Case 3

¢ (deg.)
X0

>,

1

1

|

1
. pre post -
Time (s) o g s ’ S J

Figure 4.22. Variations of § and P, for case 3.

4.3 Transient Energy Function (TEF) method

Another method to estimate the critical clearing time is known as Transient Energy
Function (TEF) method. This method (also known as the direct method) is based on
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Lyapunov’s direct method which gives an estimate of the actual stability region. The
simplest estimate is provided by the set

Q.={reR™:V(r) <c}

i.e., for any initial point within 2. the system is stable, and the system trajectory will
tend to the stable equilibrium point x,.

Example 4.4 Consider the following nonlinear system

jfl = —8.§L’1+25L’1.’L‘§

By = —18wy + 2x927

By applying the direct method give an estimate of the actual stability region.

By setting @1 = 19 = 0, we first find the equilibrium points of the system. It can easily
be shown that the equilibrium points are

To, = (_37 _2) y Loy = (37 2) y Loz = (_372) y o Loy = (37 _2) y o Los = (070)

Based on Theorem 2.1, xg,, xo,, Tos, To, are unstable, and zo, = z is (asymptotically)
stable.

Consider the positive definite function V(z) = 27 + 22 whose time derivative along the
trajectories of the system is given by

V = —4(42? + 922 — 22%22)

Since our interest is in estimating the stability region, we need to determine a domain
D about the origin where V is negative definite, and a set Q. C D which is bounded.
We can find ¢ by minimizing V subject to V = 0. Doing this, we easily find ¢ = 12.5,
see Section B.1 in Appendix B. Thus, V < 12.5 is the estimate of the stability region
as shown in Figure 4.23. Note that )V = ¢ = 12.5 is a level surface of Lyapunov function
V(z) = 22 + 22

In the figure, the stability boundary of the actual stability region is indicated in blue,
and the stability boundary of the estimated stability region (i.e. Q. = {x € R" :
V() < c¢}) is indicated in red.

Let V.. = ¢ be the critical level surface, and x;,; be an initial point whose position
is known. If V(x;,;) < V.., then the initial point lies within the estimated stability
region, and the system is therefore predicted by the direct method as stable. However,
if V(Zini) > Ver, then the system is predicted as unstable.

Let x;,; = (2,2) be an initial point. At this point V(z;,;) = 8 which is less than V., =
12.5, and based on the direct method the system with this initial point is predicted as
stable. Next, let x;,; = (—1,4) be an initial point. At this point V(z;,;) = 17 which is
greater than V.. = 12.5. Thus by the direct method, the system with this initial point
is predicted as unstable.
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0
%

Figure 4.23. Estimate of the stability region of zj.

The initial points z;,; = (2,2) and z;,; = (—1,4) are indicated with “+” and “*”,
respectively, in the figure. Obviously, z;,; = (2, 2) lies within 2. and the direct method
correctly predicts the stability of the system. The initial point z;,; = (—1,4) does
not lie within €., but it lies within the actual stability region that is the system
will be stable with this initial point. However, the direct method incorrectly predicts
the instability of the system. This is a disadvantage of this method which gives a
conservative prediction. However, an important feature of this method is that it does
not predict an unstable case as a stable case.

This method has received considerable attention for assessment of power system tran-
sient stability. In power system literature this method is more known as the Transient
Energy Function (TEF) method, since energy functions have been used as Lyapunov
function candidates. The energy function for a power system has normally the form

V(z) =Wip+ W, +Cy (4.19)
where, W}, and W, are known as kinetic and potential energy, respectively. Cj is a
constant such that V(zs) = 0 at the stable equilibrium point.
Using the TEF method, the assessment of transient stability of a power system after a
fault is performed by the following steps [7]:
1. Knowing the structure of the post-fault system, compute the stable equilibrium

point (x,) of the post-fault system.

2. Formulate the energy function of the post-fault system, and calculate V,,. which
is the critical energy function.

3. Simulate the system during the fault (i.e. the on-fault system), and compute z;,
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at the specified clearing time t.. The point x;, is considered as the initial point
of the post-fault system.

4. Calculate V(z, ). If it is less than V., the system is stable.
5. The critical clearing time can also be computed by simulating the on-fault system

until at a time t.., V(z;,.) = V.. This time is the critical clearing time.

Example 4.5 Consider the energy function below.

1
V(@) =5 Mu? = [(Pr = K5 + K5 cos(6 — K2™)] + Co

CO :<Pm o KfOSt)5§OSt + KgOSt COS(éEOSt o Kgost)

(4.20)

a) Show that the function V(x) in (4.20) satisfies the conditions of Theorem 2.2 for
xo = abost,

b) By using the function V(x) in (4.20), find (or estimate) the critical clearing time
of each case in Example 4.3.

a) It can be shown in a similar way as described in Example 2.2.

b) The critical clearing time for each case can be found as follows.

e Find V,,. which is given by (why?)

Vcr = - [(Pm - K{wSt)émam + K508t COS((Smax - Kg;OSt)] + CO

e Simulate the system during the fault with appropriate clearing time ¢, and inte-
gration time step.

e Let the vectors 6y and wy be the simulation results during the fault. Then,
substitute these results in V(z) in (4.20) to obtain the vector

1
V(z) = QM%% — [(Po = K7*")65 + K5*" cos(6; — K§™")] + Co

e The intersection between V(x) and V., gives the estimated critical clearing time
as shown in Figure 4.24.

4.4 'Transient stability enhancement

In this section, some of the most common methods to improve the transient stability
of power systems will be presented. For the purpose of illustration how the proposed
methods enhance the transient stability, these methods will be applied to an SMIB
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Case 1 Case 2

V(x)
V(x)

0.0859
Time (s) Time (s)

Case 3

V(x)

0.0981

Time (s)

Figure 4.24. Estimation of critical clearing time based on TEF.

system. However, it is to be noted that these methods are general, and can be applied
to any real multi-machine power system.

In the previous section, it has been shown that the SMIB system is transiently stable
for a given fault and a given clearing time t, if t. < t.. (or A; < Ay or V(z.) < Ver).
Using this relationship, a stability measure may be defined as follows

tcc - tc tc
My ==—=100% = (1~ %) 100 %
My zv;iwx) 100% = (1 — V](fc)) 100 % (4.21)
Ay — A B A,
Mo == 100% = (1= ) 100%

Increasing M, (or M 4 or My,) results in enhancing the transient stability. Obviously,
an important way to improve the transient stability is the use of protection equipments
and circuit breakers that quickly detect and clear the faults (which results in shortening
of t. or reduction of A;), and also the use of automatic line re-closing following the
fault clearing (which results in enlargement of A, as shown in Exercises).
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Consider the SMIB system shown in Figure 4.25. In this study, the clearing time is
specified based on the properties of protection equipments and circuit breakers. The
objective of the proposed methods is therefore to extend the critical clearing time
(which is similar to enlargement of A, and/or reduction of A;).

7, U, U, UyZ£0
j A ] *12 Infinite
Bus
jxtl szz

Figure 4.25. An SMIB system.

For this system H = 4, 2/, = 0.15, P,, = 1, &y = x4 = 0.1, 7 = 279 = 0.2 and
Unx =1 (allin (pu)). A three-phase fault occurs at bus 2, and the fault is cleared after
100 (ms) (i.e. t. = 0.1 (s)). Prior to the fault, U; = 1 (pu). Since P/ = 0 during this
fault, A; = Ay gives the critical clearing time

2M

tcc = \/P—m (566 — 5§T6) = 0.1458 (S)

Therefore, M; = 31.4%.

Braking resistors

One method to improve the transient stability is to switch a shunt resistor (normally
close to the generator) for a short time following a fault. This action is known as braking
resistors by which the rotor acceleration due to the fault will be braked. Switching a
shunt resistor R at bus 1 during the fault, then P/ # 0 (but a positive constant), and

AT = ALY gives
2M
tTLe'UJ — 577/6111 _ 557’6
cc \/Pm o Pef ( cc )

For a clearing angle equal to d.. when P/ = 0, the accelerating area with P/ # 0

e

will be less than A; with P/ = 0. To make A7 = A3 then AZ** must be less
than Ay which implies that 6" must be greater than d... Furthermore, —24 M

Ppn—P! P
Therefore, t7* > t.. which implies that M;z > M,.

» Yce

For R =1 (pu), it can be shown that ¢ = 0.2370 (s), and M;p = 57.8%.

Series capacitor compensation
Another method to enhance transient stability is reduction of transmission system
reactance. In the SMIB system,

E, Uy

P, = — sin(0) = Popaz sin(0)
Ty+ Ty + T+ T+ Tro

By compensating each line with a series capacitor, P,,,., becomes higher which results
in enlargement of A,.
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Let each line be compensated with 50% that is 27" = 275" = 0.2 — 2. = 0.2% (1 —0.5).
Thus, by this method %% = 0.2050 (s), and My, = 51.2%.

Shunt capacitor compensation

The main function of shunt capacitor compensation is to keep the voltage profile of the
(heavily loaded) transmission system within acceptable levels (i.e. close to the nominal
value). This compensation also increases the maximum power transfer capability which
results in enlargement of As.

Let a shunt capacitor with By, = 0.58 (pu) be installed at bus 3 to keep the steady-
state voltage magnitude of this bus at 1 (pu).
Thus, by this compensation " = 0.1505 (s), and M,p,, = 33.5%.

Obviously, compared to the shunt capacitor compensation, the braking resistors and
series capacitor compensation are more effective of achieving transient stability en-
hancement.

Other methods

There are other actions that not only significantly enhance transient stability, they also
improve damping of electromechanical oscillations, for example high-speed excitation
system with Automatic Voltage Regulator (AVR) and Power System Stabilizer (PSS)
which will be discussed in this compendium, or power electronics based controllable
devices with appropriate control strategies.
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Chapter 5

Dynamic modeling of multi-machine power
systems

In Chapter 4, the dynamic of a very simple power system (the SMIB system) has been
derived and studied. This simple model has of course a limited application to realistic
power systems. The analysis of such a simple model is primary motivated by the
insight it gives. In this chapter, dynamic modeling of a multi-machine power system is
however presented. It will be shown that depending on load modeling this dynamic will
be described by either a set of differential-algebraic equations (DAE) or only by a set
of differential equations. The dynamic model given by differential-algebraic equations
is termed as Structure Preserving Model (SPM), and the dynamic model given by
differential equations is termed as Reduced Network Model (RNM).

Before deriving the dynamic model of a multi-machine power system, we start this
chapter with presenting different load models.

5.1 Load modeling

As presented in [8], the term “load” can have several meanings. In this compendium
the following definition of the load is however of concern

o “A portion of the system that is not explicitly represented in a system model, but
rather is treated as if it were single power-consuming power device connected to
a bus in the system model” [8].

Based on the above definition, the load at a (high voltage) bus represents the aggre-
gation of hundreds or thousands of individual commercial, industrial and residential
power-consuming devices such as motors, heating, lighting, and electrical appliances
as shown in Figure 5.1.

This aggregate (or composite) load model may be represented by static or dynamic
load models, or a combination of both as described in (5.1)

SL:HSst+<1—H) den where 0< k<1 (5.1)

where, x is the fraction of the load represented by static load model. S; = Uy I} =
Pr, + 7@ is a mathematical representation of the composite load model. It gives the
relationship between bus voltage and current flowing into the (composite) load.

73
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Figure 5.1. A composite load model for representing physical loads.

5.1.1 Static load model

This model expresses the characteristics of the load at any instant of time as functions of
the bus voltage magnitude and frequency at the same instant [8]. These characteristics
are mathematically described by only algebraic equations. This model has usually been
used for transient stability analysis.

The exponential and ZIP models are two types of the static load models which have
been widely used to represent the voltage dependency of loads.

In the exponential model, active and reactive components of the load are expressed as
(it is assumed that k =1, i.e. P, = Py and Q = Q)

UL UL

mp mq
P, = Pgxp = PLO (—) and QL = QEXP = QLO <—) (52)
ULO ULO

where, Uy, is the actual bus voltage magnitude, Uy is the initial value of the voltage,
and Pro and ()7 are the active and reactive powers at Urg. The voltage exponents mp
and mq represents the parameters of this model.

e With mp = mqg = 0, the model represents constant power characteristic.
e With mp = mqg = 1, the model represents constant current characteristic.

e With mp = mqg = 2, the model represents constant impedance characteristic.

Based on the nature of the composite load characteristics at a given bus these exponents
may have different values.
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In the ZIP model, active and reactive components of the load are expressed as
b (22) 4t ()
Pz ULO pr ULO Pp

U \> U,
ko, | — koi | — k
q (ULO) + q <ULO) + qp

This model is composed of constant impedance (Z), constant current (I), and con-
stant power (P) components. The parameters k, and k, define the fraction of each
component. Note that k. + kp; + kyp = kg + kgi + kgp = 1.

PL:PZIP:PLO

QL :QZIP = QLO

A more general representation of the static loads is given by (5.4) where the frequency
dependency of load characteristics is also included [9]-[10].

2
U mpg
P, =Pyp+ Kk Py <Z kpk (U—L) (1 + Dpk Af))
L0

k=1

(5.4)
2 mgg
QrL=Qzip +KQro (Z kg, (g—LLo) (14 Dy, Af))
k=1

where D, and D, are damping constants, and Af = f — f; is the bus frequency
deviation (f is the actual frequency of the bus, and f, is the nominal frequency of the
bus). It is obvious that the load models (5.2)-(5.3) are derivatives of the general model
(5.4) in which ky, + kpi + kpp + kp1 + kpe = ke + ki + kgp + kgt + ke = 1.

5.1.2 Dynamic load model

It is well known that load characteristics have a significant impact on power system
dynamics. Therefore, accurate load modeling is vitally important for power system
utilities to predict more precisely the power system operating limits and stability mar-
gins. Thus, in many stability studies such as long-term stability and voltage stability
it is necessary to account for the dynamics of loads.

Electrical motors consume a large amount of the total electrical energy supplied by a
power system, and a large number of these motors are induction motors which affect
damping of oscillations. Thus, in addition to studies of long-term stability and voltage
stability, for improving damping prediction it has also been recommended that major
blocks of induction motor load should be represented by dynamic models including
both inertial and rotor flux dynamics (known as third-order model) [8]-[10]. For a
composite load, the motor components are aggregated into a single dynamic induction
motor model as shown in Figure 5.2 which has been derived by applying an appro-
priate transformation of phase variables into components along rotating axes. For an
induction machine the preferred reference frame is one with the axes rotating at syn-
chronous speed [11], i.e. the stator and rotor quantities are transferred to a reference
frame which rotates at synchronous speed wsy.
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Figure 5.2. Induction motor transient-equivalent circuit (third-order model).

In Figure 5.2, 2’ is the transient reactance (the stator resistance has been neglected),
and based on dg-components of the new reference frame we have the following (all
variables are expressed in (pu)):

U, U, +jUy
Ts = [q +.7[d
E' = E,+jEy

Moreover, from the figure the following can be obtained

M and I; = _LE‘/I

x! x!

=

q

(5.5)

Let x,, be the magnetizing reactance, r, be the rotor resistance, and z, and x, be the
leakage reactances of the stator and the rotor, respectively. Then, it can be shown that
based on the dg-components of the new reference frame the dynamic of this induction
motor is given by [4]

1
=577 Tm Te
8 =5 ( )
. 1
B, =w,sE) - T (Bl + (x —a')1q) (5.6)
1
Eél = Wg S Eq ﬁ (Eél — ($ ZL'/)Iq)
0
where,
s = 5T Wmotor oihe slip of the induction motor
Ws
T,, = A+ Bs+ Cs® is the mechanical load torque in terms of the slip
T. = E,I,+E;I; is the electrical torque
T, = Tr £ is the transient open-circuit time constant
wS TT’
, T Ty
r = x4+ ——— and T =z,+ 7T,
m _'_ xT‘

Note that I, and Iy in (5.6) are given by (5.5). Furthermore, Uy, = Us, and if £ = 0 we
have [L = [s, i.e. SL = den-

There are also other dynamic load models which are summarized in [10].
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5.2 Multi-machine power systems

Figure 5.3 shows a multi-machine power system. The transmission network has a total

of NV buses including the generators terminal buses (the first n, buses). Voltages at
these buses are given by U; = U, Z0;.

-
|

&

O1h,
@+

%}
x
-
5]

~
oF

Transmission
Network

Figure 5.3. A multi-machine power system.

For this system the following assumptions are made:

1. Dynamic of each generator is described by the one-axis model.
2. Mechanical power of each generator (i.e. P,,) is constant.

3. Inherent damping of each generator (i.e. D) is zero.

4. Loads are represented by static load model.

5. Transmission network is lossless.

Based on the assumption 1, the equivalent circuit of the k:th generator is shown in
Figure 5.4 where the reactance of the k:th transformer is included in z/,. The voltage
at the generator internal bus is given by Ej; Zdy.

E L6, Uz,
| L

| |

Figure 5.4. Synchronous generator one-axis dynamic circuit.

5.2.1 Structure preserving model

Based on the assumptions 1-3, the dynamic of the k:th generator is given by
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fork=1---n,

5k:wk

1 E! Uy
o= — | Por — =" sin(6), — 0
o Mk( T e ’“)>

‘ 1 T, Tap — T,
E,qk‘ = T <Efk Y Eék + %dk Uk COS(5k - Hk)
dok L g L g

where the reactance of the k:th transformer is also included in 4.

(5.7)

Next, let Yy, of order (N x N) be the admittance matrix of t@e transmission network,
and the kl-th element of the admittance matrix be defined by Y4, = G+ 7By, where
G represents solely the resistances of the respective transmission lines. However, based

on the assumption 5 (since R < X) Gy = 0, and therefore Ybuskl = 1 By.
The real and reactive powers injected into bus k£ are given by
fork=1---n,
N .
) £’ Uy sin(0), — O
Pk = Z BklUkUl sm(@k — 9[) + cl /( )
=1 Lk

U;f - EékUk COS(@k - 5k)

N
Qv = —Y_ BuUsUicos(f — 6;) +
=1

T
and for k = (n,+1) --- N

N
Pk = Z BklUkUl sin(@k - 01)

=1

N
Qk = — Z BklUkUl cos(ﬁk — 9[)

=1

Let P, and @1, be the active and reactive loads at bus k. Then, for k=1 ---

power flow equations (5.8) and (5.9) can be written as
P+ P, = 0
Qr+Qr, =0
which is a set of algebraic equations.
Let
$:[51"'5ng L Wi Wy, E;I...E;ng]T

y=1[0,---0n, U ---Uy]"

Then, equations (5.7) and (5.10) can be rewritten as

&= f(z,y)
0 zg(x,y)

(5.9)

N the

(5.10)

(5.11)

(5.12)
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Equation (5.12) is a set of differential-algebraic equations which describe the dynamic of
the multi-machine system. The differential equations @ = f(x,y) describe the dynamic
of the generators. In case of having dynamic loads and other dynamical components,
their contributions will be included in these differential equations. The algebraic equa-
tions consist of the network equations based on Kirchhoft’s current law, i.e. the sum of
all currents (or powers) flowing into bus k& must be equal zero. Equation (5.8) (which
is included in (5.10), and gives the power balance equations at the generator terminal
buses) is the interface between the algebraic variables (i.e. y) and the state variables
(i.e. ).

This model is termed Structure Preserving Model (SPM) since the structure of the
system model is preserved. An advantage of using SPM is that from a modeling view-
point, it allows more realistic representations of power system components, especially
load behaviors.

5.2.2 Reduced Network Model

The Reduced Network Model (RNM) can be obtained by replacing assumption 4 with
the following assumption

_ U?
4. Loads are represented as constant impedances Z;, = Ry, +7X1, = — k.
Pr, —JjQr,
Impedance loads can also be given in the form of admittance loads as
1 Py, —
R T (5.13)

ZLk a Ul?
Let Y of order (N x N) be the admittance matrix of the transmission network in
which the admittance loads are included, i.e. Y = Y,,s + Y7, where Y is a diagonal
matrix of order N x N whose diagonal entries are ¢r,. Then, the kl-th element of
the admittance matrix is given by Y, = G + 7By where Gy = 0 for k # [ due to
assumption 5. However, Gy, # 0 because of the admittance loads.

Next, the multi-machine system is augmented with n, buses which represent the gen-
erators internal buses as shown in Figure 5.5, i.e. the total number of buses is ng4 + V.

The current of the k-th generator (i.e. Iy;) is given by
7, = Eu—Us
! JTa

Based on Kirchhoft’s current law, the following can be obtained.

for k=1---n, (5.14)

N
0 = ) Yyl —Iu for k=1---n, (5.15)
=1

N
0 = Y Yyl for k=n;+1---N (5.16)
=1
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Figure 5.5. The augmented multi-machine power system .

or in compact form

e Ya YB| |Ec
o I A A 617
where
o Ig=1[Iy - I;n,|", and Oy is a zero vector of order N x 1.

[} EG = [E/ql cee E/qng]T, and UN = [[71 te UN]T.

e Y, is a diagonal matrix of order n, x n, whose diagonal entries are Yy,, = —.
JT g

—1

. , .
JL gy,

e Y3 is a zero matrix of order n, x N whose non-zero entries are Yp,, =

[ ] YC = (YB)T

e Y is a matrix of order N x N which is given by

B Yi 0
Yo=Y+ {02 OJ

where, Y is the admittance matrix of the transmission network (including the
admittance loads), and 0, 0y and 03 are zero matrices with appropriate orders.

Equation (5.17) can be rewritten as

I = YAEz+YgUy (518)
On = YoEq+ YpUy (5.19)
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By solving Uy from equation (5.19), and substituting it in equation (5.18), the following
is obtained
Uv = —Y;' Yo Eg
Ig =YaEq+YpUy=(Ya—YpY,'Yo ) Eq (5.20)
=Yrvm Eq = (G + jB)Eg

Thus, for k=1 ---n,
g

L = (G + jBie) Elgr + > (G + jBr) E'y (5.21)

=1
I#k

where,

o Yrny = G + jB is the admittance matrix of the reduced network model which
is of the order ny x n,.

e (1, and By represent the equivalent short-circuit conductance and susceptance
of the k—th generator.

e (i, and By, represent the transfer conductance and susceptance between internal
buses k£ and [.

