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Polynomial-like maps

One of the main ingredients in complex dynamics is the following:

Definition

Assume that U,U ′ are open set in C. Then f : U → U ′ is a
polynomial-like map if f is a complex analytic map which is
branched covering map with a finite number of branch points. So

f maps ∂U onto ∂U ′ and maps U onto U ′.

for each y ∈ U ′ there exists a neighbourhood V ′ of y so that
f −1(V ′) has finitely many component and on each component
f is either a homeomorphism or locally of the form z 7→ zd .

For each such f one can definite its filled Julia set as

K (f ) = {z ∈ U; f n(z) ∈ U for all n ≥ 0}.

If K (f ) may be connected or disconnected. (Draw pictures...)
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Manifold structure for quadratic-like mappings

Let QL be the space of real quadratic-like mappings,
f : U → U ′ with U b U ′.

Let C ⊂ QL denote the set for which K (f ) is connected.

Hybrid class = Top class + fixing multipliers at periodic
attractors.

Theorem (Lyubich)

The hybrid class of f ∈ C is a connected, codimension-one,
complex analytic submanifold of QL.
Moreover, topological conjugacy classes laminate C.

1D dynamics. Lecture 3: pruned polynomial-like mappings



Aim of this lecture

In the next lecture I will try to explain the proof of the
previous theorem, and also try to explain why the proof does
not work in our setting.

Nevertheless we would like to get a structure similar to that of
a polynomial-like map.

For this structure one can obtain the analogue of the previous
result (but using a somewhat different approach in the proof).

That is the purpose of today’s talk.
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Before discussing the analogue structure, let us explain the
following figure, which will be an inspiration for what we will do.
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Here some map quadratic map f (z) = z2 + c with c ∈ R is
considered
its filled Julia set K (f ) = {z ∈ C; lim supn→∞ |f n(z)| 6 ∞} is
drawn.
Consider the Riemann mapping ψ from C \ D→ C \ K (f ) so
that ψ(∞) =∞.
What is drawn in the figure are ψ-images of

circles re iφ, φ ∈ [0, 2π], r ≥ 1 fixed (equipotential), and
rays z = re iφ, r ≥ 1 in C \ D (external ray).

It turns out that ψ−1 ◦ f ◦ ψ : C \ D→ C \ D is equal to
z 7→ z2.
So f maps equipotentials to equipotentials and external rays
to external rays.
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Puzzle pieces for polynomial maps

More generally, given a polynomial f , there exists a way of
constructing nice sets, i.e. sets Pn so that no point on the
boundary is ever mapped into the interior of Pn.

This construction uses external rays and equipotentials landing
on periodic orbits, see Misha’s lectures and blackboard. These
curves come from the Böttcher coordinates near ∞. The
partition elements are called Yoccoz puzzle pieces.
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Aim of this lecture: do an analogous construction for real analytic
maps (which are not globally defined).
Issues to overcome:

how to associate a filled Julia to a real analytic interval map?

how to obtain a picture as before.
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Pruned polynomial-like maps

Real analytic maps have a pruned-polynomial-like extension:

Theorem (Trevor Clark & SvS)

Associated to f : I → I with only repelling periodic points,
∃ open neighbourhoods U,U ′ of I in the complex plane and a finite
union of curves Γ so that f has an extension F : U → U ′ with

U ⊃ I , F (U) = U ′ and F (∂U) ⊂ ∂U ′ ∪ Γ;

each component of Γ is a piecewise smooth arc in U ′

connecting boundary points of U ′;

F (Γ ∩ U) ⊃ Γ

each component of U ′ \ (Γ ∪ R) is a quasidisc.
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This theorem was proved in T. Clark and SvS, Conjugacy
classes of real analytic one-dimensional maps are analytic
connected manifolds, arXiv:2304.00883.

In A. Avila, M. Lyubich and W. de Melo, Regular or
stochastic dynamics in real analytic families of unimodal
maps, Invent. Math. 154 (2003), 451-550 also gives a a
complex extension for real analytic maps. However,

their construction requires that there is only one critical point,
and that this critical point is quadratic.
the domain of their construction consists of a countable union
of open domains, which together do not form a full
neigbourhood of I .

Therefore their extension much less useful and much harder to
work with.
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What is the aim of this pruned polynomial-like structure?

Even when f is entire (i.e. defined and holomorphic on the
complex plane) we want to ‘cut’ or ‘prune’ all dynamics away
from the domain that is unrelated to that on I .

If f is merely real analytic, then the domain of the map is only
a small neighbourhood of I . In particular, if the map f may
not be holomorphic on a neighbourhood of f −1(I ).

What is the benefit of this structure?

Most techniques that work for quadratic-like maps can also be
used in the setting of pruned polynomial-like maps.

The domain of this pruned polynomial-like extension contains
a full neighbourhood of I .

How to obtain this structure?

Define a geometric object I ⊂ KX ⊂ C which is full.

Using the dynamics f : C \ f −1(KX )→ C \ KX define an
external map g : ∂D→ ∂D (which will have discontinuities);

Use this to define the pruned polynomial-like extension.
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How to obtain pruned polynomial-like maps

We want to construct a Markov structure in a neighbourhood of I .
To obtain this, we will consider the Julia set:

Assume that we are in the amazing situation that f : I → I
extends to a polynomial map F : C→ C
Also assume that F n(z)→∞ when z ∈ R \ I and all periodic
orbits are repelling.