Note that Gy, and Gy, are non-zero in case of having any active load in the system,
ie. PL # 0.

By virtue of equation (3.48), the generator current I_gk can also be written as

]_gk = (qu —+ ] Idk) Gjék = (Gkk + jBkk)Elqk Gjék + Z(le + jBkl)Elql ejél (522)
=1
1#k

from which I, and 14 can be solved for k =1 --- ngy, as

qu = GkkE,/]k + Z Elql (le COS(5k — 51) + Bkl sin(5k — 51))

=1
I#k
Ng

[dk = BkkE(/]k + Z E/ql (Bkl cos(ék - 5[) - le sin(ék — 5[))

=1
I#k

(5.23)

Based on equations (3.77) and (3.96), the dynamic of the k:th generator is given by

Sk = Wk
W —L(P — P, )—L(P — E! L)
k — Mk mk ek) — Mk mk qk gk (524)
: 1
By = (Epk — Egy, + (zar — i) Lax)

!
Tdok
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Substituting (5.23) into (5.24), the following is obtained

Sk = Wi
. 1 i .
W = ﬁ Pmk — GkkE:ﬁg — Z Elqulql (le cos(ékl) + Bkl sm(ékl)) (525)
k =1
2k
. 1 g '
Elqk T Efk — E;k + (ZL‘dk — x:ik) BkkE;k + Z Elql (Bkl COS(5kl) — le Sln((skl))
dok =1
I#k

Where, 5kl = 5k — (5[.

It is obvious that equation (5.25) contains only state variables and constants. The
reason is that with the loads represented by constant impedances all N network buses
are eliminated by equation (5.20), and there are no algebraic variables (i.e. the voltages
at the network buses) in (5.25). Therefore, there is no need of (5.10) to calculate the
algebraic variables y.

Using @ in (5.11), equation (5.25) can be written as

i = f(z) (5.26)

i.e., the dynamic of the multi-machine system shown in Figure 5.5 is described by only
a set of differential equations. Furthermore, the (n, + N)-bus system in Figure 5.5 is
reduced to an ng-bus system containing only the generators internal buses.

Example 5.1 Consider the lossless system shown in Figure 5.6. The system data is
given in Appendiz A (Section A.3).
Based on assumptions 1-5, describe mathematically the dynamic of the system, if

a) the load model given by (5.2) is used, with mp = 1 and mq = 2. Also, plot the
variations of the electric powers P, when 10% of the active load at BUS 4 is
disconnected during 0.1 (s).

b) the loads are considered as constant impedances. Also, plot the variations of the
electric powers Py for a three-phase fault at BUS 4. The fault is cleared after 100
(ms), i.e. t.=0.1 (s).

a) Let
1 1
b = —— , be=—— , bi=—
Ty Lo L3
1 1 1
by = — , bu=— , by=—
T4 T4 T34

where, the transformer reactance (zr) is included in 2.
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O

T3
BUS 3 _
L3
BUS 1 BUS 4 BUS 2
h_ e - 'H
SLI SL4 SLZ

Figure 5.6. A simple multi-machine power system.

The loads are modeled as

[\

St = Pr,+jQu, =Py, (Ulllo) e (Uillo)
St, = Pr,+jQu, = Pr, (U%) +5QLy, (U%Q)Q
Sts = Pr,+jQu, = Pr,, <Ul;) Qs (%)2
Ste = Pr+jQu = Puy, <Ul:;) I, (U%:)Q

The dynamic of the system is described by a set of differential- algebraic equations.
The differential equations are given by (zr is included in 2/, and z,4)

51 = W
52 == W9
53 = W3
) 1
wp = M (Pml - Pel)
) 1
Wy = E (Pm2 - Pe?)
) 1
ws = E (Pm3 - Pe3)
. 1 Tal Ta — Xy
B, = Epn——FE,+—%Ucos(d, — 04
“ T ( n Ty at Ty ( )
: 1 T2 Ti2 — Ty
E/Q = (EQ_—E, +7U2COS(52—02)
! Too ! Ty 2 Ty
. 1 T3 Ta3 — Thy
El3 = (Eg——E, +7U3COS(53—03)
! T3 ! Ty @ Ty3
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The algebraic equations are given by

0 = —Pj+buyUy Uysin(0y —6y) + Pr,
0 = —Pp+byUyUssin(by —0,) + Pp,
0 = —Pi+b3aUsUysin(0s —0,) + Pp,
0 b4 Uy Uy sin(0y — 01) + boy Uy Us sin(0y — 603) + bsy Uy Uz sin(6y — 63) + Py,
0 = —Qg +bu(Uf — Uy Uscos(6y — 04)) + Qr,
0 = —Qu+bu(U; — U2 Uycos(by —04)) + Qr,
0 = —Qu3+b3a(U; —UsUycos(fs — 04)) + Qr,
0 = bu(U; —UsUicos(0y — 61)) + boy(UZ — Uy Uy cos(0y — 6))
b3 (U2 — Uy Uz cos(0y — 03)) + Qp,
where,

Pek = bdk E(/]k Uk sin(5k - Qk)
ng = bdk Eqk Uk sm(@k — 5k> ek:
ng = _bdk (Uk - E:]k Uk COS(@k - 5k))

By defining x and y as follows

xr = [51 52 53 W1 Wo W3 E(/ﬂ E(IIQ E(;g]T
Yy = [91 0y 03 0, Uy Uy Us U4]T

the dynamic of the system is described in compact form by
= flz,y)
0 = g(z.y)

with initial conditions xy and yo which are computed based on the load flow calcula-
tions, and by setting & = f(xg,y0) = 0.

In the load flow calculations, the loads are normally considered as constant loads (i.e.

Sro = Pro + jQro). The initial conditions are then computed by the following steps:

1. Run the load flow calculations.
2. From load flow, yo = [0y, 02, 03, 04, Us, Usy Us, Uy]" is known.
3. Calculate Pyi,, Qgi1y, Qg2, and Qgs,-

4. Calculate Iy, Iy, and I3,

I— o glo nglo ]_ o g2o ]Qg2o ]_ o g3o ]QgBo

glo — U ) 920 — U ) 930 — U
1o 20 30
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5. Calculate E'yy,, By, and E' 3,
E,qlo = E;lolélo = Ulo + j xéll fglo
E/q20 = E¢I1204520 = U20 =+ j x:ﬂ 1920
E,q30 = E:;304530 =Us, +7J 1{13 1930
E is now known.

q30

6. o = [510 520 530 000 E{]lo L’

q20 ]T

7. Finally, Pp1, P2, Prs, B, Efe and Eys can be computed by setting
&= f(xo,90) =0, i.e.

Pml - Pel():Pglo

Pm2 - PeQ(): 920

Pm3 = P630 — 17g3¢
/
Tdl 1y Tg1 — Ty
Ep = —=Ey,———— Uy cos(dy, —04)
L1 L1
/
Td2 Tg2 — Lo
Ep = 22p, — 22 TR, cos(0y, — b,)
Lo Lo
/
Taz Tdaz — Ty3
By = "B T T01, cos(8y, — Os,)
Lg3 Lg3

The dynamics of the system in the pre-disturbance state, during-disturbance state and
post-disturbance state are given by

Pre-disturbance state:

fpre(fb’oayo) =0
0 = ¢"(x0,y0)

During-disturbance state with P, = 0.9 P, <UUT4> :
0

= Pz, y)
0 = ¢"z,y)

Figure 5.7 shows the variations of the electric power of each generator for this distur-
bance. As shown in the figure, Gen 1 oscillates against Gen 2 and Gen 3. Although,
Dy = Dy = D3 = 0, there is indeed a poor damping in the system (why?).
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Figure 5.7. Variations of AP,; (blue), AP,y (red) and AP.3 (black).

b) In a similar way as described in task a), the initial conditions are firstly obtained.
Next, the loads are modeled as admittances as follows

_ 1 PLIO - jQLlO _ 1 PLQQ — jQLQO
yLl g — g 3 s yL2 = —= —= 3
ZLI Ulo ZL2 U20
_ 1 Pryy — JQr,, _ 1 Pr, —JjQuL,
YLs = 2 o YLy = 5 = 2
ZL3 U30 ZL4 U40
to make the following Y7 matrix.
UL, 0 0
|10 Yy, O O
=10 0 g, o
0 0 0 g
Let
- 1
bdl — / ) bd? - ) bd3 - i
J T J Lag L3
and
by 0 0 ~byy 0 0 0 _gdl _2 8
Ya=[0 ba 0 . Yp={ 0 ~bo 0 O .Ye=|, ,°
0 0 bas 0 0 —bgs O 0 0 Od3
Next, with Y = Y,,s + Y7, and
yn + YL, 0 0 Y1a b 0 0 0
Ya 0y 0 Yo2 + Y1 0 Y24 0 bee 0 O
Yp=Y+ = 2 _ 7 + -
Y {02 03] 0 0 Yss + YL Y34 0 0 by O
Y14 Y24 Y34 Yaa + YL, 0O 0 0 0
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the admittance matrix of the Reduced Network Model (RNM) is obtained by

Gi1+JBi1 Gia+jBis Gis+ 7 DBis
Yanu = Ya—YpY,'Yo=G+jB= |Go+jBa Ga+ By Goy+jBo
Gs1+jBs1 Gag+j B3y Gs3+ j Bss

0.0843 — 71.1164 0.1476 + 70.5463 0.1181 + 50.4370
= [0.1476 + 70.5463 0.2583 — 5 1.5441 0.2066 + j 0.7648
0.1181 + 5 0.4370 0.2066 4 7 0.7648 0.1653 — 5 1.3882

Based on equation (5.21) and the structure of the Ygnas, the figure below shows the
reduced model of the system shown in Figure 5.6. In this model, all generator buses
are replaced by the corresponding generator internal buses, and all load buses (BUS 4

in this example) are removed. (What are g/ iV and 7" in the figure?)

Figure 5.8. The reduced network model of the system shown in Figure 5.6.

For a fault at BUS 4, Ygnyas must be modified. This is done by adding a large ad-
mittance to the diagonal element of Y, corresponding to the faulty bus (BUS 4) as
follows

Yi(4,4) = Yp(4,4)+(1—4)10% =
Yivu = Ya—Ys(Yp) Wo=G'+ B

0.0000 — 7 1.4286 0.0000 + 7 0.0000 0.0000 + 5 0.0000
= 10.0000 + 7 0.0000 0.0000 — 72.5000 0.0000 + 5 0.0000
0.0000 + 7 0.0000 0.0000 + 5 0.0000 0.0000 — 5 2.0000

Next, Iy, and Iy, with & = 1,2, 3 are obtained by

3
[qk = GkkE(/]k + Z Elql (le COS((Sk - 51) + Bkl sin(ék — 51))

=1
I#k

3
Idk = BkkE,/]k + Z E,ql (Bkl COS(5k — 51) — le Sin(ék — 51))

=1
I#k
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Thus, the dynamic of the system is given by

51 = w1
52 = W2
53 = W3
. 1
w1 = M (Pml — Eél [ql)
) 1
Wy = E (Pm2 — E(;Q [qg)
. 1
“s = n (Prns — By 1g3)
. 1
Eg=m (B — By + (zar — 2py) Ir)
dol
. 1
Elp = T (Ef2 - Eéz + (Ta2 — 55252)[d2)
do2
. 1
Elys = T (Ef3 - Eég + (Ta3 — x&s)[dB)
do3

Note that in the during-fault state, Yrnys = G+ j B is replaced by YI{NM =G/ +; B’

Figure 5.9 shows the variations of the electric power of each generator for this fault.
Obviously, the power variations are greater for this fault compared to the disturbance
in the task a) above.

0.19

AP

02855 1 2 3 4 5

Time (s)

Figure 5.9. Variations of AP,.; (blue), AP, (red) and AP,.3 (black).

Example 5.2 Consider again the lossless system shown in Figure 5.6. Let the two-axis
model given by (3.84) be used for the generators. Describe mathematically the dynamic
of the system, if the load model given by (5.2) is used, with mp =1 and mq = 2. Also,
find the initial values xo and 1.
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Since two-axis model is used, the following three differential equations are added into
i = f(z,y), (vr is included in 27, and z,)

. 1 1 Tl Tg1 — Ty )
Ey = —E) — (rg — 2l ) ) = (——q Ey — ———LU;sin(6; — 6,)
T(;o1 ( a ! e ) T(;o1 %1 ! %1
. ]_ ]_ €T 2 qu - x/2 .
Fgo = — (—Efy— (rp—1,)p) = (——q E, — ———L Uysin(dy — 92)>
T(;02 ( d2 q q2/"q ) T(;02 IL‘;2 d2 :L‘ZIQ
: 1 1 Tq3 Tg3 — Tys .
El — _E/ J— — / I — ——q El — 7(] U 5 - 0
d3 Téos ( a3 — (T3 xq3) q2) Téos ( xﬁﬁ d3 xﬁﬁ 3 sin(ds 3)

and the electric power is given by

Pek = bdk (E;k Uk SiIl((;k — Qk) + Etlik Uk COS(5k — Qk))

The algebraic equations are unchanged, however

ng - Pek
ng = _bdk (U,? — E(I]k Uk COS(@k — 5k) — Eélk Uk sin(@k — 5k))

Note that in the one-axis model, the voltage behind the transient reactance is given by
B, ¢’% (see Figure 5.4). However in the two-axis model, the generator internal voltage
is B' = (El, + jEl,) €% (see Figure 3.11 (a) and equation (3.99)). Furthermore, from
Figure 3.6 and equations (3.48) and (3.83) we have

Udk = Uk sin(@k — 5k>
qu = Uk COS(Gk — 5k)
Uy = Upe® = Uy, + j Ug) €%

I = D= (Ip+7Ig) e (5.27)
;. _Un— By
gk — _T
qk
Up — E
Iy = 7%, at
Lk

The initial conditions are computed as follows:

e Points "1.” to 74.” in the task a) above.

e Prior to the disturbance

Ela.=0 = Ea,=—(xg —vy) Iy = —(Tg — vgi) Ik, (5.28)

. o ;o
since it is assumed g, = x,;.
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From equation (3.99), we have

(Eogy + 7 Ek, ) e/%0 = Uy, + jaly I, ako = Uk + J2 (Igko + J Lar, ) el (5.29)

Substituting E’'4, from equation (5.28) into equation (5.29), the following is
obtained ’ . B
Ely €% 4+ aly Lg% = Uy + jagr Ly, €% (5.30)

Subtracting . Ly, €°% from the both sides of (5.30) results in

(Bl — (Tqe— ) Tag) €70 = Upg 30 gr(Lno+ 5 Lan) €70 = U+ i@ g lgr, (5.31)

Thus, g, can be calculated from equation (5.31). When 6, is known, Uy, Uy,
Iyys Lay, and finally Ej, and E7, ~can then be calculated from (5.27).

e Point 77.”.



Chapter 6
Rotor angle stability

As was presented in Chapter 1, rotor angle stability refers to the ability of synchronous
machines of an interconnected power system to remain in synchronism after being
subjected to a disturbance. Instability that may result occurs in the form of increasing
angular swings of some generators leading to their loss of synchronism with other
generators. Loss of synchronism can occur between one machine and the rest of the
system, or between groups of machines, with synchronism maintained within each
group after separating from each other. This stability is characterized as:

e Transient stability which is concerned with the ability of the power system to
maintain synchronism when subjected to a large disturbance, such as a short—
circuit on a transmission line. Transient stability depends on the initial operating
conditions of the system as well as the type, severity and location of the distur-
bance.

e Small-signal stability which is concerned with the ability of the power system
to maintain synchronism under small disturbances. The disturbances are consid-
ered to be sufficiently small that linearization of system equations is permissible
for purposes of analysis.

Transient stability has already been discussed for an SMIB system. Due to the sim-
plicity of the SMIB system, it was possible to study its transient stability by means
of Equal Area Criterion without running time-domain simulation. However, since this
method is not analytically applicable to multi-machine power systems, some techniques
applicable to transient stability analysis of multi-machine power systems are presented
in this chapter.

6.1 Transient stability

The main aim of transient stability analysis of a power system is to study whether
the system after a large disturbance will settle to an acceptable steady-state as time
passes. To ensure power system stability (or security), power system utilities would like
to assess the performance of either current or postulated power system configuration
under a variety of actual or hypothesized operating conditions and disturbances. Then
based on the results of the stability studies, they take preventive control action if
necessary.

For transient stability study, power system utilities broadly apply time-domain simu-
lation programs to predict the response of the system(s) to various large disturbances.
In these programs, the dynamic of the system may be described by a set of differential-
algebraic equations of the form (5.12) (or only differential equations) which are solved

91
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by using step-by-step numerical integration methods. Based on simulation results, the
behavior of the system is evaluated to predict the system stability and operating limits.
An advantage of applying time-domain simulations is that it is possible to have more
detailed models for generators and other power system components. By these detailed
models, the dynamic behaviors of the actual power system components are then more
accurately represented.

Stable case Unstable case

Ad (deg.)

Time (s) Time (s)

Figure 6.1. Rotor angle deviations of each generator.

Figure 6.1 shows the dynamic behaviors of the generators in the Nordic32 test system
proposed by CIGRE after a large disturbance for different clearing times. For the
unstable case, the system loses its synchronism and it is transiently unstable for the
specified disturbance and clearing time. Simulations were performed by using the
simulation program SIMPOW, and the results were plotted in MATLAB.

The time-domain approach has however disadvantages such as heavy and time-consuming
computations (especially for large interconnected power systems). Moreover (as shown
in the above figure), it does not provide any information regarding the stability margin.

To overcome these disadvantages, other transient stability analysis methods have been
developed. In this compendium two methods will be presented, namely the Transient
Energy Function (TEF) method and the SIngle Machine Equivalent (SIME) method.

6.1.1 Transient Energy Function (TEF) method

As explained in Section 4.3, TEF method has received considerable attention for assess-
ment of power system transient stability. The most challenge of the application of TEF
method to a multi-machine power system is calculation of V,, to have a less conserva-
tive estimation. There are different techniques for calculating V... These techniques
have been presented and discussed in [7] and related references therein.

In the development of energy functions for multi-machine power systems, and also
in order to clearly distinguish between the forces that accelerate the whole system
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and those that tend to separate the system into different parts, it is convenient to
transform the system (5.12) into the so called Center Of Inertia (COI) reference frame.

The position of the COI is defined by

1 1 & =
500] = ﬁ Z Mkék s Woor = ﬁ Z Mkwk Where MT = Z Mk (61)
T =1 T =1 k=1

Furthermore,
1 & 1 & Pcor
: :—E M, « :—E P — P.g) = 6.2
wecor My — k Wk My k:1( k ) My (6.2)

Next, the state variables d, and wy, are transformed to the COI variables as
O = 0k —cor , W =wy — Woor (6.3)

These COI variables are constrained by

S Mbp=0 , > M =0 (6.4)
k=1 k=1

The load buses angles are also transformed to the COI reference frame by
O = 0, — dcor
Time derivation of equation (6.3) gives

0k = Ok — Ocor = Wk — Weor = Wi

- . ) 1 M,
Wp = Wp—Wcor= i (Pmlc — P, — ﬁ;PCOI)

The system (5.12) in the COI reference frame is then expressed as (for k=1 --- n,)

5k = (IJk
. 1 E,k; Uk; ~ ~ Mk;
o = — | P — — in(d, —0,) — —FP,
A ( L sin(d — Or) M, coz) (6.5)
. 1 Tdk , Tk — xfik ~ ~
Fyp=—|FEHgp——F — %y o0 — 0
" ok < e Ty o Ty i cos( )
and
P,+ P, =0 (6.6)
Qr+Qr, =0 .

where, P, and @y are given by (5.8) and (5.9) in which ¢ and ¢ are replaced by 0 and
0. Note however that 6, — 0, = 0,, — 0, and 0, — 0, = 6, — 0;..
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Let the loads (i.e. P, and Qp,) be modeled based on (5.2) with mp = 0 and an
arbitrary mgq. Then, the following energy function is given for the DAE system (6.5)
and (6.6)

V(@,0,E,,U,0) = Wi + Wp + C, (6.7)

where

Ng 7
Iex
Wi =3 ; 1: My@; and Wp = §1 Vo,
= p:

with

N

i
—
-
I

A

Using the notation
ay oV dw

gy
lgle for o5

and similarly for the other states, the following are then obtained

dV; dVar  dVay
[E]wH a

dVQQ dV24 dV25 <
[t l6 = (Ps+ Prp)f =0 (6.9)

[ & ar T a v

o ta ta

Iy = —
k=1

which results in the following time derivative of the energy function

g

ay T .
% - Z X igk / <E/qk‘)2 <0 <6'12>
k=1 Tk T Tdk
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6.1.2 SlIngle Machine Equivalent (SIME) method

The SIME method is a hybrid direct-temporal transient stability method, which trans-
forms the trajectories of a multi-machine power system into the trajectory of a single
machine equivalent system of the form
éSI]\JE = wSI_]\/iE (613)
w = M~ [PR, - P

SIME MSIME eSIA{E]

whose parameters (which are derived from multi-machine power system) are time-
varying [12].

Basically, the SIME method deals with the post-fault configuration of a power system
subjected to a disturbance which presumably drives it to instability. Under such con-
dition, the SIME method uses a time-domain program in order to identify the mode
of separation of its machines into two groups, namely critical (subscript C') and non-
critical machines (subscript NC') which are replaced by successively a two-machine
equivalent. Then, this two-machine equivalent is replaced by a single machine equiv-
alent system. By definition, the critical machines are the machines responsible of the
loss of synchronism.

The parameters of (6.13) are given by

5SI]ME‘ =  odc —Inc
Wsrvp — Wo — WNC
PmSIME = Mf;l (MC mei — Mpyc Z ij) (614)
ieC JENC
PeSIME = ijl (MC Zpei - MNC Z Pej)
ieC JENC
Mo M
M = —eNe and MT:MC+MNC
My
where
MC — ZMZ 5 MNC:ZMJ
ieC JENC
So = Mg'> M, dnc=MyL Y M (6.15)
ieC JENC
woe = Mg') Mw; , wye=Mye ) Mw,
ieC JENC

By refreshing the parameters of the single machine equivalent system at each inte-
gration time—step and numerically assessing the transient stability of this equivalent
system based on the equal area criterion, the SIME method provides accurate and
fast transient stability assessment of multi-machine power systems, and also additional
interesting information such as stability margins, identification of the mode of insta-

bility and corresponding critical machines, sensitivity analysis and control techniques
[12]-[13].
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6.2 Small-signal stability

As was mentioned, small-signal stability analysis deals with small disturbances, and
it is applied to linearized system models. This analysis provides valuable information
about the inherent dynamic characteristics of the power system. It also provides a
valuable complement to information gained by time-domain simulation.

Small disturbances, such as the normal small fluctuations in the system loads or small
changes of the set values of some parameters, are always present in a power system and
normally the resulting power (or electromechanical) oscillations are stable that is the
oscillations are positively damped and decay with time. However, these spontaneous
oscillations may due to insufficient damping occasionally grow in amplitude with time,
and result in sustained low frequency oscillations that cause loss of synchronism.

The change in electrical torque (AT.) of a synchronous generator following a distur-
bance can be resolved into two components, namely the synchronizing torque compo-
nent (ATs) and the damping torque component (AT)p) as follows [6]:

ATQIATs—FATD:KSA(s—l—KDAw (616)

where,

e ATy is in phase with Ad, and Ky is the synchronizing torque coefficient.

e AT}y is in phase with Aw, and Kp is the damping torque coefficient.

Lack of sufficient synchronizing torque results in non-oscillatory instability in the first
few seconds following a fault, i.e. loss of synchronism between interconnected gener-
ators. This type of instability is essentially caused by the non-linear nature of the
dynamics of interconnected generators [14]. Therefore, (fast) automatic voltage reg-
ulators have been used to increase the synchronizing torques between interconnected
generators. However, they have also an effect of reducing the damping torques which
may result in oscillatory instability. This phenomenon is a typical small-signal stability
problem in today’s power systems. Thus to ensure system stability, a power system
should be designed and planned such that both synchronizing and damping torques
(with sufficient positive K¢ and Kp) exist for each of the synchronous machines.

In this section, application of small-signal stability analysis to power systems and the
impact of AVR and PSS on the synchronizing and damping torques will be presented.
But first, the essential characteristics (also known as modal analysis) of a Linear Time-
Invariant (LTT) system of the form

#(t) = Ax(t) + BU(t)

V(1) = Ca(t) (6.17)

are reviewed in terms of the eigen-properties of matrix A.
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6.2.1 Modal analysis
Consider the LTI system (6.17), where

e X is a vector of order n, x 1 containing the system state variables.

e YV is a vector of order m x 1 containing the system outputs or measured variables.
e U is a vector of order r x 1 containing the system inputs (or control) variables.
e A is a matrix termed as the state matrix of order n, X n..

e B is a matrix termed as the input matrix of order n, x r.

e (' is a matrix termed as the output matrix of order m x n,.

For now, let U be zero and consider the unforced LTI system

(t) = Ax(t) (6.18)
Eigenvalues
The eigenvalues of A are defined as the n, solutions of A = Ay --- A\, which satisfy
det(A—X1)=0 (6.19)

where “det” stands for determinant, and 1 is the identity matrix. The eigenvalues
may be real or complex. It is common to associate each eigenvalue )\; with a mode
of the system. The stability of an equilibrium point can be determined based on the
eigenvalues of the system by applying Theorem 2.1. A real eigenvalue corresponds to a
non-oscillatory mode. A negative real eigenvalue represents a decaying mode whereas
a positive real eigenvalue monotonic instability.

If Ais real, complex eigenvalues always occur in conjugate pairs. Each pair corresponds
to an oscillatory mode, and is expressed (for the i-th mode) by

The real component o; gives the damping of the i-th mode. A negative o represents
a damped oscillatory mode, however a positive o represents an oscillatory instability.
The imaginary component w,, gives the oscillation frequency of the i-th mode, and is

expressed by
W

= P 6.21
fpz 27T ( )

The damping ratio of the ¢-th mode is given by
G =

— 0 —0;

Jorren W

A positive damping ratio determines the decay rate of the oscillation amplitude.

(6.22)

In this compendium we assume that the eigenvalues are distinct, i.e. A\; # ;.
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Eigenvectors

Any non-zero vector V;” which satisfies

AV =NV (6.23)
is termed the right eigenvector of A corresponding to the eigenvalue \;. Note that V"
is a column vector of order n, x 1.

Similarly, any non-zero vector V;! which satisfies
VIA=\V] (6.24)

is termed the left eigenvector of A corresponding to the eigenvalue \;. Note that V! is
a row vector of order 1 X n,.

It can be shown that

‘/;l ‘/jr =0
. (6.25)
VIVI =G40
Note that V;" (or V}!) is not a unique solution, k V" (where k is a scalar) can also be a
solution. Due to this property, it is possible to normalize the right and left eigenvectors
so that
G
1 Ugi
VIVi=Tlvh vl - vg,] =1 (6.26)

iNg

Nt

Modal matrices

For the purpose of modal analysis, it is convenient to introduce the following modal
matrices:

T T T
U1p Vg o0 Uiy,
U'r U'r P ’I_}T
R [ior , r 1 21 22 2
L A N e : : (6.27)
T 'S 'S
vnxl UnxQ vnxnx
l l l
T v V. PO U
L _ 1 T 1 T 1 T . 21 22 2Ny
ve=[v)" Wyt v =
: : : : (6.28)
! l l
'Unxl UnxQ NgNg

= (VR)f1 (by virtue of equations (6.25)-(6.26))
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and the diagonal matrix

MO 0
0 X --- 0

A= T (6.29)
0 0 An,

In terms of the above matrices, equation (6.23) can also be expressed as
AVE=VEN = (VHTAVE=(VHTTVEA=A (6.30)

that is, the matrix A can be diagonalized by its modal matrix V%,

System modes

Since the state matrix A is (normally) not a diagonal matrix, the dynamic of each
state variable of the unforced LTI system (6.18) is a linear combination of the other
state variables. Therefore, it may be difficult to analytically identify the parameters
that have significant impact on the dynamic of each state variable. To overcome this
difficulty, the system (6.18) is (based on the modal matrices) transformed to an LTI
system whose state matrix is diagonalized as follows.

First, a new state vector £ is established by the transformation
() =VEa(t) = (VE) 1 u(t) (6.31)
which implies that
x(t) = VEE() (6.32)

Substitution of this transformation (i.e. (6.32)) in the original system (6.18) results in
the following transformed system

VEL() =AVEE() =
£t = (VE T AVEE(D) (6.33)
=A&(t) (by virtue of equation (6.30))

Based on the above transformation, we are now dealing with an LTI system whose
state matrix is diagonal, i.e. A. The dynamic system (6.33) represents n, uncoupled
first-order differential equations of the form

) =N&{t) for i=1---n, (6.34)
whose solutions with respect to time t are given by

&i(t) = &(0) Mt for i=1---n, (6.35)
where, &;(0) is the initial value of §;(t) at t = 0. From (6.31), we have

&(0) = V' (0) (6.36)
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which is a scalar, and will henceforth be denoted by «;. Moreover, x(0) is the initial
values of all the original state variables x(t) at ¢t = 0.

Next, by virtue of the expression for x in (6.31) and also equations (6.35)-(6.36), the
solution of the original dynamic system (6.18) can be expressed by

z(t) = Z Vi [Viz(0)] eM = Z Vi oy et (6.37)
i=1 i=1
or for the k-th state variable

x(t) = Z vy o et (6.38)
i=1

Equation (6.35) gives the each dynamic mode (corresponding to e) of the system
with magnitude «;. However, the dynamic response of each state variable is given by
equation (6.38) which is a linear combination of n, dynamic modes.

From equation (6.32) (and also (6.37)) we can see that the right eigenvector V" de-
scribes how each dynamic mode is distributed among the system states x that is it
describes the mode shape. From equation (6.36) we can however see that the left
eigenvector V;! weighs the contribution of the initial condition x(0) to the i-th mode.
Thus, the k-th element of V" measures the activity of the state variable xj in the i-th
mode, and the k-th element of V! weighs the contribution of this activity to the i-th

mode [15].

Eigenvalue sensitivity

Let ay; be the element of the state matrix A in the k-th row and j-th column. The
sensitivity of the eigenvalue \; to ay; is then determined by differentiating (6.23) with
respect to ay; which yields

0A \%4 i oV’
V[+Aa L= 0 V4 = (6.39)
8akj 8akj 8akj 8akj
Pre-multiplication of (6.39) by V! gives
0A oV’ O\ 1%
Vl Vv VlA (A Vl v Vv Vl)\z i
! 6akj ! * ! 8&@‘ ! 6akj ! + ! 8akj
o ) 0A oV
il ir i — V;l ‘/ir + (V;lA o ‘/Zl)\l> i
—— Oay; Oay; —— Day;
which results in o
L= ViVl (6.40)

8akj
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since all elements of aaa—f- are zero, except for the element in the k-th row and j-th
column which is equal to 1.

Information about the sensitivity of eigenvalues to system parameters such as excitation
system gain, generator inertia and line reactance is of importance in power system
stability analysis and control. Eigenvalue sensitivity can also be used to ascertain
which power system parameters have a major impact on damping of particular modes.

Participation factor

For small-signal stability and control, it is of importance to measure properly the
participation of state variables within a mode 7. The right eigenvector V" might be
a possible choice for this issue since its elements measure the activity of the state
variables in the mode 7. However, these elements are dependent on the dimensions
and scaling of the state variables which are incommensurable. As a solution to this
problem, a related but dimensionless measure py; termed participation factor has been
presented in [15]. The participation factor p; is a measure of the relative participation
of the k-th state variable in the i-th mode, and vice versa. It is given by

Phi = Vg Ui = Uy Vi (6.41)

Since the v, measures the activity of the state variable z; in the i-th mode and the
vl, weighs the contribution of this activity to the mode, the product py; measures the

net participation. Furthermore, a comparison between (6.41) and (6.40) shows that
O\
Oagy,

= Dki (6.42)

For the purpose of small-signal analysis, it is convenient to introduce a matrix P
containing all participation factors. This matrix is termed participation matrix, and
has the form

P = [731 Py - PM]
o« .. vr ’l}l vr ’l}l “ .. ,I_}T ’l}l
bu P12 Ding, 11 12 21 Ing “nal (6.43)
r r r :
P21 P22 Dong Vg1 V12 Voo Ugg  + v Vg Uy o
e UT’ ’Ul UT’ ’Ul e UT’ ’Ul
Pnz1 Png2 Prgng nel Y1ng ng2 Y2n, NgNg “NzNa

Modal controllability and observability

Consider the LTI system (6.17). By applying the transformation (6.32) to (6.17), the
following is obtained
Et) = AE@)+VEBU®) (6.44)
Vi) = CVREW) (6.45)
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Equation (6.44) can be written as n, uncoupled equations
() = N&(t +ZV’B u(t) = N &t +Zcmuj for i=1---n, (6.46)
where, ¢;; = VI B;, V! is the i-th row of V¥, B; is the j-th column of B and wu;(t) is

the j-th element of U(t).

Obviously, the input u; has no effect on the i-th mode if ¢;; = 0. Thus, the i-th mode
is controllable if and only if there is any ¢;; # 0.

The n, x r matrix VB is termed as the mode controllability matrix whose element
in the i-th row and j-th column is ¢;;. By inspecting this matrix, the controllable (or
uncontrollable) modes can be identified. For instance, the i-th mode is uncontrollable
if the i-th row of this matrix is zero.

Equation (6.45) can also be written as
chrfl Zoﬂfz for ]: 1---m (647)

where, 0;; = C;V;", C; is the j-th row of C' and V" is the i-th column of V%

It is evident that the i-the mode cannot be observed in the j-th output variable (i.e.
Y;(t)) if 0j; = 0. Thus, the i-the mode is observable if and only if there is any o;; # 0.

The m x n, matrix C' V is termed as the mode observability matrix whose element
in the j-th row and i-th column is o;;. By inspecting this matrix, the observable (or
unobservable) modes can be identified. For instance, the i-th mode is unobservable if
the ¢-th column of this matrix is zero.

Residues

Consider again equations (6.44). Let m = r = 1, i.e. a Single Input Single Output
(SISO) system. Taking Laplace transform, the following is obtained

£(s) = (s1L— A" VEBU(s) (6.48)

Taking Laplace transform of (6.45), and substituting (6.48) into it, we have then
V(s)=CVHE(s1— AN VEBU(s) (6.49)

where, s is the Laplace operator. Since A is a diagonal matrix, the transfer function of
(6.17) can be expressed in partial function as

Gs) = 28 _ Z - ii (6.50)

where, R; is the residue of G(s) at )\; and is expressed as

Ri=CV/V!'B (6.51)
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Note that R; = |R;| is indeed the product of the controllability and observability of
the -th mode.

Having a feedback transfer function of the form H(s, k) = kH(s) (where, k is a constant
gain) between output and input, it can be shown that [16]

O\
ok

— R H(\) (6.52)

For small values of gain, equation (6.52) can be written as

AN
Ak

—RH(\) (6.53)

Thus, if a feedback transfer function is added to the system, the i-th eigenvalue will
be changed as B

Equations (6.53)-(6.54) will be used later on designing a PSS for improving damping
of electromechanical oscillations.

6.2.2 Small signal stability of power systems

Let the dynamic of a power system be described by
(6.55)

where, f(x,y) and g(z,y) are given by equations (5.7)-(5.11).

By linearizing the above non-linear system around an operating point (zo, yo), the small
signal analysis can be applied to the linearized system. In Example 5.1, it has been
shown how (zg,yo) can be calculated.

The linearized system is given by

A = fhet Ay (6.56)
0 = g Az+g,Ay (6.57)
where
of (x,y) of (z,y)
f:v = o ) fy = B
T=Zo ; Y=Yo Yy T=To ; Y=Yo
- [89(1’, y)} - {89(55719)}
gx - 9 gy -
Ox T=T0 | Y=Yo dy T=T0 ; Y=Yo

fz, fy, g» and g, are Jacobian matrices which are explained in Section B.2 of Appendix

B.
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From equation (6.57), Ay can be solved as

Ay = —(gy) gDz (6.58)

Assuming (g,) " is non-singular, and substituting Ay into equation (6.56), the following
is obtained
Ai = (fo— fy(9,) " 92) Az = A Az (6.59)

where, A, is the overall system state matrix.

Equation (6.59) is the linearized system of the non-linear system (6.55). The eigenval-
ues of the linearized system are given by equation (6.19) where the state matrix A is
replaced by As. Note however that the linearized system (6.59) has (at least) two zero
eigenvalues which are not of interest in this analysis. The first zero eigenvalue is due to
use of absolute changes in rotor angles (i.e. Ad) as state variables. Since angles appear
as differences, an equal change in each of the rotor angles has no effect on power flow
equations. Therefore, the state matrix columns associated with the rotor angles are
linearly dependent, and make the state matrix A singular. The second zero eigenvalue
is due to zero damping constant, i.e. D; = 0. If there is any non-zero damping constant
in the system, the second zero eigenvalue vanishes. If the system contains an infinite
bus, these two eigenvalues vanish.

Example 6.1 Consider the system shown in Figure 6.2.

—_

Infinite

Gen Bus

0 U,
| |
| |

Figure 6.2. A single generator connected to an infinite bus.

The system data is given as follows (all values are expressed in pu):
Gen: One-azis model is used with H =4, D =0, 2/, =0.15, x4 =1, 2, =0.1, T, =6
and P, =1
Network: U, = 1/0,, Uy = 120 (infinite bus), x13 = 0.3, x93 = 0.5 the load model (5.2) is
used with Prg = 0.7, Qro = 0.01, mp =1 and mq = 2.
a) Linearize the system around its equilibrium point, and calculate the eigenvalues.

Calculate also the damping ratio and frequency of the oscillatory mode.

b) Draw the block diagram of the linearized system and calculate the synchronizing
and damping torque coefficients at the oscillatory mode.
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c) Simulate the non-linear dynamic system for the following cases

Case 1: A three-phase fault occurs at bus 3. The fault is cleared after 100 (ms) (large
disturbance).

Case 2: 20% of the active load is disconnected during 100 (ms) (small disturbance).

a) The system dynamic is given by

From load flow, xy and y, are calculated.

9 = [0 wo E, )" =[40.2667 (deg.) 0 1.1001]"
vo = [0, 03, Uy, Us)" =[27.1319 (deg.) 8.9674(deg.) 1 0.9623]"

Linearizing the non-linear system around (zo, yo), the following is obtained

At =As Az + BU

or
Aé —&11 12 13 Ad 9 0 AP,
Aw = 91 Q92 Q923 Aw + M 0 AE
AE(/] _(131 ass as3 AE(/] 0 TZO f
0 1 0 Ad 0 0 AP
= [—=27.1507 0 —37.6825| | Aw | + [39.2699 0 [AEm}
| —0.1094 0 —0.2912 | |AE] 0  0.1667 !
where, AP,, = AE; = 0.
The eigenvalues are
A, A = —0.0758 4+ 5 5.2081

As = —0.1395

Therefore, the equilibrium point is asymptotically stable. The damping ratio and the
frequency of the oscillatory mode (A; or ) are

01

= —1=0.0146
1 BN
fo = 2L 08289 (Hz)
P 2T

b) Figure 6.3 shows the block diagram of the linearized system which is redrawn as
shown in Figure 6.4 to have a representation similar to the well-known K representa-
tion.
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— -
ay, [

. \ iy ’
A I 1| Ag 1|2 AS
— (X ) > - > - >
T, S —asy, N N
Field
circuit <
—a,
Figure 6.3. Block diagram representation with one-axis model.
K, |-
- Y- ,
AE, =0 K, | A& 1 Ad
Yy » K, - >
1+T;s N
Field
circuit

A

K,

Figure 6.4. The well-known K block diagram representation with one-axis model.

In Figure 6.4

K1 = — M(LQl = 0.6914 s K2 = -M 93 = 0.9596

i
|5
[
o
(@)
J
[\]
w

1
T3 = — — = 3.4339 K
3 a33 ) 3 TC/lO

K4 = — Tc;o asy = 0.6563

(6.60)

In the steady-state, AP, = 2= AT, = AT, (expressed in (pu)), since ws = wy. In the
g9
transient-state based on the assumption ©* ~ 1, we may also assume that AP, ~ AT..
g

Therefore, the synchronizing and damping torque coefficients at the oscillatory mode
A1 are calculated by setting s = Ay = 01 + jw,, as follows.

From the block diagram of Figure 6.4

1 1
AS=-Aw=—Aw =
S Ul"‘jwpl

JAS =1 Aw— LA

Wpy Wp,

(6.61)



107

Also,
AT, =AP, = K; Ad + K, AE;
= K| AS + Ky (Fo + jF;,) A6 '
=K Ad+ Ky Fr.e A6 + Ko Fy jAO
where,
K3 Ky K3 Ky .
F(s=\)= — —— = F F.
(S 1) 1+T38 1+T3>\1 re T JLim
Substituting jAJ from (6.61) into (6.62), the following is obtained
AT, = {K1+K2 (F—F L )} AS + {KQF“”] Aw
wpl wpl
- (Kl + KS‘la:vis) AV + KD‘la:vis Aw (663)

= KS A5 + KD Aw
=0.6908 Ad + 0.0039 Aw

The synchronizing and damping torque coefficients can also be calculated as follows.

From the block diagram of Figure 6.4

A=t — L AT TN, o
s o1+ Jwp, A1l (6.64)
Jup Aw =01 Aw — [\ |* AS
Also,
AT, =AP, = —M sAw = —M [(01 + J wp, ) Aw]
= — Moy Aw + jwy, Aw]
= —M[alAw+01Aw—|)\1|2A5] (6 65)
:M|)\1|2A5+(—2M01)Aw '
IKS A5+KD Aw
=0.6908 Aé + 0.0039 Aw
Comments:

e With the classical model AE] = 0. Therefore, the synchronizing torque coefficient
would be Kg = K; = 0.6914. Moreover, since there is no inherent damping in
the system (i.e. D =0 ), the damping torque coefficient would be K = D = 0.

e With one-axis model, we see that a positive damping torque component exists, i.e.
Kp = Kpliazis = 0.0039. This is due to variation of E; since it is a state variable.
Having an inherent damping in the system, the damping torque coefficient is then
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Kp = D + Kpliazis- The effect of field flux variation (i.e. Ej) on the system
damping can also be observed in (6.12) which is the time derivative of the energy
function (i.e. V) along the non-linear system. Since V < 0, the equilibrium point
is asymptotically stable that is the system is dissipative (or there is a positive
damping in the system). If E} is constant, then E’q — 0 which results in V = 0
that is the system is conservative (or there is no damping in the system).

e The contributions of the state variable £ to the synchronizing and damping
torques coefficients are Kg|igpis = Kg — K1 = —0.0006 and Kpliazis = 0.0039
that is a (small) negative contribution to the synchronizing torque, but a (small)
positive contribution to the damping torque.

c) Figure 6.5 shows variations of the rotor angle for each case. Obviously the system
is transiently unstable for case 1, however it is stable for case 2 (small-signal stability).
For case 2, we see that the amplitude of the oscillation decays with time that is there
is a positive damping in the system. Note that the damping ratio is about 1.5%. It
can also be observed that the oscillation frequency is about

f_1_ I 1
P g —ty 3.27T—2.06

— 0.8264 (Hz)

Thus, the calculated frequency f, = ;}—p = 0.8289 (Hz) (which is based on the lin-
7r

earized system) gives a good estimation of the oscillation frequency.