Then the Julia set is equal to

J(f ) = ∪F−n(I ).

What to do when f : I → I is real analytic? Prune!
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Example:

let f (z) = (−c + 1)z2 + c , normalised so that Fc(±1) = 1
with c = −0.2.

take two different intervals J containing c .

consider the set KX (f ) where X = ∂J (defined on the next
page).

(a) (b)
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Pruned Julia Set.

Take

(real) disjoint interval neighbourhoods J1, . . . , Jν′ ⊂ I of the
critical values f (c1), . . . , f (cν) ∈ I ⊂ R,

let J := ∪Ji and

Let J−1 be the union of the connected components of
f −1(J) \ R containing a critical point.

Now consider the connected component Kn of

∪0≤i≤nf −iJ−1
⋃

I

containing I and let KX = ∪Kn.
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Pruned Julia Set.

So the Julia set is ‘cut’ in preimages of the points

X = (∂f −1(J) \ R) ∪ {periodic critical points}.
Next define the pruned Julia set:

KX (f ) = closure of
∞⋃
n=0

Kn. (1)

Theorem

Assuming the intervals J are small enough,

the resulting set KX has no interior, is full and locally
connected;

f (KX ) ⊂ KX and KX ⊂ Ωa;

f : I → I has only repelling periodic points =⇒ all periodic
points on KX are repelling;

f : I → I has only hyperbolic periodic points =⇒ all periodic
points on KX are hyperbolic, and the attracting ones are in I .
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Step 1 in proof: External mapping

Let ψ : C \ D→ C \ KX (f ) be the Riemann mapping and let
φ = ψ−1 (is multivalued on ∂D).
g = ψ−1 ◦ f ◦ ψ : C \ D→ C \ D is well-defined near ∂D
it extends to ∂D as an analytic map outside φ(X ) and at each
of these points g has a discontinuity.
choose intervals Y ⊂ J−1 \ R containing X .
in the quadratic case, φ(c) consists of four points in
∂D \ φ(X ), and their forward orbits don’t enter Ŷ := φ(Y ).
Choose Y so that ∂Ŷ are pre-periodic points of g .
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Intermezzo

There exists a theorem by Mañé which gives expansion:

Theorem

Let f be a C 2 map on the circle (or an interval) without parabolic
periodic points. Then for each neighbourhood U of the set of
critical points of f there exists C > 0 and λ > 1 so that if

z ∈ {x ; f i (x) /∈ U for all 0 ≤ i ≤ n − 1}

then
|Df n(z)| ≥ Cλn.
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By the previous theorem ∃ an adapted metric on ∂D \ Ŷ so
that g becomes an expanding map of the circle (if f has no
periodic attractors).
Choose forward invariant rays through each point of ∂Ŷ .
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.......

.......

.......
.......
.......
........
........
.........

...........
..............

.........................................................................................................................................................................................................................................................................................
.............
..........
.........
........
........
.......
.......
.......
.......
.....

?

?

•⊕ ........................

.......
.......
..

............
.........

................
.......
.......
......

.......
.......
......

................
.......
.......
......

.......
.......
......

.......
.......
..

............
.........

................................................

................................................
................

.....................

................
....................

....................
................
....................

....................

................
.....................

Ê+
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graph of f : I → I

On the next picture we assume that Ê1, Ê2 and Ê3, Ê4 touch.
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External mapping: a Markov structure.

By the previous theorem ∃ an adapted metric on ∂D \ Ŷ so
that g becomes an expanding map of the circle (if f has no
periodic attractors).
Choose forward invariant rays through each point of ∂Ŷ .
Using this we obtain sets U and U ′ as shown:
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Pruned polynomial-like mappings

Theorem (Trevor Clark & SvS)

Associated to f : I → I with only repelling periodic points,
∃ neighbourhoods U,U ′ of I in the complex plane and a finite
union of curves Γ so that

f (U) = U ′ and f (∂U) ⊂ ∂U ′ ∪ Γ;

each component of Γ is a piecewise smooth arc in U ′

connecting boundary points of U ′;

f (Γ ∩ U) ⊃ Γ

each component of U ′ \ (Γ ∪ R) is a quasidisc.

Where you prune, can be encoded in a finite set Q(F ) ⊂ ∂D.
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There exists a similar result if there exists periodic attractors
or parabolic periodic points.

Giving this structure we can start using complex dynamics in
the next lecture.

In the next lecture will give a sketch of the following theorem,
but we will assume in this sketch a deep result which will
discussed in the final lecture.
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Assume that all periodic points of f are hyperbolic.

- ζ(f ) = maximal number of critical points in the basins of
periodic attractors of f with pairwise disjoint infinite orbits.

Theorem B (Trevor Clark & SvS)

1 T ν
f is a real analytic manifold.

2 T ν
f ∩ A

ν
a is a real analytic Banach manifold.

3 The codimension of T ν
f in the space of all real analytic

functions is equal to ν − ζ(f ).

Moreover, T ν
f is path connected.

If there are periodic attractors without critical points in its basin
we have to adjust this dimension.
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