43

Case 1 42!

41

S
\-;‘i 401
%=}
39r
40 38
0 0.5 1.4 370 1 2 3 4 5
Time (s) Time (s)

Figure 6.5. Variations of rotor angle with one-axis model.

Example 6.2 To improve the transient stability of the above system, the AVR shown
in Figure 3.14 is added to the generator with T, = 0.01 and K4 = 150 (Ey, .. and
Ey, .. are not considered in this example).

a) Simulate the non-linear dynamic system for the two cases in Example 6.1.

b) Based on the small-signal analysis, describe the effect of the AVR on the system
stability.
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a) Figure 6.6 shows variations of the rotor angle for each case. For case 1, it is
obvious that the AVR with its high gain (i.e. K4) has improved the transient (or first
swing) stability. However, it has introduced a negative damping in electromechanical
oscillations which results in oscillatory instability. This phenomenon is a typical small-
signal stability problem in today’s power systems. In case 2, small-signal instability is
obvious.

110

110

Case 2

F
< 40 40
2=
_25 1 L ! | _25 .
0 1 2 3 4 5 0 10 19
Time (s) Time (s)

Figure 6.6. Variations of rotor angle with AVR in the system.

b) Because of the AVR, the differential equation (3.101) with Upgs = 0 is added to
the f(z,y). From load flow, zo and yq are calculated.

o = [0 wo E, Ep]" =1[40.2670(deg.) 0 1.1001 1.5296]"
yo = [0, 03, Uy, Us]" =[27.1320(deg.) 8.9674(deg.) 1 0.9623)7

Linearization of the non-linear system around (xg, yo) gives

Ai = A, Az(t) + BU(t)

or
A5 _CLH 19 a13 A14 Ad 0
Aw | a21 Q22 G23 A4 Aw 0
AE(’J Clasi asy azs asm AE] + 0 AUres
AE; lan a2 asz as] |AFE; oA (6.66)
[0 1 0 0 AS 0 '
| —27.1507 0 —37.6825 0 Aw n 0 AU
T | —0.1094 0 —0.2912  0.1667| |AE, 0 el
2283.9790 0 —11436.1545 —100 ALy 15000

The eigenvalues are

A, Ay = 0.1752 £ 7 5.8155
A3 = —74.1635
Ay = —26.4780
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The damping ratio and the frequency of the oscillatory mode are

= 7L _0.0301
fo = =P 0.9256 (Hz)
P 27

Obviously, the equilibrium point is unstable.

Figure 6.7 shows the block diagram of the linearized system.

[k |
[+

Y-
AUI‘E/ +:2> K, AE/+ E K,
1+7,s 1+T;s

AU, Exciter Field
circuit

Aw 1 AS

v
4

Figure 6.7. Block diagram representation with AVR.

where,
K K
Ky = — TA% = —0.1523 and Kgz=— TAa43 — 0.7624

From the block diagram of Figure 6.7 (with AU,.; = 0)

AT, = Ky AS + K, AE,
— Ky AG 4 Ky Fs = M) A6
= (K1 + Ks|lavr) Ad + Kp|lavr Aw (6.67)
=KqgAd+ Kp Aw
=0.8620 Ad — 0.0089 Aw

where,
K3K5KA +K3K4(1 +TES)

Fls=X\)= —
=N =~ A T U T o) + K, o K

:Fre+jﬂm

The contributions of the AVR to the synchronizing and damping torques coefficients
are Kg|avr = Kg— K7 = 0.1706 and Kp|ayr = —0.0089 that is a positive contribution
to the synchronizing torque, but a negative contribution to the damping torque.
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As discussed earlier, participation factors are useful in identifying those states which
have the most impact on a selected mode. Furthermore, p;; gives the sensitivity of \;
to the diagonal element ayy of the state matrix. The participation matrix (only the
magnitudes of the participation factors are of interest) of system (6.66) is

A1 Az As Aq

0.4933 0.4933 0.0007 0.0144| Ao
0.4933 0.4933 0.0007 0.0144| Aw
0.0295 0.0295 0.5386 1.5087| AFE,
0.0018 0.0018 1.5401 0.5375| AE;

Pl =

From the participation matrix we see that Ad and Aw are the state variables which
have the most influence on the unstable mode. Furthermore, the state variables AFy
and AFE; are the state variables which have most influence on the third and forth
modes, respectively.

To stabilize the unstable mode, a power system stabilizer (PSS) is added in the ex-
citation system. To provide positive damping, the PSS must be tuned such that it
produces a component in phase with Aw.

Example 6.3 Use the PSS shown in Figure 3.17 without the washout block and with
only one lead-lag filter. Let w be the input signal.

a) For the unstable mode (i.e. s = A1), tune the lead-lag block of the PSS so that
the PSS produces a component in phase with Aw, and find a value for Kpgg so
that the damping ratio of this mode is about 15%.

b) Simulate the non-linear dynamic system for the two cases in Example 6.1.

c) Linearize the system, and calculate the eigenvalues. Calculate also the damping
ratio and frequency of the oscillatory mode.

a) Figure 6.8 shows the block diagram representation with PSS. In the figure
1+T1s

1+T5s

—Kpgg |H(s)| e r9HE) Ay

AUpss =Kpss H(s) Aw = Kpgg

From the block diagram of Figure 6.8 (with AU,.; = 0)
AT, = Ky A + [, AR
= K1 A5 + KQ(AE;|AVR + AE;|p55) (668)
= (K1 + Kslavr) A6 + Kplavr Aw + Ky AE] | pss
where
Ki K
e AUpss

(L+Tes)(1+T3s) + K3 Kg Ka (6.69)
=Kpss |H(s)| |F(s)|e'¥ Aw

AFE,|pss =F(s) AUpss =
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PSS |-

AUPSS
Y Y-
AU, + 2+ K, |AE + ¥ K, 1 Af
P 1+T.s 1+T,s s -
AU, Exciter Field

circuit

Figure 6.8. Block diagram representation with PSS.

where,

p = arg(H(s)) + arg(F(s))
From equation (6.69) we can see that AF|pgg will be in phase with Aw if ¢ = 0.
Let ¢ = —arg(F(s = A\1)) = 16.9619 (deg.). Then, AE;|pss will be in phase with Aw

if
wy, 11 Wp, 15
t e 2, t e 2 N 6.70
arc an(1+ngl) arc an<1+ngz) ¢ (6.70)

Now, by setting a value for T} (or T3), then T (or T7) can easily be determined.
Ty and T3 can also (approximately) be determined by setting s = Ay =~ jw,, (i.e.

o1 ~ 0 in equation (6.70)), and

1
Wyt

Then from equation (6.70) (with oy ~ 0), o and T" can easily be determined as follows

Ti=aT , T5=T where, T =

and a > 1 (6.71)

_ 1 + sin(¢)
1 — sin(¢)

=0.1273 (6.72)

a= (1+2tan*(¢)) + \/(1 + 2tan2(¢))” — 1 = 1.8238

T =

1
wp, /@
Ty =0.2322
T, =0.1273
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With the above T7 and T5, the total damping torque coefficient is then
KD:KD|AVR+K2K]355|H(S)||F(S)| (673)

Note that |H(s)| and |F(s)| are the magnitudes of the transfer functions H(s = A1)
and F'(s = A1) (with A\; = 01 + jw,, ), respectively.

The desired damping ratio for the unstable mode is (45 = 0.15. Based on equations
(6.22), (6.65) and (6.73), K pss can be determined as follows so that the (4 is obtained.

s = — —es o1 “”; — —0.8823
V - Cdes
Kp, = —2M 04, = 0.0449 (6.74)

Kpss — Kp,.— Kplavr
Ky [H(s)[|F(s)]
Note that the aim is to shift only the real part of the unstable mode (i.e. o3 = 0.1751) to

the new position g4.; = —0.8823. Therefore, we let the imaginary part be unchanged,
le. wp, = wp = 5.8155.

=0.0333

b) Because of the power system stabilizer, the differential equation (3.102) is added to
the f(x,y) of Example 6.2. Note that in differential equation E, the auxiliary signal
Upss is not longer zero since it is now a state variable.

From load flow, xy and y, are calculated.
rg = [do wo Eéo Ey, UPSSO]T:[4O.267O(deg.) 0 1.1001 1.5296 O]T
vo = [0, 05, U, Us)" =[27.1320(deg.) 8.9674(deg.) 1 0.9623]"

Figure 6.9 shows variations of the rotor speed for each case. It is obvious that not only
the system is stabilized, but also it is well-damped for both cases.

70

4 (deg.)

40f

25

Time (s) Time (s)

Figure 6.9. Variations of rotor angle with PSS in the system.

c) Linearization of the non-linear system around (zg, yo) gives

Ai = A, Ax(t) + BU(t)
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or
A5 _an 12 a3z ai4 ais A 0
A@ Q1 Q22 Q23 Q24 Q25 Aw 0
AE& a3] Q32 33 A34 A2s AE(II + 0 AUref
A.Ef 41 Q42 Q43 Q44 Q45 AFEy I;_f
AUpss las1 asy as3 ass ass| [AUpss 0
[0 1 0 0 0 ] A6 [0
—27.1507 0 —37.6825 0 0 Aw 0
=1 —0.1094 0 —0.2912 0.1667 0 AE(’I 0
2283.9790 0 —11436.1545 —100 15000 AEf 15000
_—1.6512 0.2619 —2.2917 0 —7.8537_ _AUPSS_ i 0
The eigenvalues are
A, A = —0.9136 £+ 7 5.6900
A3 = —T75.7613
A = —20.3710
A5 —10.1854

The damping ratio and the frequency of the oscillatory mode are

= % _0.1585
G1 BN
fr = 2P 0.9056 (Hz)
P 27

We see that 01, wy,, and ¢; do not have exactly the values which were desired. However,
the differences are small.

Example 6.4 For the unstable mode (i.e. A1), use equations (6.51)-(6.54) to tune the
PSS so that the damping ratio of this mode is about 15%. Let T, and Ty be defined as
in equation (6.71).

We select Aw as output variable, to have the following system which is of form given

by (6.17)

#(t) = Ax(t) + BU(t)

Y(t) = Calt) (6.75)

where, z(t), A, B and U(t) are given in equation (6.66), and C' =[0 1 0 0]. The
transfer function of the system without PSS is given by

_V(s)  Aw(s) R,
CUBS) AUpes(s) Z -\

=1 v

G(s) (6.76)

V)

AU, ey
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The residue of the unstable mode is given by
Ry =CV/ V!B = -21.968 + j7.3534 = 23.166 £161.49 (deg.) (6.77)

Adding a PSS in the generator, we are then dealing with the following feedback control
system

AU, (s) 4 P Aw(s)
N >

H(s,K,s) |

Figure 6.10. Feedback control system.

It is well-known that the residue of an eigenvalue gives the direction of the eigenvalue
departure for a small change of system parameters.

Rl
Ng(&)
_— _* ___________ —_—

U !

Desired eigenvalue | Actual eigenvalue

Re

-

Figure 6.11. Direction of the eigenvalue departure for small changes.

From equation (6.54) and Figure 6.11, it is obvious that to move the actual eigenvalue
to the desired position (only the real part is changed) the argument of H(s = ;)
(denoted by ¢) must be ¢ = 180 — arg(R,).

In this case the residue argument of the interest mode is arg(R;) = 161.49 (deg.).
Substituting ¢ = 18.51 into equation (6.72), T} = 0.2389 and T» = 0.1238 are obtained.

From equation (6.54) we have
A)\l =0gdes — 01 = RlH(S,k’):KpssR”H(S”GjF =

|A|
Ry |H(s)]

where, s = \;, R; = 23.166 is the magnitude of the residue R; and |H(s)| = 1.3895 is
the magnitude of the lead-lag block of the PSS.

KPSS - = 0.0329

We can see that the obtained values to tune the PSS with this method (also known as
the residue technique) are almost similar to the values obtained in Example 6.3.
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Example 6.5 Consider again the lossless system shown in Figure 5.6. The one-axis
model is used for the generators, and the loads are considered as impedance loads. Fur-
thermore, all generators are equipped with AVR shown in Figure 5.14 where Epay = 5
and Efpin = —5 (pu). By using the PSS shown in Figure 3.17, make an appropriate
damping in the system.

We firstly analyse the system without PSS. The RNM is used to describe the dynamic of
the system. Figure 6.12 shows the simulation results for a fault at BUS 4 with clearing
time t. = 0.1 (s). The plotted rotor angles are defined in the COI reference frame.
As shown in the figure, the system is unstable. The variations of the field voltages of
the generators are shown in the figure. As the system approaches its separation (i.e.
losing its synchronism), the AVRs behave in a ”"bang-bang” control manner between
their limits.

100—

E; (pu)
o

A 600| (deg.)
o

100755 5 9 0.5 5 9
Time (s) Time (s)

Figure 6.12. Variations of A¢ in the COI reference frame and E; of Genl
(blue), Gen2 (red) and Gen3 (black).

Next, the system is linearized around its stable equilibrium point (see also Appendix
B). Table 6.1 shows some results from the linear analysis of the system.

Mode A Ip ¢
1 -80.3517 0 1
2 -86.7215 0 1
3 -89.7353 0 1
4 -19.9922 0 1
5 0.1918 4 j7.2317 | 1.1510 | -0.0265
6 0.1918 - j7.2317 | 1.1510 | -0.0265
7 0.0136 + j10.0342 | 1.5970 | -0.0014
8 0.0136 - j10.0342 | 1.5970 | -0.0014
9 -13.8411 0 1
10 -10.6692 0 1
11 0.0022
12 -0.0022

Table 6.1. Some results from the linear analysis of the system.
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The last two eigenvalues can be considered as zero eigenvalues. As shown in the table,
since the system has 3 x 4 = 12 state variables, there are twelve eigenvalues two of
which are zeros (why?). The linearized system has two unstable oscillatory modes,
namely mode 5 and mode 7. Below, the participation matrix (with the magnitudes
of the participation factors) of these two unstable modes is given. In mode 5, the
participation factor of the rotor speed of the Gen 1 has the highest value. However in
mode 7, the participation factor of the rotor speed of the Gen 3 has the highest value.

s A7

0.2618 0.0001] A6,
0.1367 0.2076| Ad,
0.0919 0.2017| Ad,
0.2618 0.0001| Auw,
0.1367 0.2076| Aw,
0.0919 0.2017| Aws
P = 100270 0.0000| AE, (6.78)
0.0010 0.0008| AE,
0.0004 0.0005| AL,
0.0021 0.0000| AE;,
0.0001 0.0001| AE},
0.0000 0.0001| AE},

Figure 6.13 shows the mode shapes of the unstable modes based on the right eigenvector
(the elements corresponding to the rotor angles) of each mode, Gen 1 (in blue), Gen 2

(in red) and Gen 3 (in black).

Figure 6.13. The mode shapes of the unstable modes.

From Table 6.1, it can be found that mode 5 has the lowest damping ratio and fre-
quency. From the participation matrix and the compass plots, it can be concluded that
Gen 1 is mostly participated in this mode. Therefore, a PSS is used in Gen 1 with w;
as its input signal. Based on the linearized system (6.17), U = AU,y and

K
A0 0T ie. of order 12 x 1
Tel (679)

C=000100000000] ie. oforder1x 12

B=000000000

the feedback control system is shown in Figure 6.14 which will be studied.
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AU X=Ax+ Bu Aw,

lref +

" y=Cx

u pss

1+T;s| |I+Ts T.s
1+T,s) [1+Ts| 1+T,s

PSS

Figure 6.14. The closed-loop of the linearized system with a PSS in Genl.

To find appropriate values for T}-T}, the residue of the selected unstable mode and the
angle ¢ must firstly be calculated, and they are

Rs = CVIVIB =12.0799/146.2486 = ¢ = 180 — arg(Rs) = 33.7514  (6.80)
Let "ng” be the number of the lead-lag filters. Then, if

0<|p] < 60 = nyp=1
60 < |¢| < 120 = ny =2 (6.81)
120 < |¢| < 180 = ny =1 set ¢ =—arg(R;) , Kpss= Kpgse'™

Now, T}-T); can be obtained by

1+ sin(-2) 1
. T =

1— sin(nif) ’ wy v/

ng=1 = T3="T; toremove the second lead-lag filter.
ng =2 = T3 =T, T,=1T,

(% T1:OZT s TQIT

(6.82)

The above equations are also valid for a negative arg(R;), but then ¢ = —180—arg(R;).

In this example for the PSS of Gen 1, ny = 1,77 = 0.2587 and 15 = 0.0739 are obtained.
Setting T3 = T, = 1, the contribution of the second lead-lag filter is removed. Having
obtained the parameters of the PSS, the root locus diagram of the feedback control
system as a function of Kpgg can be drawn as shown in Figure 6.15.

uuuuuuuuu

Figure 6.15. The root locus of the system modes and the selected unstable mode 5.
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The next step is to choose an appropriate gain Kpgg to stabilize the unstable mod 5,
but not destabilize the other modes. To find an appropriate gain, the eigenvalues of
the closed-loop system will be determined for Kpgg = [0 : 0.001 : 0.2]. For each Kpgg
the least damping ratio of all the oscillatory modes is obtained which will be plotted
as shown in Figure 6.16. The appropriate gain is the one which gives the maximum of
the least damping ratios, i.e. Kpgg = 0.0920.

0
-0.0013f

'min

— !
0.02650 0.092

KPSS

0.16

Figure 6.16. The least damping ratios of all the oscillatory modes versus the gain Kpgg.

Table 6.2 shows some linear analysis results of the closed-loop system with the obtained
T, Ty and K pgg for the first PSS which is installed in Gen 1. As shown in the table, the

Mode A Ip ¢
1 -89.7262 0 1
2 -88.1906 0 1
3 -82.1920 0 1
4 -12.2383 + j13.2524 | 2.1092 | 0.6784
5 -12.2383 - j13.2524 | 2.1092 | 0.6784
6 -15.5262 0 1
7 -10.6337 0 1
8 0.0129 + j10.0337 | 1.5969 | -0.0013
9 0.0129 - 10.0337 | 1.5969 | -0.0013
10 -1.4835 4+ j6.2597 | 0.9963 | 0.2306
11 -1.4835 - j6.2597 | 0.9963 | 0.2306
12 -0.8440 0 1
13 0.0007
14 -0.0007

Table 6.2. Some results from the linear analysis with a PSS in Genl.

system is still unstable since it has an unstable mode, i.e. mode 8 whose participation
factors corresponding to each state variable are given below where S;; and Sy, are the
state variables defined in (3.103).
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Pl =
A(Sl A(SQ A(Sg Aw1 ACUQ AW3 AE(/ﬂ AE;Z AE;?’ AEfl AEfQ AEfg 511 521
[0.00 0.2093 0.2900 0.00 0.2093 0.2900 0.00 0.0008 0.0005 0.00 0.0001 0.0001 0.0 O.O]T

Figure 6.17 shows the variations of Adgos for the same fault, and the mode shape of
mode 8.

ASCOI (deg.)

Figure 6.17. Variations of A¢ in the COI reference frame and the mode shape
of mode 8. Gen 1 (blue), Gen 2 (red) and Gen 3 (black).

From the participation factors and the mode shape in Figure 6.17, it can be concluded
that Gen 3 is mostly participated in this unstable mode, and the second PSS should be
used in Gen 3 whose rotor speed will be the input signal of the PSS. Then, we will have
a similar closed-loop system as shown in Figure 6.14, but with different A, B and C.
Note that the new open-loop system includes the dynamic of the first PSS, therefore
the new A is of order 14 x 14, and the new B and C must be defined.

In a similar manner as described above for the first PSS, we find that ny = 1, 71 =

0.2718 and 75 = 0.0365 for the second PSS. The appropriate gain (Kpggs = 0.1320) is
obtained from Figure 6.18.

0.078

'min

- !
0'00130 0.132 0.25

KPSS

Figure 6.18. The least damping ratios of all the oscillatory modes versus the gain Kpgg.
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The data of each PSS and their impact on the system are summarized in Table 6.3. As
shown in the table, by using the second PSS the system becomes stable and its least

damping ratio is about 8%. The PSS parameters obtained from the linearized system,
are now used in the nonlinear system.

PSS | Gen Ty T Kpgs Comin Iy
0 -0.0265 | 1.1510
1 1 0.2587 | 0.0739 | 0.0920 | -0.0013 | 1.5969
2 3 0.2718 | 0.0365 | 0.1320 | 0.078 | 1.4819

Table 6.3. The obtained values of the parameters of each PSS and their impact
on the system.

Figure 6.19 shows the response of the nonlinear system for the same fault at BUS 4.

| | —
ol , 1

E, (pu)
o
=

A 8c0| (deg.)

0.5 5 10 0.5 5 10
Time (s) Time (s)

Figure 6.19. Variations of A¢ in the COI reference frame and E; of Genl
(blue), Gen2 (red) and Gen3 (black).

Next, we will study how the other input signals will affect the system damping and
stability. Using wgime (see equations (6.14) and (6.15)) as input signal, then based on
Figure 6.12 and Figure 6.13 the following wg;. is used for the first PSS,

oo _lel_HngJngw;g_w _H2w2+H3w3
el T, Hy + Hs Y Hy+ Hy
which results in the following output vector C.
H, H;
cC=0001 — — 000000 6.83
[ H2+H3 H2+H3 ] ( )

For the second PSS, based on Figure 6.17, the following wgj,. is used
Hyws  Hyws
— = W3 — W2

Hj H,
Then for the second PSS, we have the following B and C.

Wsime2 =

K
B=[00000000000 —200]" ic oforder 14 x 1
C=0000 —-1100000000] ie. oforder 1x 14
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Using P,; as input signal (see equation (B.12)), the output vector C' is obtained by
equation (B.14).

The data of each PSS and their impact on the system are summarized in Table 6.4.

PSS | Gen | 1wy, Ti T ny | Kpss Conin Ip

0 -0.0265 | 1.1510
w1 0.2587 | 0.0739 0.0920 | -0.0013 | 1.5969
1 1 | Weimer | 0.2480 | 0.0771 0.0520 | -0.0013 | 1.5969
P.; ]0.0440 | 0.4350 -2.6710 | -0.0013 | 1.5969
W3 0.2718 | 0.0365 0.1320 | 0.0780 | 1.4819
2 3 | Wsime2 | 0.2702 | 0.0368 0.1450 | 0.2942 | 1.0246
P.; |0.0462 | 0.2148 -3.8910 | 0.0809 | 1.4828

— = = = = =

Table 6.4. The obtained values of the parameters of each PSS and their impact
on the system.

Figure 6.20 also shows the response of the nonlinear system for the same fault at BUS
4, with different input signals.

10—
u = o (in blue)
uin - wsime (m red)

u = Pei (in black)

A 5c0| (deg.)

Time (s)

Figure 6.20. Variations of Ad; in the COI reference frame with different input signals.

From Table 6.4 and Figure 6.20, it is obvious that wg,. as input signal implies a
better power oscillations damping. However, it should be noted that wg,,. is based
on remote information. The geographical distances between the source of information
(i.e. the generators in this example) may be from 500 (km) to 2000 (km). Therefore,
the quality and reliability of the remote information are important factors for power
system stability and control.



Chapter 7
Voltage stability

It is well-known that the reactive power and the voltage are closely coupled. An
injection of reactive power into a bus will result in increasing of the bus voltage, and a
consumption of reactive power at a bus will result in decreasing of the bus voltage. In
this chapter it will be shown that reactive power has a fundamental impact on voltage
stability.

In recent decays, the term “voltage collapse” (or voltage instability) has been used
to describe the reason for the blackouts of December 19, 1978, in France; December
27, 1983, in Sweden; July 23, 1987, in Tokyo; September 23, 2003, in Sweden and
Denmark [17], and September 28, 2003, in Italy [18]. As introduced in Chapter 1,
voltage stability refers to the ability of a power system to maintain steady voltages
at all buses in the system after being subjected to a disturbance from a given initial
operating condition. Voltage instability normally occurs in heavily stressed systems
in the form of a progressive and uncontrollable fall in voltage. A main factor causing
voltage instability is inadequate reactive power supply which is normally a consequence
of load demand increase, line outages, as well as shortage of reactive power resources.

A criterion for voltage stability is that at a given operating point for every bus ¢

dQi
dU;

>0 (7.1)

where @); is the injected reactive power at bus i. The physical interpretation of (7.1) is
that reactive power injection at a bus ¢ will result in increasing of the voltage magnitude
of bus i. The system is voltage unstable if for any bus ¢, the condition (7.1) is not
satisfied [6].

7.1 Voltage stability analysis

Like transient stability analysis, voltage stability analysis of a power system is also
an extensive and complicated task. However, it turns out that many of the most
important phenomena and mechanism can be found in very simple systems. In large
and complicated systems it is often hard to distinguish the fundamental and decisive
phenomena from the more irrelevant ones. It is therefore of importance to study simple
systems to get an insight into and understanding of the basics, that can be used in the
analysis of more complex systems.

Consider the Single-Load-Infinite-Bus (SLIB) system shown in Figure 7.1.

This simple system may represent a generation area from which power is delivered to a
load area via a transmission system with long lines (this is indeed a good representation
of the Swedish power system). In the figure, the generation area is considered as a
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U,Z0 n parallel lines U Z-6,

a \

Infinite '
Bus p ,/
1 —
\ 7/ — :
~ S, =F+jO

Figure 7.1. SLIB system.

strong system (represented by an infinite bus) and the load area as an equivalent load
represented by Sp. The transmission system is composed of 7 identical parallel long
lines. Each line is represented by a series reactance x (i.e. the transmission system is
assumed lossless). The short-circuit power at the load bus is given by

Uk
X

Sse = (pu), where X, = % (pu) (7.2)

eq

The short-circuit power Sy, measures the system voltage strength. As seen from a point
in the system, the network can be considered as “weak” if the short-circuit power is
low at this point (normally due to high X.,), and strong or stiff if the short-circuit
power is high. At a point in the network with high short-circuit power, switching on a
load will not change the voltage magnitude very much.

At the load bus, the active and reactive load can be expressed as

PL = U:/)V(UL sin(@L)
S (7.3)
0, - — Uy B Un Uy, cos(0y)
e Xeg Xeg

Since the angle 6, is not of interest in this study, it can be eliminated from (7.3) which
results in [19]:
<U2>2 + <2QLXeq - U]2\7>UJ% + Xe2q<PI2, + Q%) =0

Solving for U? and using (7.2), the following is obtained:

U} = X | (05510 Q1) 0550 = (P + 5.0 | (7.4

A necessary condition for having a real solution for (7.4) is that
P2+ S,.Qr, < (0.5 5,.)° (7.5)

From (7.5) it can be obtained that setting P, = 0, the maximum of purely reactive
load is one fourth of the short-circuit power S, that is Qrmae = 0.25S,.. Thus, it may
be difficult to supply large amounts of reactive power load via transmission system
with long lines, especially via the weak one. Therefore, the required reactive power
load should be compensated locally. From (7.5) it can also be obtained that setting
@1 = 0, the maximum of purely active load is one half of the short-circuit power that
is PLmaa: = 0.5 Ssc.
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Theoretically, any amount of active power load can be consumed as long as required
reactive power compensation is available at the load bus. Practically for a normal
operation, the voltage (in the steady-state) should be held within an acceptable range
at all load levels.

For the SLIB system shown in Figure 7.1, let Uy = 1.044, x = 1.2, n = 4 and
QL = Py sin(p) = P, tan(yp), where cos(p) is the load power factor, and assumed

cos(p)
constant.

Figure 7.2 shows the variation of the voltage at the load bus versus the active load with
tan(p) = 0 (i.e. purely active load). The diagram is known as U-P curve, P-U curve
and also nose curve. As shown in the figure, Pp,,4, = 1.8166 (pu) which is indeed one
half of S,. = 3.6331 (pu) since @, = 0. For P, > Ppn4z, it is obvious that the system is
unstable since there is no solution (or operating point). For P, = Ppa., the maximum
active power is transferred. This maximum power is termed as the theoretical transfer
limit, and the corresponding voltage is termed as the critical voltage (for this case
Urer = 0.7382 (pu)). For Pp < Ppae, any value of power can be transferred at two
different values of Uy. For instance, P, = 1 (pu) is transferred at Uz, = 1 (pu) (on
the blue line) and U, = 0.3 (pu) (on the red line). Thus, to transfer this amount of
active power at Upy, the current through the transmission system will be about 3.3
times larger than the current at Up;. Since real transmission systems are not lossless,
with the current at Uy, the active and reactive losses in the transmission system will
significantly be higher. Therefore, the upper solution (i.e. Up;) corresponds to normal
operating condition, and it is practically considered as stable solution.

1.2

0.8

0.4r

0.2r

00 02 04 06 08 1 12 14 16 18 2

P

Figure 7.2. U-P curve (or nose curve).

Figure 7.3 shows the family of U-P curves for different power factors. The black curve
corresponds to tan(yp) = 0.25 that is lagging power factor (Q; > 0), the blue curve
corresponds to tan(y) = 0 that is unity power factor (Q; = 0), and the red curve
corresponds to tan(y) = —0.25 that is leading power factor (@, < 0). Leading power
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factor is obtained by shunt compensation. As shown in the figure, the load power factor
has a significant influence on the U-P curve, and thereby on the voltage stability. As
compared with the unity power factor, with lagging power factor Pr,,.. is lower, and
Uy, (the upper solution) declines faster. However, with leading power factor P, is
higher and the voltage profile of the upper solution is flatter. The conclusion is that
(due to the inductive nature of the transmission system) for being able to transfer
more active power to a load bus (i.e. the load center) and to keep the voltage of the
load bus close to its nominal (or rated) value, the reactive power demand should be
compensated at the load bus. Note that in the steady-state, typical limits are +=10%
of the rated voltage that is AU, = 0.1 (pu) for a rated voltage of 1 (pu).

1.2

Q<0
0.8t L 1

0.4- 1

0.2r 1

Figure 7.3. U-P curves with different power factors.

Another method to analyze voltage stability is based on the so called Q-U curves as
shown in Figure 7.4.

The curves are obtained by a series of power flow calculations as follows [20]:

Let a fictitious synchronous condenser (i.e. a generator with P, = 0) without
reactive power limits be placed at the load bus to make it as a PU-bus type. The
specified active power at this bus is Pg, =0 — Pp.

e Run power flow calculation for a series of specified voltages from Up,,qe t0 ULmin-

For each specified voltage Uy, calculate the generated reactive power @),.

Plot @), versus the specified voltages as shown in Figure 7.4
(), < 0 indicates that the generator absorbs (or consumes) reactive power, and @), > 0
indicates that the generator injects (or produces) reactive power.

Figure 7.4 shows the Q-U curves for P, = 1 and P, = Prpe. (pu) with tan(e) = 0. The
intersection between the Q-U curve and (), = 0 gives the operating point (or solution)
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o”0

Figure 7.4. Q-U curves with different active power loading (tan(¢) = 0).

of the system (why?). For P, = 1, there are two solutions which are indeed the same
solutions in Figure 7.2. According to the voltage stability criterion (7.1), U, = 1 (pu)
g

d
is the stable operating point since g > ( at this point. The critical operating point

L

is reached when ¢ = 0. For Py, = Ppyaz, there is only one operating point (i.e. the
L
d
intersection between the Q-U curve and (), = 0) at which dgg = 0. The voltage at
L

this point is the critical voltage shown in Figure 7.2.

Since voltage security is strongly coupled to reactive power, the Q-U curve may be a
powerful tool to measure reactive power margin at a bus of interest.

Figure 7.5 shows the Q-U and P-U curves for P;, = 0.8 (tan(yp) = 0.25) with different
X.q. For np =4 there are two solutions (or operating points), with the stable operating

Operating point

0.95F- - = —mm g o T -

!

1

1

1

1

2 n=2 1 n=4

o 1

1

1

1

1

1

1

1

1

1

1

!

! - 0.8
ULcr ULcr P
-4 n=2 L

Figure 7.5. Q-U and P-U curves with different X, (tan(¢) = 0.25).
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dQq
aU

L
lines are disconnected (i.e. 77 = 2) there is no operating point in the system that is the
system is unstable. It is assumed that P, is constant and Q) = 0.25 Pp,.

point to the right of = 0 (indicated by “op” in the figure). However, when two

(21 and @), values shown in Figure 7.5 are reactive power margins with respect to the
corresponding transfer power limit Pp,q., or Ure.. Since ()1 < 0, it corresponds to
the maximum amount of more reactive load consumption without losing an operating
point that is if @ > P, tan(yp) + |@1], then there is no operating point in the system.
However, since ()3 > 0 in case n = 2, it corresponds to the minimum requirement of
reactive power injection (or compensation) at the load bus to have an operating point.

Note that ()2 corresponds to a constant reactive power injection independent of the
load bus voltage. If compensation at the load bus is provided by a shunt capacitor
Q. = BU?, the minimum requirement of reactive power compensation for having an
operating point is the distance between (), = 0 and a point where (). is tangent to the

Q-U curve.

Example 7.1 Consider the system shown in Figure 7.1. With n = 4, tan(y) = 0.25,
P, = 0.8 (pu) and Qr, = Py tan(p) (pu) the voltage magnitude of the load bus is
Up, =0.95 (pu). Due to a disturbance two lines in the transmission system have been
disconnected (i.e. n = 2). Assume that a shunt capacitor is available at the load bus.

a) Determine the minimum reactive power compensation Qemin such that the post-
disturbance system has an operating point.

b) Determine the required reactive power reserve (i.e. Qures = Qe — Qemin) such that
the voltage magnitude of the load bus is restored to the pre-disturbance value, i.e.
Ur =0.95 (pu).

Figure 7.6 shows the Q-U characteristic of the post-disturbance system.

0.351

0.3r

0.25-

0.05--"

Figure 7.6. Q-U curve of the Example 7.1 (n = 2).
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a) At the operating point “op;”, Qu = Byun Uz is tangent to the Q-U curve. The
distance from “op;” to @y = 0 gives the minimum reactive power compensation
Qemin = Qeop, = Bmin Ugopl ~ 0.11 (pu) which can be read from the figure.

b) The operating point "ops” corresponds to the desired voltage (i.e. Uy = 0.95 (pu))
at the load bus. The intersection between Q.o = (Bn + AB)U? and "opy” gives
the required reactive power compensation to obtain the desired voltage. From the
figure it is easy to find that Qcreq = Qc,,, = (Bmin + AB) Ufom ~ 0.26 (pu). Thus,
ches = Qcop2 - Qcopl .

7.2 Voltage instability mechanisms and prevention

Voltage instability occurs in a time interval ranging from a few seconds to tens of min-
utes, and is classified into slow and fast instabilities. The loads characteristics and the
voltage control actions are usually the main reason for this instability. A large amount
of the loads have voltage-dependent characteristics with a tendency to restore the power
demands, for instance induction motor slip adjustment, and thermostatically-controlled
heating loads. The power demand (or load) restoration may also be performed by Load
Tap Changers (LTC) which have also significant impact on voltage instability. Voltage
instability may also be experienced at the terminals of line commutated High Voltage
Direct Current (HVDC) links connected to weak power systems. The converters of this
kind of HVDC consume reactive power of 50-60% of the dc power.

7.2.1 Fast voltage instability

The fast voltage instability takes place just a few seconds or less after a disturbance.
The main reason for this instability is the fast load-restoring actions by components
such as induction motors, line commutated HVDC, and electronically-controlled loads.

After a large disturbance (such as short-circuit or tripping of a long transmission line),
induction motor responds rapidly to match the mechanical torque due to its dynamic
2H s =1T,, — T.(UyL, s), where (all quantities are expressed in pu) s is the motor slip
(note that the motor speed is given by w = 1 — s), and Uy, is the voltage at the bus
where the motor is located. If there is no intersection between the mechanical torque
(which is assumed constant) and the electrical torque after the disturbance, the system
loses a post-disturbance equilibrium point which results in stalling of the motor (i.e.
the motor decelerates to a complete stop, and s = 1). The motor stalling implies
a higher reactive power consumption which causes the voltage to collapse. Another
situation may be that the motor slip is greater than the unstable slip s, when a fault
is cleared. At that point 7. (which is a function of Uy and s) is less than 7,,. Thus
due to the motor dynamic, s increases and approaches s = 1 at which the motor stalls.

Assume that the load in Figure 7.1 is an induction motor, see Figure 5.2. In this study,
E! and Ej are set to zero in equation (5.6). A shunt capacitor is installed at the load
bus to compensate the reactive power consumption of the motor such that the voltage
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at the load bus is 1 (pu). A three-phase fault occurs at the load bus, and it is cleared
at the clearing time t.. Figure 7.7 shows the system response for t. = t.;, and Figure
7.8 shows the system response for t. = t.o > t.;. In the figures, the post-fault electrical
torques are shown.

At the clearing time t. = ., the initial value of the post-fault electrical torque (in-
dicated in the figure with “0”) is greater than 7),, and the motor slip is less than s,.
Thus, s decreases and returns to the equilibrium point at which 7, = T,,,. Also, P, and
@1 (which are functions of Uy, and s) are restored. The reactive power consumption is
also proportional to s and Py, that is Qp ~ sPr.

Time Motor slip

Figure 7.7. Dynamic response of the system with ¢, = t.;.

Time Motor slip

Figure 7.8. Dynamic response of the system with t. = te.o > t..

At the clearing time t. = t.o > t.1, the electrical torque (indicated in the figure with
[Pl

0") is less than T,,, and the motor slip is greater than s,. Thus, s increases and so
does )7, which causes the voltage to drop.

In a similar manner (especially due to a reduction in the voltage at the ac terminal),
the power control of HVDC responds rapidly to restore the demanded active power
which results in more reactive consumption in converters, and causing further voltage
reduction at the ac terminal. This process leads to progressive fall of voltage.
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7.2.2 Slow voltage instability

The time frame of this instability may extend from tens of seconds to several min-
utes. Equipments such as LTC, thermostatically-controlled loads and generator reac-
tive power limiters (which have slow dynamics) are mostly involved in the slow voltage
instability.

The mechanism of the slow voltage instability is similar to that for the fast voltage
instability, however within a longer time frame. This mechanism will be presented
below by using a Load Tap Changer (LTC).

Assume that the load in Figure 7.1 is connected to the transmission system via an LTC
as shown in Figure 7.9

U,Z0 | par':ﬂ/lgl lines g

U

/ \ L
1
/ !
I / — E ’—H
y _
o S, =F+jO,

n:l

Figure 7.9. Load tap changer in the SLIB system.

An LTC is a transformer with variable turns-ratio (or tap changer, i.e. n). The function
of the LTC is to (automatically) control the voltage at the load (i.e. U) by changing
n. Normally, the tap is on the high voltage side where it is easier to change the tap
since the current on this side is lower. The relation between U, and U is given by

The dynamic of an LTC is usually described by a discrete tap changing logic. However,
in our analysis a continuous tap changing model is applied as follows
1 1. U
n= T(U - UO) - T(WL a UO)? Nomin S n S Nmazx (77)
where T' is a time constant which is typically some ten seconds, and Uy is the reference
voltage.

In Figure 7.9, we assume an ideal LTC (i.e. the transformer impedance is omitted).
Typical tap changer range is £10%, but in this study we assume that the LTC does
not hit its limit. Also, the load is represented by an impedance with X; = @ = 0

that is , )
_ U Ur
St 9 R, U Gr, ( - ) (7.8)

Consider now the SLIB system shown in Figure 7.9. The pre-disturbance system data
are as follows

n=4,Uy=1044, PL=U,=U=n=Gr =1, Qross = Xeq [1;,. = 0.3 (pu)

ine
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Figure 7.10 shows the system response after disconnection of a line in the transmission
system (i.e. 7 = 3). The diagram on the left hand side shows variations of Pr, Up, U
and n versus time.

1.01

1

0.99r

0.98F

0.97r

0.96

0.951

0.94r

0'930 100 200 300 400 500

Time (s) PL

Figure 7.10. Dynamic response of the system with n = 3.

When the line is disconnected, Pp, Uy, and U decrease. Thus, the LTC starts to
restore the load voltage U which results in decreasing of n. When n decreases, the
load voltage U increases, and so does Py, since it is voltage dependent. An increase
of P; implies higher current trough the transmission system which results in higher
reactive power loss in the transmission system (i.e. Qr,ss), and causing further voltage
reduction (i.e. Up). This situation continues until the load is restored that is P, =
Py = 1and U = Uy = 1. The diagram on the right hand side shows the U-P
curves of the pre-disturbance and post-disturbance systems, as seen from the high
voltage side of the LTC. The red curves are the pre-disturbance and post-disturbance
systems characteristics. The vertical dashed line is the steady-state (or long-term) load
characteristic. In the steady-state, the load is considered as constant power, and it is
restored to its set value Pry = 1. The intersection between the system characteristic
and the steady-state load characteristic gives the equilibrium point of the system. The
blue curve is the dynamic characteristic of the load (i.e. Pp(n)) as a function of the
state variable n, also as a function of Uy (see equation (7.8)). The equilibrium point
of the pre-disturbance system is indicated by “o” at which Pp(n) =1 withn =n; =1
and U, = 1. When the line is disconnected (i.e. n = 3) , the operating point moves
to the point “*” on the post-disturbance system characteristic. Due to the dynamic of
the LTC, Pp(n) will be varied until it reaches the post-disturbance equilibrium point
indicated by “X” (i.e. the intersection point between Pp(ns) and the U-P curve of
n = 3). Note that ny < n;.

Now assume that due to a protection action in the transmission system, another line
is disconnected (i.e. 7 = 2) just eight minutes after the first disconnection. The post-
disturbance system (i.e. 7 = 2) characteristic is shown in Figure 7.11. Since there is no
intersection between the post-disturbance system characteristic and the steady-state
load characteristic (i.e. the dashed line), this post-fault system has no equilibrium
point. When the second line is disconnected (i.e. 7 = 2) , the operating point moves
to the point “¢” on the post-disturbance system characteristic. At that point U is less
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than Uy. Thus, the LTC starts to restore the load voltage U which results in decreasing
of n. When n decreases, the load voltage U increases, and so does Py, since it is voltage
dependent. An increase of P, implies higher current trough the transmission system
which results in higher reactive power loss in the transmission system, and causing
further voltage reduction (i.e. Up). Since there is no equilibrium point in the system,
this situation continues slowly due to the slow dynamic of the LTC. However, when
Py (n) crosses the critical voltage indicated by “®”, and enters into the lower side of
the U-P curve the load restoration by the LTC fails which results in decreasing of U
and Py, (i.e. when n < ng). This situation leads to voltage instability (or collapse) in
the system as shown in Figure 7.11.

1000

Time (s)

Figure 7.11. Dynamic response of the system with n = 2.

It should be noted that if the LTC had a limited range of action (i.e. Nyim <1 < Npar),
the LTC could hit its limit before reaching the critical point “®” as shown in Figure
7.12. Since the LTC hits its limit there is no dynamic in the system (i.e. n =0), and
the load will not be restored. Thus, the point indicated by “B” (i.e. the intersection
point between Pp(n = 0.9) and the U-P curve of n = 2) is the equilibrium point of the
post-disturbance system.

P (n=1)
L  (n=0.9)

0.98f
0.961
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m=2 n=3 n=4
0.88F P
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Figure 7.12. Dynamic response of the system with 7, = 0.9.
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In case of having a limited range of LTC action we should, however, consider the
thermostatically-controlled action of the load for restoring the load. The simplest
dynamic of the thermostatically-controlled load is given by

T T \Up

where T is a time constant which is usually in order of several minutes, Prg is the
reference active power, and Py, is given by equation (7.8).

Gr= (3)2<PLO—PL) (7.9)

Figure 7.13 shows the dynamic response of the system when the LTC has a limited
range of action, and the load self-restoration action (i.e. equation (7.9)) is considered.
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Figure 7.13. Dynamic response of the system with the load self-restoration action.

At point “B” (i.e. the intersection point between Pp(Gp3,Nmin) and the U-P curve
of n = 2), the LTC hits its limit, and the only dynamic in the system is given by
equation (7.9) which continues to restore the load by increasing G which results in
higher reactive power loss in the transmission system (i.e. Qr,ss), and causing further
voltage reduction (i.e. Up). Since there is no equilibrium point in the system, this
situation continues slowly due to the slow dynamic of the thermostatically-controlled
action, and leads to voltage collapse.

Obviously, the dynamic response of the system shown in Figure 7.13 is similar to
that shown in Figure 7.11 where we took the unrealistic assumption that having an
unlimited range of LTC action. However, by that assumption the dynamic of the
thermostatically-controlled action of the load was indirectly included in equation (7.7).

7.3 Prevention of voltage instability

In [6]-[20], different preventive and corrective actions to counteract voltage instabil-
ity are comprehensively described. However, the two essential (or general) corrective
actions to prevent a voltage instability (or collapse) are the following:
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Reactive power support

Naturally, the reactive power support should take place close to the load which leads
to a decrease of reactive power losses in the transmission system, and an increase of
the maximum deliverable active power.

Consider the case shown in Figure 7.11, by applying reactive power support a new
stable equilibrium point is restored, and the system will be stable if this reactive power
support is performed fast enough as shown in Figure 7.14.

P 1 O

o

0'650 500 750 2000

Time (s) L

Figure 7.14. Dynamic response of the system with fast enough reactive power support.

The diagram on the right hand side shows the U-P curves of the post-disturbance
system with 7 = 2. The red curve is the same curve shown in Figure 7.11 (with n = 2)
for which the system has no equilibrium point. The green curve shows the system U-P
characteristic when a shunt capacitor is switched in the transmission system close to
the load. By this action two new equilibrium points (indicated by “o0”) are restored
in the system. The upper one is a stable equilibrium point, and the lower one is
unstable. The point “*” is the initial point of the post-disturbance system when the
second line was tripped (i.e n = 2) at ¢ = 500 (s). The intersection point (indicated
by “0") between Pp(n;) and the dotted U-P curve corresponds to the operating point
just before the capacitor switching at ¢ = 750 (s). When the capacitor is switched, the
operating point jumps to the new one indicated by “H” at which U > U, since at this
point P;, > 1 and P;, = GU? = 1U?. Note that in this example U, = 1. Thus, based
on the LTC dynamic (see equation (7.7)) the tap n increases, and so does Up. Since
Py, (see equation (7.8)) is a function of n and Uy, it takes the direction indicated by
the arrow and tends to the stable equilibrium point.

Figure 7.15 shows the dynamic response of the system when the shunt capacitor is
switched at t = 800 (s). When the capacitor is switched, the operating point jumps
from the point indicated by “[J” to the one indicated by “H” which is the initial point
of the post-disturbance system with reactive power support. At this point U < U
since P, < 1. Thus, based on the LTC dynamic the tap n decreases, and so does
Ur. Therefore, Py, takes the direction indicated by the arrow. This situation leads to
voltage collapse.
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Figure 7.15. Dynamic response of the system with too slow reactive power support.

In this example for any initial point (of the post-disturbance system with reactive power
support) under the unstable equilibrium point the system will be unstable. Thus, the
switching time, and also the size of the shunt capacitor should be carefully selected so
that the initial point does not lie under the unstable equilibrium point.

For the case shown in Figure 7.8, a fast-acting of reactive power support may prevent
the motor slip to reach the unstable slip s,. Power electronic based devices (such as
SVCs and STATCOMSs which will be presented in EG2120 FACTS and HVDC in power
systems), generators, and synchronous condensers can be mentioned as fast reactive
power support devices. A synchronous condenser is a synchronous generator that only
produces or consumes reactive power. Such a synchronous condenser is installed in the
Swedish island Gotland due to the (line commutated) HVDC link between the weak
network of the island and the power system of the mainland.

Reactive power support can also be performed by switching series reactances, auto-
matic line re-closing following the fault clearing, switching off shunt inductors in the
transmission system. However, these actions should be fast enough to lead the system
to the stable equilibrium point.

Load reduction

This action can be performed by

e blocking the LTC tap changing, see P in Figure 7.12. Note that if other load
restoration exists, this action may only delay the process of a voltage collapse,
see Figure 7.13,

e load shedding (i.e. by reducing Gy, see Figure 7.16, the figure on the left hand
side),

e reducing the LTC set point (i.e. Uy in equation (7.7), see Figure 7.16, the figure
on the right hand side).
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Figure 7.16. Dynamic response of the system by reducing G with 20% (on
the left) and by reducing Uy with 5% (on the right) at ¢ = 700 (s).

Note however that Uy in the figure on the right hand side is still very low. This low
voltage may lead to other protection actions in the transmission system.

Example 7.2 Consider the SLIB system shown in Figure 7.17 where Uy =1, Oy = 0
and the load is considered as a constat power load.
U,Z0, — U, 26,
]
\ B+ 0,

Figure 7.17. The SLIB system.

Let Z=R+3jX =0+35035and Z =R+ jX = 0.035+ 5 0.35, respectively.
a) Normalize the equivalent model with respect to the base values Uy, Sse, Z and plot
the wu,-p, curve with QQr = 0.

Now, let Z =0+ j0.35 and Qr, = P, tan(y).
b) Plot the u,-p, curve with tan(¢) = —0.25, tan(p) = 0 and tan(y) = 0.25, respec-
tively.

max

c) Plot the g,-u,, curve with p, = p"** and p, = p'** /3, respectively.

d) Using the non-normalized values (i.e. Pp, Qp and Uy ), plot the stability region in
which for any active and reactive loads there is a real solution for the voltage. Plot
also the security region in which for any active and reactive loads the voltage (Uy) is
greater than 0.9.

a)

_ U?

With Z = 0.000+;50.35 S, = 7N = 3.4571
_ U?

With Z = 0.035+50.35 S, = 7N = 3.4400
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Let,

P
a = GL—HN—arctan(g) ) pn:SL , qnsz

sc sc

U, R X

The mismatch equations at load bus give the following normalized equations.

% Uf+% Upsin(a) + P, =0 = r,u’+u,sin(a)+p, =0 (7.10)
%Ui—% Upcos(a) +Qr =0 = w,u>—u, cos(a)+q, =0 |
Furthermore,
P+ = wd=a+Vh = (7.11)
tp =(0.5 = (rapu + 20 6n)) £ V(0.5 — (1 pa + 20 6))* — (3 + ¢3)
A necessary condition to have a real u,, is that b > 0 which implies that
P2+ q2 < (0.5 — (Fppn + 20 qn))? (7.12)
Thus,
" " (7.13)

D
T TN 05
n — n - Uper =
P ¢ 11, Vit

Figure 7.18 shows the u,-p, curves with R = 0 (in blue) and R = 0.035 (in red). Note
that ¢, = 0 in the both cases.
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Figure 7.18. The u,-p, curves with R = 0 (in blue) and R = 0.035 (in red).
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Figure 7.19. The u,-p, curves with different power factors, and the g,-u,

curves with p, = pI"** and p,, = p]'** /3.

b-c) Figure 7.19 shows the wu,-p,, curves with tan(¢) = 0.25 (in black), tan(y) = 0 (in
blue) and tan(p) = —0.25 (in red), and also the g,-u, curves with p, = p* (in red)
and p, = p* /3 (in red).

d) Figure 7.20 shows the stability region (in cyan) and the security region (in yellow)
for P, and )7, without reactive power compensation. The stability region indicates
for which Pr, and @), there is a real solution for U;. However, due to practical issues
the voltage in the steady state cannot be less than a specified minimum value (0.9 in
this example). The security region indicates for which P, and @ the voltage Uj is
still over the minimum value. It also gives some information to the system operator,
for a given Pr and ()1 how much reactive power should be compensated to have the
operating point in the security region.

0.8643

0.5143
—

0
0 1.7286 0 1.6262

P P

Figure 7.20. the stability region (in cyan) and the security region (in yellow)
for P L and Q L-
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Chapter 8
Frequency control

(Part of this chapter follows in large the discussion in [21].)

Power system frequency is an appropriate measure on the active power balance in a
power system. The frequency is constant when the same amount of electrical power
is produced as consumed by the loads, including system losses. If this is not the case
frequency changes will occur. The frequency is reduced when a load increase or a loss
of production is not compensated by a corresponding increase of the turbine power
of the connected generators. The power deficit decelerates the generator rotors and
consequently the frequency is reduced. Too large reductions of the frequency can trigger
protection system which may result in system separation, loss of load and costumer
outages, since many equipments in a power system, e.g. power supply systems, do not
tolerate too low frequencies.

Since the stored kinetic energy in the system is relatively small (the inertia constant of
a typical generator is about 5 (s)), the electrical energy must be produced at the same
moment as it is consumed by the loads. As the power consumption varies and also due
to disturbances such as outage of generation and load, the active power production
must be regulated accordingly to keep the frequency within the acceptable limits. In
accordance with the European Network of Transmission System Operators for Elec-
tricity (ENSTO-E) terminology [22]-[23], this frequency control is performed in three
processes, namely

e Frequency Containment Reserves (FCR),
e Frequency Restoration Reserves (FRR),

e Replacement Reserves (RR).

In this compendium, FCR and FRR will be discussed.

The objective of FCR is to stabilize the system frequency after a disturbance at a
steady-state value within the permissible maximum Steady-State Frequency Deviation
(SSFD). At the maximum SSFD, the FCR are fully activated. In this process, the
turbine control (governor) is automatically activated to adjust the active power gen-
eration based on frequency deviation. In order to share the control between different
generators involved in FCR, a permanent frequency droop is used. In some power
systems, the term primary control is used for this process.

In the Northern Europe (NE) synchronous area (comprises Sweden, Norway, Finland
and Eastern Denmark), FCR are above all located in hydro units, and are divided up
into

e FCR for Normal operation (FCR-N) which is at least 600 (MW) at 50 (Hz),
and will be fully activated when the permissible maximum SSFD (£ 0.1 (Hz))
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is reached. The full activation time of FCR-N is within 180 (s), (about 63% is
activated within 60 (s) and a full activation within 180 (s)).

e FCR for Disturbances (FCR-D) which is about 1000 (MW), and is used in
case of contingencies (such as the trip of the largest generating unit) so that
post-disturbance steady-state frequency does not become less than 49.5 (Hz), i.e.
the permissible maximum SSFD is —0.5 (Hz). This action is supposed to start
at 49.9 (Hz) and will be fully activated at 49.5 (Hz). The full activation time of
FCR-D is within 30 (s), (about 50% is activated within 5 (s) and a full activation
within 30 (s)).

Note however that when the system frequency is changed the power demand of certain
loads is also changed, specially for motors, in such a way that a frequency increase
leads to increased power consumption and a frequency decrease gives lower power
consumption. This load frequency dependency thereby stabilizes the frequency.

The objective of FRR is to restore the system frequency to its nominal (or scheduled)
value, and to replace the activated FCR. This process may be performed manually
and/or automatically by applying a supplementary control loop (an integrator). Since
year 2013, an automatic FRR has been introduced in the NE synchronous area to
improve frequency quality performance. However, manual regulation is predominant
FRR [22]. For the both cases the frequency is used as the input signal. From the
actual frequency deviation and the knowledge about the system frequency droop it
is straightforward for the system operators to compute how much additional power
is needed to restore the system frequency and the used FCR. In the NE synchronous
area, the full activation time of the automatic FRR is about 2 minutes, and the full
activation time of the manual FRR is about 15 minutes. In some power systems, the
term secondary control is used for this process.

Another important parameter for frequency control is Instantaneous Frequency Devi-
ation (IFD) on which the system inertia has a significant impact. The system inertia
should be sufficiently large in such a way that the instantaneous frequency does not
exceed a permissable maximum IFD. For instance in the NE synchronous area, a fre-
quency between 49 and 47 (Hz) will trigger the protection systems to under-frequency
load-shedding and system separation, and also a frequency less than 47.5 (Hz) will
trigger the protection systems of large steam turbines to be disconnected.

8.1 System model
Consider the multi-machine power system shown in Figure 5.3. The swing equation of
the k-th generator is given by (all variables including w are expressed in (pu))

My, &y, = (P — Pex)

where,

Sngk
Sbase

M} =2 H,
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Transforming the swing equations to the COI reference frame, the following is obtained.

‘ 1 ng . 1 ng
weor = 3 Z Mj, &y, = L Z(Pmk — Per) (8.1)
T =1 T p=1
where
g
My =Y "M,
k=1

By considering a small deviation (denoted by A) from initial values (denoted by 0), we
may write

Pm - qumk:ZquOk+ZqAPmk:Pm0+APm
k=1 k=1 k=1

Pe - ZgPek:ZgPeOk+ZgAPek:PeO+APe
k=1 k=1 k=1

Thus, equation (8.1) may be rewritten as
M} Awcor = (Pmo — Po) + (AP, — AP,) = AP,, — AP, (8.2)
=0

Assume that the overall load is modeled as a composite load (see equation (5.4)) which
has both frequency-dependent and non-frequency-dependent characteristics. Then,
AP, may be expressed as

APE = APL + DCOI AWC’OI (83)

where, A P;, denotes the non-frequency-sensitive load change, Door Awcor denotes the
frequency-sensitive load change, and Dgoy is a small positive damping constant.

If the system losses are included in P,, the term AP, is then added to (8.3). However,
since AP, is much smaller than the sum of the two other terms, it can be neglected
that is we may set AP,z ~ 0.

Let Awcor, Deor and M} be henceforth denoted by Aw, D and M, respectively,
where M is referred to as the system inertia and Aw is termed the system (or average)
frequency deviation, since Aw = Af in (pu).

Equation (8.2) can now be rewritten as
M Aé = AP, — AP, — D Aw (8.4)

whose block diagram representation is shown in Figure 8.1. From equation (8.4), we
see that the steady-state frequency deviation (SSFD) for a load change is given by

APy APy

Af:Aw:—D i)

(pu) = Af = -

fs (Hz) (8.5)
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+l 1 Aw
% Ms+ D

Figure 8.1. Block diagram representation of system (8.4).

8.2 Turbine and turbine governor

The objective of a turbine governing system installed in a generating unit is to produce
a desired power which is partly determined by the set value for the produced power
and partly by a contribution originating from the frequency control. In this context,
the latter is of interest. Figure 8.2 shows a schematic diagram of the mechanical part
of the generating unit k, where AP, is the contribution of the k-th generator to AP,
in Figure 8.1, Aw is the system frequency deviation, and AY represents the change
of the gate position of a hydro turbine, or the change of the valve position of a steam
turbine. The block indicated with “turbine” represents the dynamic of the turbine, and
the block indicated with “governor” represents the dynamic of the governing system.

Aw AY, AP

. mk
— Governor Turbine —»>

\ 4

Figure 8.2. Schematic diagram of the mechanical part of a generating unit.

In this compendium, only the hydro turbine and turbine governor are discussed. For
steam turbines and governing systems, the readers are referred to [6] and associated
references therein.

8.2.1 Hydro turbine model

Figure 8.3 depicts a hydro turbine with penstock and hydro reservoir, and defines the
notation that will be used from now on. Bernoulli’s equation for a trajectory between
the points P, and P, can be written as

Py o P
2 61} ~ 1 2 1

The following assumptions are usually made:

e v; = (), since the reservoir is large and the water level does not change during the
time scale that is of interest here.

e The water velocity is non—zero only in the penstock.
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e The water is incompressible, i.e. p does not change with water pressure.

e The water pressure is the same at P; and P, i.e. p; = ps.

Further,
i | -
\\\“‘->~~ Length of
Penstock = L
h = Head
Area = A4
Velocity = v
P,
R
\pow
Qsﬁ

Effective Area= a
Output Velocity = v,

Figure 8.3. Schematic drawing of hydro turbine with water paths.

The above assumptions together with equation (8.7) make it possible to rewrite equa-
tion (8.6), with vy, = vo and the length of the penstock L, as

dv 1
Ld—;} + 50— gh =0 (8.8)

where, v is the water velocity in the penstock.
Let a denote the effective opening of the penstock (determined by the opening of the

control gate of the turbine) and A denote the area of the penstock. Since the water is
assumed incompressible, the rate of the water flow is the same at P, and P, i.e.

A

AVt = AV = Vg = —V (8.9)
a
Thus, equation (8.8) can be written as
dv 1 1 (AN
= o ar(50) (510

The maximum available power at the turbine is

1 1 A3
szépav?’ ==p v

(8.11)

To get the system into standard form,

y = Pn (8.12)
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are introduced. The system can now be written as

. gh s 1
T =" —2x

2
Yy=p 22

whose block diagram is shown in Figure 8.4.

=P = A—
Y m p 21/!2

Y
i)
N

Figure 8.4. Block diagram representation of hydro turbine.

Equation (8.13) describes the dynamic of a nonlinear system of the form

T =f(z,u)

y =h(z, u) (8.14)

To get an idea of the properties of this system, the nonlinear system is linearized around
its equilibrium point. In the steady-state © = 0. For a given wug, the equilibrium point
2o and the initial value of y, i.e. yg are obtained as follows

To =ugy/2gh
_ pAx] (8.15)
C2u?

Yo

Linearization of (8.14) around its equilibrium gives

Az =f, Ax + f, Au

Ay =h, Az + h, Au (8.16)
or
Az = — 2x 2L1u2 Ax + 22553 Au
0 0 (8.17)

Ax? Ax3
Ay =3p—2LAx — 2p=—"LA
4 p2ug * p2ug “
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which, using equations (8.15), can be rewritten as

Ni o V20N 290,
UQL UQL

(8.18)
__ 3 Ax—%Au

Y _um/Qgh Ug

Note that L/v/2gh has dimension of time, and from the above equations it is apparent
that this is the time it takes the water to flow through the penstock if @ = A. That

time is denoted by T
T = L/\/2gh (8.19)

The Laplace transformation of (8.18) leads to

L/T

Ar = —"——Au
1+ sugT

(8.20)

Based on (8.20), the relationship between the input Au and the output Ay is then
given by
1 —2ugT

8.21
ug 1+ ugT's ( )

Note that uoT = a¢T/A also has dimension of time and is denoted by T,. Thus,
equation (8.21) can be rewritten as

1— 2T,

8.22
ug 1+ 7Ty,s ( )

It is obvious that the transfer function in equation (8.22) is of non-minimum phase,
i.e. not all zeros are in the left half plane. In this case, one zero is in the right half plane.
That is evident from the step response to equation (8.22), depicted in Figure 8.5.

Au

Auy
t(s)

u £(s)

Figure 8.5. Variation of produced power, Ay, after a step change in control gate.
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The system has the (unpleasant) property to give a lower power just after the open-
ing of the control gate is increased before the desired increased power generation is
reached. The physical explanation is the lower pressure appearing after the control
gate is opened, so that the water in the penstock can be accelerated. When the wa-
ter has been accelerated, the generated power is increased as a consequence of the
increased flow. That property of water turbines places certain demands on the design
of the control system for the turbines.

Normalizing the input and output variables of equation (8.22), this equation can be
rewritten as

1-2T,s
AP, = ——AY 8.23
1+ 7T,s ( )
where,
AP, = 2Y and Ay = 2
Yo Ug

In this compendium, the transfer function (8.23) is used to represent the dynamic of a
hydro turbine. Thus, for the k-th generator we have (see Figure 8.2)

1—-2T,s
AP, = ——""AY, 8.24
F 1+7T,s F ( )

8.2.2 Hydro turbine governor model

It is the task of the turbine governor to control the control gate such that the desired
power is produced by the generator in question. That power is partly determined by
the set value for the produced power and partly by a contribution originating from the
frequency control. In this context, the latter is of interest. A model of this controller is
given in Figure 8.6. The control servo is here represented simply by a time constant 7,,.
The main servo is represented by an integrator with the time constant 7;. The change
of the set value is indicated by AP,, ., which is set to zero prior to a disturbance.

set

uopen A Knax
1 1 AY
1, s
AY .
uclose i
g trT RS -
1+ Tys
" OAP
8y 2"

Figure 8.6. Model of governors for hydro turbines.

Typical values for these parameters are given in Table 8.1.
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Parameter ‘ Typical values ‘

Tr 25-175s
Te 02— 0.4s
T, 0.03 - 0.06 s
Gor 021
ot 0.03 — 0.06

Table 8.1. Typical values for some parameters of the turbine controller for hydro power.

The controller has two feedback loops, a transient feedback loop and a static feedback
loop. The transient feedback loop has the gain ¢, for high frequencies, and the static
feedback loop has the gain g,. Thus, the total feedback gain after a frequency change
is —(gu + gst). The transient feedback is needed since the water turbine is a non—
minimum phase system. If the transient feedback is left out or made too small, the
system can become unstable. The transient feedback causes the system to be slower;
the transient frequency deviations become considerably larger since the initial total
feedback can be about ten times larger than the static feedback.

Setting 7}, = 0, and neglecting the limiters, the dynamic of the hydro governor of the
k-th generator may be (approximately) described by the following transfer function [5]

1 1+TRS

AY, = —— 8.25
T e A+ Ty )1+ T ) (8:25)
where,
Tr T, T Tr(9s r
Tgl ~ RLG and 1—‘92 — G + R(g 123 + gt ) (826)
TG + TR(gstk + gtr) gst;C

Usually T, > Ty, therefore it has been assumed Ty + T =~ T)po.

Figure 8.7 shows the block diagram of the mechanical part of a hydraulic unit which
contributes to the control of the system frequency.

‘max

AP,
Aw + 2 1+ Ts [1-2Ts|AR, /~
9_ k A+ T, (1 +T,5) 1+7T s _/

Esi,

T APmkm

Figure 8.7. Block diagram of the mechanical part of a hydraulic unit.

/

A

In the steady-state (see equation (8.25)), the ratio between the frequency deviation
and the change in the control gate is given by

1
gstk

AY = —

Aw (8.27)
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Using equation (8.24), the stationary change of power is obtained as

1
gstk

APy = —

Aw = —Ry Aw (8.28)

Summing equation (8.28) for all generators, we have

ng g 1 ng
APy =Y APy=-Y —Aw=-) RAw
k=1 j=1 It k=1 (8.29)
1
gst
where,
1 A o 1
— = ., R=> Ry and R=— (8.30)
st =1 gstk =1 st

e gy is termed the speed-droop (or the droop), and can be interpreted as the
percentage change in frequency required to move the gate from fully closed to

fully opened. The droop expressed in the nominal value has the unit ( ]\I;‘fv)

e R (%) is termed the total gain of the governing systems.

Moreover by virtue of equations (8.4) and (8.29), the steady-state frequency deviation
(SSFD) for a load change in a system with governing systems is given by

APy,
R+ D

0=AP, —AP, —DAw = Aw=— (8.31)

where, R + D is referred to as the stiffness.

Example 8.1 Consider the system shown in Figure 8.8 where a hydraulic unit and an
infinite bus feed a load. Let the active load be modeled as Py, = Prg+ D Aw.

Line 1 Line 2
3,

Figure 8.8. An SMIB system.

Infinite

Gen Bus

The system data are given as follows

o Spase = 1000 (MVA), f, =50 (Hz)

e P, =900 (MW), Py,... = 1100 (MW) , H =5 (s), S,y = 1200 (MVA)

max
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o Pry=1000 (MW), D =20 (MW/Hz)

Assume that due to a disturbance line 2 is disconnected at timet =5 (s). Assume also
that there is no frequency control in this isolated system, i.e. AP,, = 0. Calculate the
steady-state frequency deviation (SSFD) of the isolated system in (Hz).

For frequency control study, the system may be represented by the block diagram
shown in Figure 8.9 where all values are expressed in (pu).

APm
+l 1 Aw

% Ms+ D

We have

AP,=0 , M=2H2" —

where APy, represents the lost power from the infinite bus to the load. Note also that
Aw = Af since Aw is expressed in (pu). The SSFD of the isolated system is given by

APm—APLf ~0-01
D |

Figure 8.10 shows the system frequency response to the disturbance.

Af =

50 = —5 (Hz)

50.5
50

~ 47.5¢

4 I
50 50 100
Time (s)

Figure 8.10. System frequency response to the disturbance.

Example 8.2 Assume that the isolated system has a frequency control function, and
the available FCR are used fully at f = 49.5 (Hz). For the same disturbance, calculate
the SSFD of the isolated system in (Hz), and analyze the response of the FCR process.
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AP,
| 14T [1-2T,s | AR, /™
S0+ T+ T,9) 1475 -/
Aw 1 +
Ms+ D %_
AP

L

Figure 8.11. Block diagram representation.

Now, we are dealing with the system shown in Figure 8.11.

The SSED is given by (8.31). The available FCR are given by P, ... — P, = 200
(MW). To fulfill the frequency deviation requirement, the total system gain R is then
200 fs

— 1
R= 05 = 400 (MW/Hz) or R =400 G = 20 (pu/pu) and gy = = 0.05 (pu/pu)
’ base

The stiffness is given by R+ D = 21, and the SSFD is given by

~AP;, —0.1
f=qrp = 57 50 = 02381 (Hy)

Figure 8.12 shows the system frequency response to the disturbance, with T = 0.2,
Tr =17, g = 0.8 and Ty = 2. From equation (8.26), T,; and 7,5 can be determined.

50.5

N Rt ARECCEEEEEE LR R R R R R,

SSFD: —0.2381 (Hz)

—~ 49
N
RS

48r

Maximum IFD: —2.6527 (Hz)
47 ’
0 40 80 120
Time (s)

Figure 8.12. The response of FCR to the disturbance.

During transient the frequency drops to f = 47.3473 (Hz), i.e. the maximum instanta-
neous frequency deviation (IFD) is Af = —2.6527 (Hz) for this disturbance, however
it eventually settles to f = 49.7619 (Hz), i.e. the SSFD is Af = —0.2381 (Hz) which
was determined by the stiffness R + D.
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Figure 8.13 shows the generation and load characteristics of the isolated power system.
In the figure, the characteristic of the load is given by P, = Pro+ DAf whose slope is

determined by —, and the characteristic of the generation of the isolated system is given

by P, = Pno — RAf whose slope is determined by — gy. Prior to the disturbance,
the system settles at the equilibrium point indicated with “x”, where Af = 0, and
P,,+100 = P;, = 1000 (MW). Note that the P, characteristic shown in the figure is for
the isolated system, i.e. the post-disturbance system. (How does the P,, characteristic
look like in the pre-disturbance system?)

When the disturbance occurs the system moves from point “x” to point p; at which
P,, = 900. However, the frequency initially reminds unchanged (why?). At point p,
the power difference is P, — P, = —100 (MW) (which corresponds the lost power from
the infinite bus), therefore the frequency starts to drop. When the frequency drops,
the governing system should increase the generator output. However, as shown in the
figure, the power output first decreases before starting to compensate the lost power.
The reason to that is the unpleasant dynamical property of the hydro turbine (i.e.
non-minimum phase property), and that is the reason (compared to the steam units)
why the system with frequency control based on hydraulic units has larger transient
frequency deviation, and needs longer time to reach the new equilibrium point.

P, -
L IRty A0 AR e
l/I
~N 1
z !
‘\
\gz
850 900 950 1000 1050

P (MW)

Figure 8.13. Generation and load characteristics of the isolated power system.

When the trajectory intersects the Py characteristic at point p3, the output power P, is
equal to Pp, (which has decreased due to its frequency dependency), and the frequency
reaches a local minimum of f = 47.3473 (Hz) (see Figure 8.12). Since p3 is not an e.p,
the trajectory does not stay at this point, but passes it. Then P,, > P;, and therefore
the system frequency starts to increase. When the trajectory intersects again the P,
characteristic, the frequency reaches a local maximum. When the trajectory passes the
intersection point, P,, becomes less than P;, and therefore the system frequency starts
to decrease. Eventually, the trajectory reaches its new equilibrium point py.

Figure 8.14 shows the effects of the governing system and the frequency dependency of
the load on the system frequency change. The disturbance A P;, results in a generation
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increase of AP,,, and a load reduction of DAF.

50

Hz)

< 49.7619}

< L

i g
DAf

49:5 900 1000
P (MW)

Figure 8.14. The impact of the frequency dependency of the load.

Example 8.3 Apply the FRR process to restore the system frequency and the load.
Also explain the impact of the inertia constant H on the system frequency response.

In order to restore the system frequency and the load, the generation characteristic must
be shifted to a point close to the nominal frequency. Such a shift can be performed in
different ways. Since the frequency deviation and the system gain after the disturbance
are known, AP,, = —RAf can be calculated. Having known AP,,, the generation
characteristic can be shifted either by changing the set value of the generator (i.e.
AP,,..,) to AP, or starting a new generator whose power output should be equal
to AP,,. Another way is to add a supplementary control loop (an integrator) to the
governing system with Af as the input signal as shown in Figure 8.15.

AP,
N 14 T,s 1-2T,s | AR, /=™
T+ T,s)(A+T,,5) 1+ 7,5

)
(. ?
=Aa) Ms+ D .
AP,

L

A

Figure 8.15. Block diagram representation with automatic FRR.

Figure 8.16 shows the system frequency response to FCR process (in blue) and the
FRR process (in red). In the figure on the left hand side, the FRR was performed at
t = 120 (s) by a step change of the set point to AP, , = —RAf, where R and Af
were calculated in Example 8.2. However, in the figure on the right hand side, the
FRR was performed at ¢t = 120 (s) by activating the supplementary control loop shown
in Figure 8.15.
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50

f (Hz)

47.3473

0 120
Time (s)

200

Figure 8.16. System frequency response to the FCR process and the FRR process.

In the first few seconds following the loss of a power plant (in this example the infinite
bus), the system frequency starts to drop. Initially, the dynamical behavior of the
system frequency is dominated by the inertial response of the generators that are
synchronously connected to the system (in this example there is only one generator).
This response is known as Inertial Frequency Response (IFR) which is an inertia-
based inherent response due to the total stored kinetic energy in the rotating masses
(mainly from synchronous generators). The IFR provides a counter response to resist
a fast frequency deviation after a disturbance. A low system inertia results in a faster
and greater frequency deviation. A large and fast frequency deviation can trigger
protection system which may result in system separation, loss of load and costumer
outages. Therefore, keeping a minimum level of system inertia is a necessity for having

a secure system operation.
Figure 8.17 shows the variations of the rate of change of frequency (RoCoF) after the
loss of the infinite bus. In the figure on the right, the region around the minimum of

RoCoF is enlarged.

-7.0863

TR —— /
| | ya

6.415 9
Time (s)

df/dt (pu/s)
df/dt (pu/s)

1% 50 100 150 200
Time (s)

Figure 8.17. Variations of the RoCoF after the loss of the infinite bus.

In a real power system, after loss of a power plant it normally takes some time before the
governor control action (i.e. the FCR process) will be activated. Therefore, during the
first second(s) following the disturbance, the stored kinetic energy in the rotor and the
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frequency dependency of the load are the only counter response to resist the frequency
drop (i.e. the IFR). Thus, from Example 8.2 and Example 8.3 we may conclude that
as shown in Figure 8.18 following a disturbance the system frequency response may
be classified into three different categories, namely the inertial frequency response (in
green), the response due to the FCR process (in blue) and the response due to the

FRR process (in red).

50—

49r

f (Hz)

48

470 120 200
Time (s)

Figure 8.18. Different categories of frequency response.

Figure 8.19 shows the system frequency response for H = 3 (in red), H = 5 (in green)

and H =7 (in blue).

50 -0.0061F
I i
_.-0.0086f 1
"
) 2
= 3
S
47.7475¢
47.3473
46.4814+ —0.0147\/
0 80 6.41 8
Time (s)

Time (s)
Figure 8.19. System frequency response for H =3, H =5 and H = 7.

As shown in the figure, the system inertia has a significant impact on the IFD and
the RoCoF. A lower H results in a greater IFD and RoCoF. The settings of some
protection systems are based on the frequency deviation and the RoCoF. For exam-
ple, the steam turbines are very sensitive for a too low frequency, and they must be
disconnected by their protection systems when the frequency drop is Af = a > 0
(Hz) to avoid damaging of these generators. One of the preventive actions to avoid
the frequency reaches f = f; — o (Hz) is that to disconnect some pre-defined loads
(i.e. under-frequency load-shedding) when the frequency drop is Af = 5 < a (Hz).
There are also protection systems which will be triggered to disconnect some power
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system components if |df /dt| > v > 0 (Hz/s). This action may result in jeopardizing
the system stability. Therefore, the system must be operated in such a way to fulfill
N — 1 criterion with the frequency nadir greater than f = f; — 8 (Hz) and the RoCoF
less than ~.

Example 8.4 Consider again the system in FExample 5.1. The generators are rep-
resented by the classical model with wy in (pu), see equation (3.18). The loads are
represented by the exponential model expressed in equation (5.2). Let the disturbance
be a step increase of the load at BUS J with 10%. Let also the load frequency dependency
be represented by the damping constants of the generators, i.e. Dy.

a) Let mp = mq = 0 and assume that no generator has governor control, i.e. P is
constant. Find a value for each Dy such that the frequency drop is Af =5 (Hz) for
this disturbance. Plot also Af (Hz) in the COI reference frame.

b) Re-do a), but with
mp=0and mg=2 , mp=2and mg=0 , mp=2 and mqg=2

c) Let mp =mq =0, and Dy, be the same as in task a). Let also Gen 1 and Gen 2 be
equipped with the governor control shown in Figure 8.15, but without the supplementary
control loop, i.e. Trrr = 0. Assume that the available FCR used fully at f = 49.5
(Hz). Analyze the system frequency response for this disturbance.

d) Re-do c), but with the supplementary control loop, i.e. Trrr # 0, from t > 120 (s).

a-b) Based on the required frequency drop, we firstly find Doy which is given by

APL fs
Af Sbase

Deor = = 1.5000 (pu/pu)

Next, from equations (3.18) and (8.1)-(8.4) we find that D; = 0.0020, Dy = 0.0016 and
Ds = 0.0012.

To run the simulation, the system dynamic described in task a) of Example 5.1 with the
generator dynamic expressed in equation (3.18) are used. Figure 8.20 shows the system
frequency response (in the COI reference frame) to the disturbance with different mp
and mq. Why does the system have different settling frequency?

c-d) Based on the given data and the frequency drop requirements, we find that Ry =
20 and R, = 6 (pu/pu). Next, based on equation (8.31) the SSFD can be obtained
which is Af =49.7273 — 50 = —0.2727 (Hz).

To run the simulation, we need to derive a set of differential equation to describe
the dynamics of the governor and turbine shown in Figure 8.15. To do that, we use
the equivalent model shown in Figure 8.21 from which the following set of differential
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mp=0, mq=0

Af (Hz)
Af (Hz)

mp=0, mg=2 (in blue)
mp=2 , mq=0 (in red)

mp=2, mq=2 (in green)

10 100 200
Time (s)

100

Time (s)

200

Figure 8.20. System frequency response to the disturbance with different values

for mp and mgq.

equations can be obtained.

|
Sik == (c1x Ry, + S1x)

Tglk
. 1
Sork :E (Cor — Sa)
S = (csk — S
3k —TWk Cqk 3k

AP,,.... =wi Trrrk

where,
C1k =Wk — Jstk APmmk
Ty
Cok :Slk(l - f};)
Sik Tre
=+ 5
C3k Tyor + Dok
Car, =3 Ca,
and finally
AP = —2c3, + Sa
Aw

g2

T A NS 1 |52 ~C _
Sk >z )2y 5 It N NG
T 1+7,,s] +
g +

Figure 8.21. The equivalent model of the system shown in Figure 8.15.

(8.32)

(8.33)

(8.34)

1 3
1+T,s| + %Jr
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Figure 8.22 shows the system frequency response (on the left hand side) and the varia-
tions of the mechanical and electrical powers (on the right hand side) to the disturbance.

0.15
SSFD: —0.2727 (Hz)

)

e AP _in blue
I~ o® m
sy < AP inred
5 3 ¢

£
o
<
Maximum IFD: —1.8098 (Hz) ol—
_2 L L L 1
10 100 200 10 100 200
Time (s) Time (s)

Figure 8.22. System frequency response and the variations of the mechanical
and electrical powers with FCR.

As shown in the figure on the left hand side, the frequency nadir is f = 48.1902 (Hz),
and the settling frequency is f = 49.7273 (Hz) (as was expected). When the load is
suddenly increased with AP, = 0.15, initially the frequency is unchanged and the load
frequency dependency will therefore be unaffected. According to Kirchhoff’s current
(power) law, AP, = AP.,; + APy + AP,3 = AP, at any instant of time. As shown
in the figure on the right hand side, immediately after the disturbance AP, = 0.15
(pu), but AP,, = 0. Where is this additional power coming from? Moreover, as
shown in the figure, the total increased of the load is not entirely compensated, i.e.
AP, = AP, # 0.15 (pu). This is due to the load frequency dependency, since Af # 0.
By applying the FRR process, i.e. by activating the supplementary control loop with
Trrr = —0.5 for Gen 1 and Gen 2, both the frequency and the total new load are
restored as shown in Figure 8.23.

)
e AP_in blue
I~ o® m
z < AP inred
5 b ¢
3
o
<
Maximum IFD: —1.8098 (Hz) o
_2 L L L L L L
10 120 200 300 10 120 200 300
Time (s) Time (s)

Figure 8.23. System frequency response and the variations of the mechanical
and electrical powers with FCR and FRR.
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Example 8.5 Let synchronous generator Gen 3 be replaced by a wind power plant with
identical P, and @), to obtain the same load flow results. Re-do task c) of Example 8.4.

From the load flow calculations we find that F,3 = 0.2000 and Qg3 = 0.1579 which
will be used at BUS 3 as power generation at that bus. Then BUS 3 is considered as
a pg-bus and the simulation is performed. Figure 8.24 shows some of the simulation
results. Due to the fast power electronic based controller in the modern wind power

5

T

—1.8098 (Hz) without wind power

Af (Hz)
w ES

A61 (deg.)
N

N

10 100 10 15 20
Time (s) Time (s)

Figure 8.24. System frequency response and the variations of Ad; with (red)
and without(blue) wind power.

plants, the power system ”"sees” constant power generations from these wind power
plants (which are also termed as non-synchronous generation). This implies that these
wind power plants (or in general non-synchronous generations) are not able inherently
to be involved in IFR. Today’s power systems have been designed and developed based
on synchronously connected power plants. To operate a power system in a reliable and
cost-effective manner, a mixture of three types of resources has been applied, namely
energy, capacity (i.e. power) and flexibility (i.e. controllability). All of conventional
power plants (i.e. those which are synchronously connected to the system) imply an
important contribution to ”capacity”. Moreover, they provide synchronizing power (or
torque) and inertia which have crucial roles on power system dynamical response, on
setting of rotor angle, voltage and frequency stability limits, and also on setting of
protection systems. The non-synchronous generation does not however contribute in
providing synchronizing power and inertia. Replacing some of the conventional power
plants with the non-synchronous generation (due to environmental and economical
concerns), it even results in less system inertia and synchronizing power. The high
penetration of non-synchronous generation (mostly wind power, but it can also include
solar power and other renewable energy) can therefore result in new challenges to
operate the system in a secure and cost-effective manner.

As shown in Figure 8.24, the IFD of the system becomes greater when the conventional
Gen 3 is replaced by a wind power plant. This means that the system has less inertia
compared to the system with three conventional generators. The lower inertia and
synchronizing power result also in the system oscillations with higher amplitude as
shown in the figure on the right hand side. A low inertia and synchronizing power can
jeopardize the system stability in case of large disturbances.



Appendix A

Load flow calculations based on
Newton-Raphson method

A.1 Theory

The Newton-Raphson method may be applied to solve for y;, yo, - - - , y,, of the following
non-linear equations,

gl(y17y27 e 7yn) - Tl(yhy% e 7yn) - bl =0
92(917?/27 e 7yn) - T?(ylay27 e 7yn) - bQ =0

(A.1)
gn(ylay27 T 7yn) = Tn(y17y27 te 7yn) - bn =0
or in the vector form
gly)=T(y)—b=0 (A.2)
where
Y1 91(y) Ti(y) by
Yo 92(y) Ta(y) by
y = 9y = , Ty)=| . , b=
YUn In(y) Tn(y) bn

y is an n x 1 vector which contains variables, b is an n X 1 vector which contains
constants, and f(y) is an n x 1 vector-valued function.

Taylor’s series expansion of (A.2) is the basis for the Newton-Raphson method of
solving (A.2) in an iterative manner. From an initial estimate (or guess) ¥, a sequence
of gradually better estimates y(), y, y® | ... will be made that hopefully will converge
to the solution y*.

Let y* be the solution of (A.2), i.e. g(y*) = 0, and ¥ be an estimate of y*. Let also
Ay = y* — y® Equation (A.2) can now be written as

9(y*) = gy + Ay™) =0 (A.3)

Taylor’s series expansion of (A.3) gives

gy + AyD) = g(y?) + JACY Ay =0 (A4)
where
3%1 @ ... 3g1 ()
Y1 Yn
JACW?) — {ag_(y)} = | : (A.5)
Ay y=y® Ignly) .. 9gu(y)
33/1 8yn y:y(i)
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where, JAC' ia called the jacobian of g.

From (A.4), Ay can be calculated as follows

JACYIAYD = 0—g(y?) = Ag(y?) = (A.6)
| -1 |
Ay = [JAC(y( ))} Ag(y™) (A7)

Since g(y™) = Y (y®) — b, Ag(y?) is given by

Furthermore, since b is constant, J ACW) ig given by

Miy) .. My
3 Ay
Oy y=y®) 0y y=y®) Mnly) .. 9Tn)
Oy Oyn y:y(i)
Therefore, Ay® can be calculated as follows
i 01 (y) Ty (y7 ! i i
. Ay T oy b= Loy, )
Ay =1 | =| ¢+ : (A.10)
() ITn(y) I (y) (%) (%)
Ayn le T Tny y=y(® b = Loy, s yn)

Finally, the following is obtained

= 1+1

The intention is that y(*) will estimate the solution y* better than what y©) does. In the
same manner, y®, y® ... can be determined until a specified condition is satisfied.
Thus, we obtain an iterative method according to the flowchart in Figure A.1.

Example A.1 Using the Newton-Raphson method, solve for y of the equation

g(y) =kiy+ ko cos(y —ks) — ks =0
Let by = —0.2, ky = 1.2, ks = —0.07, ky — 0.4 and € — 10~*.
This equation is of the form given by (A.2), with Y(y) = k;y + ks cos(y — k3) and
b=ky.
Step 1
Set i = 0 and y® = y(© = 0.0524 (radians), i.e. 3 (degrees).
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Set i=0

Step 1
(i) P

Give y

A
Calculate A g(y")| Step 2

A J : Step Final
Is the magnitude of the all entries of A g(y")) Yes (i)

Y

y=y

less than a small positve number €?

No

Y
Calculate JAC® | Step 3

A\
Calculate A 0 | Step4

A J

i=i+1

P = D 4 A D

Step 5

Figure A.1l. Flowchart for the Newton-Raphson method.

Step 2

Ag(yD) =b—T(y") = 0.4 — [(—0.2 % 0.0524) + 1.2 cos(0.0524 + 0.07)] = —0.7806
Go to Step 3 since |Ag(y™)| > ¢

Step 3

JACW®) — | & = 0.2 — 1.2 5in(0.0524 + 0.07) = —0.3465

0y } y=y @

Step 4

o711
Ayl = [ J AC@(”)} Ag(y®) = =035 _ 9 9599

—0.3465
Step 5

i=i+1=0+1=1
y@ =y 4 Ay(=1) = 0.0524 + 2.2529 = 2.3053. Go to Step 2

After 5 iterations, i.e. i = 5, it was found that |Ag(y?)| < € for y® = 0.9809 (rad.).
Therefore, the solution becomes y = 0.9809 (rad.) or y = 56.2000 (deg.).

Analysis of Example A.1

Figure A.2 shows variations of g(y) versus y. The figure shows that the system (or
equation) has only three solutions, i.e. the points at which g(y) = 0. Due to practical
issues, y* indicted with (O) in the figure is the interesting solution.
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1.5r

a(y)
2

—1.5¢

72,

_2‘5 1 1 1 1 1 1 1

-400 =300 —200 —100 0 100 200 300
y
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Figure A.2. Variations of g(y) vs. y.

Figure A.3 shows how the equation is solved by the Newton-Raphson method.

(0)
ay) aly™)

\ e/ JAct"™)
O 4

N

Figure A.3. Variations of g(y) vs. y.

We first guess the initial estimate y(®. In this case y(® = 0.0524 (rad.), i.e 3 (deg.).
The tangent to g(y) through the point (y(o) , g(y(o))) ie. ¢'(y9) = [

_ dg(y)}
y=y(®
JAC (y(o)), intersects the x-axis at point y). The equation for this tangent is given by

dy
G -9y ) =g'W) *(y—y?)
The intersection point y») is obtained by setting G = 0, i.e.

_ 0 _ 96

0 0y} ! 0
gy~ Y @) a®)
Ay

1 -1
y O — O — _ (g’(y(o))) gy @) = [JAC(y(O))} Ag(y©®)



165

In a similar manner, y® can be obtained which is hopefully a better estimate than
yM. As shown in the figure, from 3 we obtain y® which is a better estimate of y*
than what y® does. This iterative method will be continued until |Ag(y)| < e.

Example A.2 Solve for x in Evample A.1, but let y© = 0.0174 (rad.), i.e. 1 (deg.).

D.LY, (i.e., Do It Yourself)

A.2 Application to power systems

Consider a symmetrical power system with N buses. The aim is to determine the
voltage at all buses in the system by applying the Newton-Raphson method. All
variables are expressed in (pu).

Figure A.4 schematically shows connection of the system components to bus k.

Figure A.4. Notation of bus k in a network.

The generator generates the current Iy, the load at the bus draws the current Iy,
and Ij; is the currents from bus & to the neighboring buses. According to Kirchhofl’s
current law, the sum of all currents injected into bus £ must be zero, i.e.

N
Iop — I = Z I (A.11)

J=1

By taking the conjugate of equation (A.11) and multiply the equation with the bus
voltage, the following holds

N
Ul — Ui =Y U}y (A.12)
j=1
This can be rewritten as an expression for complex power in the per-unit system as

N
Ser — Sp = Z Skj (A.13)
where =
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S = Por + jQar is the generated complex power at bus k,

Stk = P + jQry is the consumed complex power (the load) at bus k&,

Skj = Prj + jQp; is the complex power flow from bus £ to bus j.

The power balance at the bus according to equation (A.13) must hold both for the
active and for the reactive part of the expression. By using Ps, and (Qs; as notation
for the specified active and reactive power (or net generation of active and reactive
power) at bus k, respectively, the following expression holds

N

Psy = P, — Py = Z P; (A.14)
j=1
N

Qsk = Qar — Qrk = Z Qr;j (A.15)
j=1

i.e. for any bus k in the system, the power balance must hold for both active and
reactive power.

Now, consider the m-equivalent model of a line shown in Figure A.5, where all variables
expressed in per-unit.

§k}' Uy 7 Z,g. Uj
]s/z
jb

sh—kj ] bsh —kj —'l'_

1

Figure A.5. m-equivalent model of a line.

Let
Uy = Uped% ) Uj = Ujejej
Z=R+jX , Z=VR:+Y?2 (A.16)
On; = Oy — 0;

The power Sj; in the sending end k is given by

_ o _ _ _ ., U —Ur
Sk = Up (I3, + I') = Uy ((] bsh—i; Ux) ™ + u) =

Z;;j
, U? U U; _ A.17
b 2 B i pi(0k—6;) _ (A.17)
J Osh k]Uk+R—jX R—JXG
U? U.U;
— —jbsh_ijler—k(RJrjX)— b L(R+jX) (cos by, + jsinby;)

Y? Y?
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By dividing equation (A.17) into a real and an imaginary part, expressions for the
active and reactive power can be obtained, respectively, as

Py = % U + Ungj (X sinby; — Rcosby;)
= ﬁ U2 + U U sin (0 ; — arctan (ﬁ)) S
72 Tk 7 ki X
Qrj = —ben_1; Uf + % Uf — Uggj (Rsin by; + X cos by;)
= (—bsh_kj + z) U — O s cos (ij — arctan <E>) S
72 Z X

From equations (A.18) and (A.19), it can be concluded that if the phasor voltages (i.e.
the voltage magnitude and phase angle) at both ends of the line are known, the power
flow can be uniquely determined. This implies that if the phasor voltages of all buses
in a system are known, the power flows in the whole system are known, i.e the phasor
voltages define the system state.

Consider again Figure A.5. Let

A+'bA_L_#_£+'£ =
i IO = g T Ry xR e
R
9= 3 (A.20)
X
Based on (A.20), we rewrite (A.18) and (A.19) as follows
ij = gkj Ul? — Uk Uj [gkj COS(@kj) + bkj sin(@kj)] (A21)
Qrj = Up(=bshrj — bij) — U Uj [gr sin(Br;) — bes cos(6r;)] (A.22)

The current through the line, and the active power losses in the line can be calculated
by

_ P — O
L, = ’WUijQ’W (A.23)

k
Plosskj = Pk]+ij <A24>

Consider again Figure A.4. Let Y = G+j B denote the admittance matrix of the system
(or Y-matrix), where Y is an N x N matrix, i.e. the system has N buses. The relation
between the injected currents into the buses and the voltages at the buses is given by
I =Y U. Therefore, the injected current into bus k is given by I, = Z;VZI Yi; Uj.

The injected complex power into bus k£ can now be calculated by

N N
Sk=Ucl; =Up Y _ Y5Ur = U Y (Grj — jBiy) Ujcos(by;) + jsin(0;))

j=1 j=1
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N N

= (Uk Z Uj [Gk] COS(@kj) + Bkj Siﬂ(@m)])—#j (Uk Z Uj [Gk] Siﬂ(@kj) — Bkj COS(@kj)]>
j=1 J=1

Let Py denote the real part of Sy, i.e. the injected active power, and @}, denote the
imaginary part of S, i.e. the injected reactive power, as follows:

N
P, = U, Z Uj [ij COS(ij) + Bkj Sin(ekj)]

j=1
N (A.25)
Qr = Uy Z U; [G; sin(6x;) — By cos(b;)]
j=1
Note that Gj; = —gi; and By; = —by; for k # j. Furthermore,
N
Py=) Py
j=1
N
Q=Y Qi
j=1
Equations (A.14) and (A.15) can now be rewritten as
P, — Ps, = 0
Bk (A.26)
Qr— Qs =0
which are of the form given in equation (A.2), where
[ 61 ] [Py ] [ Ps1 |
0 On Tp(0,U) Py bp Psy
y= = ,Y(0,U) = = , b= = (A.27)
U Uy TQ(ea U) 1 bQ Rs1
LU Q] | Qs ]

The aim is to determine y = [0 U]” by applying the Newton-Raphson method.

Assume that there are 1 slack bus and M PU-buses in the system. Therefore, f becomes
an (N — 1) x 1 vector and U becomes an (N — 1 — M) x 1 vector, why?

Based on (A.8), we define the following:

AP, = Ps, — P,k # slack bus

A28
AQr = Qgsr — Qi k # slack bus and PU-bus ( )



Based on (A.9), the jacobian matrix is given by

dYp(0.U) 9T p(0,U)
a0 v H N
JAC = =
dTQ(0,U)  9Tg(0.U) J I
o0 ou
where,
H isan (N—-1)x(N-1) matrix
N isan (N—1)x (N—M-1) matrix
J isan (N—-M—-1)x(N-1) matrix
L' isan (N—M—1)x (N —-M —1) matrix

The entries of these matrices are given by:

Hy; = %—gf k # slack bus

Ny, = g—g’; k # slack bus

Jij = %%J’? k # slack bus and PU-bus

_ 0Q
I, =2

= 5t k # slack bus and PU-bus

-

J # slack bus
J # slack bus and PU-bus
J # slack bus

j # slack bus and PU-bus
Based on (A.6), (A.28) and (A.29), the following is obtained
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(A.29)

(A.30)

To simplify the entries of the matrices N’ and L', these matrices are multiplied with

U. Then, (A.30) can be rewritten as

7 23] = [so)

where,

for k # j
Hy; = %—];J’? = U U; [Gyjsin(bk;) — By cos(O;)]
Ny = U N]’Cj = Ujg—g'; = U, U; [ij cos(ﬁkj) + By Sin(ekj)]
Jpj = %gjk = —Uy U; [Gyj cos(0k;) + Byjsin(b;)]
L= U L;gj = Ujg—Uf = Ui U; [Gj sin(6r;) — By cos(0y;)]

and for k= j

Ngp = ng%g = Py + G U?
Ju= & =P — GuU?

L= U2 — Q. — BuU?

(A.31)

(A.32)

(A.33)
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Now based on (A.10), the following is obtained:

-0 2] [ a4

Finally, U and 6 will be updated as follows:

0, = 0, + A0G;, k # slack bus

U, = U, (1 + AU—Z’“> k # slack bus and PU-bus (A.35)

A.2.1 Newton-Raphson method for solving power flow
equations

Newton-Raphson method can be applied to non-linear power flow equations as follows:

e Step 1

la) Read bus and line data. Identify slack bus, PU-buses and PQ-buses.

1b) Develop the Y-matrix and calculate the specified powers, i.e. Py = Pg— Py,
and Qs = Q¢ — Q1.
1c) Give the initial estimate of the unknown variables, i.e. U for PQ-buses and

0 for PU- and PQ-buses. It is very common to set U = Uguer and 0 = Oggep.
However, the flat initial estimate may also be applied, i.e. U =1 and 6 = 0.

1d) Go to Step 2.
e Step 2

2a) Calculate the injected power into each bus by equation (A.25).

2b) Calculate the difference between the net production and the injected power
for each bus, i.e. AP and AQ by equation (A.28).

2¢) Is the magnitude of all entries of [AP AQ]T less than a specified small
positive constant € ?

x If yes, go to Step Final.
x if no, go to Step 3.

e Step 3

3a) Calculate the jacobian by equations (A.32) and (A.33).
3b) Go to Step 4.

e Step 4

4a) Calculate [Af %}T by equation (A.34).
4b) Go to Step 5.
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e Step 5

5a) Update U and 6 by equation (A.35).
5b) Go till Step 2.

e Step Final

— Calculate the generated powers, i.e. Po (MW) and Q¢ (MVAr) in the slack
bus, and Q¢ (MVAr) in the PU-buses by using equation (A.26).

— Calculate the power flows (MW, MVAr) by using equations (A.21) and
(A.22).

— Calculate active power losses (MW) by using equation (A.24).
— Give all the voltage magnitudes (kV) and the voltage phase angles (degrees).

— Print out the results.

A.3 The system data of the 3-generator system

NS=0;

Pg2=0.3;

Pg3=0.2;

PL01=0.0; QLO1=PLO1x0.1;

PL02=0.0; QLO2=PL02x%0.1;;
PL03=0.0; QLO3=PL03%0.1;

PL04=1.5; QLO4=PL04x0.1;

JotoTolotoTo To o To T
% Bus Data
Dot lo ot o To oo ToTo

% NS means "not specified"
% Type=1 means slack-bus, Type=2 means PU-bus, Type=3 means PQ-bus

BUSDATA=[

yA 1 2 3 4 5 6 7 8 9 10

yA BUS Type Pgen Qgen Pload Qload YL Ysh V  Angle
1 1 NS NS PLO1 QLO1 0 0 1.00 0
2 2 Pg2 NS PLO2 QLO2 0 0 1.00 0
3 2 Pg3 NS PL0O3 QLO3 0 0 1.00 0
4 3 0 0 PL04 QLO4 0 0 1.00 0l;

JotoToTo 1o To To oo To oo
% Line Data

Volo o o o o o o o o o
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LINEDATA = [

% Line from to R X B
1 1 4 0 0.5 0
2 2 4 0 0.2 0
3 3 4 0 0.3 0];

ToTo ot o o To Vo To ToTo oo To foTo To o o oo o To foTo o fo o
%% Generator data

Tolo o o o o o o o o o o o o o o o o o o o o o o o To oo

% GENDATA will be used in the examples of Chapter 4 and Chapter 6

yA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b Gen xt xdp xd H D Tdop Te KA T1 T2 T3 T4 Tw KPSS

GENDATA=[ 1 0.1 0.10 0.8 5 0 6 0.01 100 1 1 1 1 10 0
2 0.1 0.10 0.7 4 0 6 0.01100 1 1 1 1 10 0
3 0.1 0.10 0.6 3 0 6 0.01100 1 1 1 1 10 0];

% GOVDATA will be used in the examples of Chapter 8

h 1 2 3 4 5 6 7 8
yA Gen TWAT TG G_tr TR dPm_max dPm_min GOV
GOVDATA = [ 1 1.0 0.4 .0 5 0.2%PG(1) -0.5%PG(1) 1
2 1.0 0.4 .0 5 0.2+%PG(2) -0.5%PG(2) 1
3 1.0 0.4 .0 5 0.2%PG(3) -0.5%PG(3) 0l;

=

% TWAT is the water time constant TW
GOV=1 means the generator is equipped with a governor system



Appendix B

B.1 Estimation of the stability region

The estimation of the stability region of this system can be obtained by solving the
following optimization problem

min V(z) subject to V(x) = 0
First we define Lagrangian function by
Lz, ) =V(z) =7 V()

where, v is called a Lagrange multiplier. The necessary conditions for the optimization
problem are

OL(x,y) _
oz
V() = 0

Based on the above conditions, it can easily be obtained that z? = 7.5 and 23 = 5
which imply that V(z) = ¢ = 12.5.

B.2 The Jacobian matrices of the linearized system

Let

N be the number of network buses

ng be the number of generators

ns be the number of state variables for each generator.
® n, = ng X ng be the number of all system state variables
e n, =2 x N be the number of all system algebraic variables

the loads be modeled as

U U

P(U) = Pro (a)m and  Qu(l) = Quo (m)m

Assume that the generators are represented by one-axis model. i.e. ny = 3. Then, the
dynamic of the system is given by

& = f(z,y)

0 = sew= )

173
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The structure of f(x,y) and g(x,y) is given in Example 5.1.

The Jacobian matrix f, is of order n, x n,, and has the form

T

Lo
fe=fmo =00 12 (B.1)
6 w B
E, JE| fE{]

All submatrices in (B.1) are of order n, x n, with the following nonzero elements

fork=1---n,
fekk) = 1
1

fg(/{?, /{Z) = _E bdk E(I;ko Uko COS<5k0 - Gko)
E! 1 )

fw q(k}, ]{Z) = _E bdk Uko sm(éko — Hko)

Tar — 7, .

g,(,z(kf, k?) == —ﬁ (]]m Sln(5k0 — eko)
E’ Tdk

fe/ (kb k) = =
Fa T ok T,

The Jacobian matrix f, is of order n, x n,, and has the form

i 1
aris 0
fy = flems = fg’ “:}] (B.2)
By B

All submatrices in (B.2) are of order n, x N with the following nonzero elements

fork=1--- Ng
0 1 /
Jolk, k) = A bar Eqpy Ury €08(01o — Ok )
U 1 ;.
fo (k. k) = A bar By, s (0 — Ory)
Tgr — X )
fgj;!(kv k) = ;ﬁix,dk Uho SI0(Ory — Oiy)
dok ' dk
Tk — x
fEUé(/ﬁ k) = T,ix,dk cos(0ky — Oky)
dok ' dk

The Jacobian matrix g, is of order n, x n,, and has the form

e g g
gz = gia:ms = 5 w E! <B3>
9o 90 Yq
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All submatrices in (B.3) are of order N x n, with the following nonzero elements (see
equations (5.8) and (5.10))

fork=1---n,
gp(k, k) = —ba Eyy, Ur, cos(0r, — Ok,
gﬁq (k‘, k) = Dba Uk‘o Sin<9ko - 5160)
gg(k’, k’) = _bdk E;ko Uko sin(@ko - 5190)
gCqu(k’, k’) = _bdk Uko COS(@kO — 5190)

The Jacobian matrix g, is of order n, x n,, and has the form

0 U

dp 9p

Gy = | o U (B-4)
90 Y9

All submatrices in (B.4) are of order N x N, and given by

i’ 9P oP
o — H 20 U1 U_ N’ ou V1 it
9p o, o] 0 =N TN, ol Tan

9y 0y 20
A 20 01 U_ av U1 2
% ‘”[oz OJ - +{02 03]+6U

where,

e H, N’/ J and L' are the submatrices of the Jacobian matrix defined in (A.29).
Note that all these submatrices are of order N x N that is all elements associated
with slack and PU-buses are included.

e 0, is a zero matrix of order n, x (N —n,), 0 = (0;)” and 03 is a zero matrix of
order (N —ngy) x (N —ny).

oP, 0P, 9Q, .00,
50 au a0 5y

elements are

are diagonal matrices of order n, x n, whose diagonal

fork=1---n,

op,
a0
oP,
ouU
0Q,
a0
0Q,
ouU

(k, k) = bdk E(I]ko Uko COS(GkO — 5k0>

(k’, k’) = bdk E(I]ko sin(@ko — 5k0)

(k’, k’) = bdk E(/]ko Uko sin(@ko - 5k0)

(k’, k’) = bdk (2 Uko - E,k‘o COS(@kO - 5190))

q
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P
° %UL and %QUL are diagonal matrices of order N x N whose diagonal elements
are fork=1--- N

Py, mpy Prox
Lk By = ER-LOk
ou (k. k) Uk,
2[®)) mgy, Q Lok
Zxbip py = k< L0k
ou (. k) Uk

Finally,

AL = (fm — fy(gy)*lgl«) Ar = A, Ax
AVR:

If generators are also equipped with AVR whose dynamic is given by (3.101), then
ns = 4. Therefore, f,, f, and g, are modified as follows

[ 4 w E] Ef- r w E’ -
fio B 500 FEI A LR
W E’ E, w E!
avr f£ fw qu f@f ff) fw fu’;q O
By Ey By T E E} E! B, 'E
1) w El’z Ef Ef
B, TE fE'f fE'f_ _0 0 0 fE.f_
WL U 6 U
i L (B.5)
avr fg fg g U‘[}J
By TEg E, TE;
0 U 0 U
RETRE S i Ef ]
w E’ E. w E’
Gy = avr __ g?—"’ dp qu ng - g?: gp qu 0
T T Jx - w E B - . I
g% gQ ng -qu g% gQ ng 0
where, the additional nonzero elements are
fork=1---n,
k) = —
fEé ( 7 ) Tc/lok
1
Tk k) = —
FEE) =~
K
U p— —
£y = =

PSS:
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If only a PSS with nf = 2 is used in the system (assume that it is installed in the
generator k), then n, = n%" + 3.

Therefore, f,, f, and g, are modified as follows (see equation (3.112))

[ Ey, By 8 S Ssp |
f; f:su fsq fgf fslk fs% f53k
E, E s s s
fi f::; qu fw‘f fwlk fw2k wak
5 w Eq Ey Stk Saok S3k
E/q E/q Elq fE’q fE/q fElq fElq
_rl . 5 w Eq Ey Stk Sa S3k
ffl' _fl'pss - Ef Ef Ef fEf fEf fEf fEf
5 w Eq Ey S1k Sak S3k
s Tw Tsn Tsu Tan Jsn T
5 w Eq Ey Stk Sak S3k
su T T Ton Tan Jaw s
5 w Eq Ey Stk Sar S3k
o o Tom T Taw o Jar]
N (B.6)
0 U
A
0 u
Eq B
1 0 U
fy :fypss: Ef Ef
0o U
Stk S1k
04U
Sa Sop
0 U
-7 Ssk S
[ E, E; § s s
gy —glP — gp 95 98" 9p gt gp* gp*
vode Ey, E; § s S
96 95 99" 99" 9o* 9ot 9t

5 L
Note that fEf’ E“-’f, E;’ fEf’
selection of the input signal u;,, may affect these submatrices.

fgf and fY are indicated in blue (not red) since the
Comments:

e If one of the generator terminal buses is considered as an infinite bus, then all
rows and columns of f,, f,, g, and g, associated both to the state variables of
the corresponding generator, and the algebraic variables of the generator terminal
bus are removed.

e In general, the dynamic of a multi-machine power system may be described by

T :f(:c,y,u)
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Linearizing the above nonlinear system around its e.p, the following is obtained

Az = foAz+ f,Ay+ fu,Au
0 = g.Az+ g, Ay + g, Au

From (B.9), )
Ay = —g," [9: Az + gu Aul

Using (B.10) in (B.8), the following is obtained

Ai=[fo— fy9," 9:) D+ [fu— fy9," 9u] Au
=AAxz+ BAu

Let the output function be given by
Y = h(z,y,u)
Linearization of this function around the e.p yields
AY = hy Az + hy Ay + b, Au
Using (B.10) in (B.13), the following is obtained

AyZ[ﬁx—ﬁyggjlgd Ax + [ﬁu—ﬁygy’lgu] Au
=CAx+ D Au

Thus, we are dealing with this Linear Time-Invariant system

Az =AAx + BAu
AY =C Az + D Au

(B.8)
(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)
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