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Hyperbolic objects

Stable and unstable manifolds of saddle points

Some know facts:
Given ẋ = X (x), X is smooth enough, x 2 Rn. Denote '(t; x) the flow (solution
such that '(0; x) = x)

Consider a critical point x⇤ (X (x⇤) = 0, '(t; x⇤) = x⇤) such that DX (x⇤)
has eigenvalues with positive real part and eigenvalues with negative real
part it is called a saddle (hyperbolic point).

The stable and unstable manifold Theorem says that exist two manifolds
W u

loc
(x⇤), W s

loc
(x⇤) defined in a neigborhood U 2 Rn of x⇤ such that

1 They are invariant by the flow: if x 2 W u,s
loc

(x⇤) then the orbit
'(t; x) 2 W u,s

loc
(x⇤) for all t 2 R such that '(t; x) 2 U.

2 W u,s
loc

(x⇤) contain the initial conditions of points whose orbit is
asymptotic to x⇤.

3 If x 2 W s

loc
(x⇤) then '(t; x) ! x⇤ when t ! +1

4 If x 2 W u

loc
(x⇤) then '(t; x) ! x⇤ when t ! �1

5 They are as smooth as the flow and depend regularly on parameters.
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Hyperbolic objects

Stable and unstable manifolds of saddle points

The stable and unstable manifolds can be globalized:
1 W u(x⇤) = [t�0{'(t, x), x 2 W u

loc
(x⇤)}

2 W s(x⇤) = [t0{'(t, x), x 2 W s

loc
(x⇤)}

The global stable and unstable manifolds can intersect. We call a
point xh homoclinic if xh 2 W u(x⇤) \W s(x⇤). (heteroclinic if
xh 2 W u(x⇤1 ) \W s(x⇤2 ), and x⇤

i
, i = 1, 2 are fixed points).

If xh is an homoclinic point, then the whole orbit of xh is in the
intersection: '(t; xh) ⇢ W u(x⇤) \W s(x⇤), 8t 2 R
In flows, there is an analogous phenomenon for periodic orbits,
invariant tori, etc

There is an analogous phenomenon for di↵eomorphisms f : Rn ! Rn

and hyperbolic fixed points with Df (x⇤) has eigenvalues with
modulus bigger or smaller than 1.

If xh is an homoclinic point, then the whole orbit of xh is in the
intersection: {f n(xh)} ⇢ W u(x⇤) \W s(x⇤), 8n 2 Z.
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splitting of separatrices

Splitting of separatrices.

One interesting problem is to show that the stable and unstable manifolds
intersect transversally.

There are methods to compute good approximations of the local invariant
manifolds of the hyperbolic point (or periodic orbit, etc) W u,s

loc
.

It is almost impossible to compute the global ones

There are some systems that are integrable (for instance Hamiltonian
systems of one degree of freedom) and for these ones one can have explicit
formulas for the manifolds.

In integrable Hamiltonian systems, the manifolds are coincident giving rise
to the so called homoclinic orbits.
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splitting of separatrices

Homoclinic orbits.
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splitting of separatrices

Splitting of separatrices and Chaos

It is interesting to find trasversal intersections of estable and unstable
manifolds, for instance to create chaos.

If there is a transversal intersection between the stable and unstable
manifolds of a hyperbolic fixed point of a di↵eomorphism of the plane one
can see the existence of a horseshoe for a suitable iteration of the map.

The horseshoe map provides the existence of symbolic dynamics.
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Hamiltonian Systems

Some basic facts in Hamiltonian Systems

A Hamiltonian system of n degrees of freedom is a system of di↵erential
equations of the form:

q̇ = @H
@p (q, p)

ṗ = �@H
@q (q, p)

)
ẋ = JrH(x); x = (q, p), J =

✓
0 In

�In 0

◆

(1)
Where H : U ! R smooth, U ⇢ R2n or U ⇢ Tn ⇥ Rn.

Sometimes H also depends periodically on time: H = H(q, p, t), and
then (q, p, t) 2 U ⇥ T.
In the autonomous case (H does not depent on time) H is a first
integral of the system (constant of motion):
H(q(t), p(t)) = H(q(0), p(0)) for any solution (q(t), p(t))).
Notation: x = (q, p).
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Hamiltonian Systems

Non autonomous case: the Poincaré map

In the non-autonomous case we can also work with the Poincaré map.
We fix an initial time t0 = ✓ and we have a map in U:

P✓ : U ⇢ Rn ⇥ Tn ! Rn ⇥ Tn

given by P✓(x) = �(✓ + 2⇡; ✓, x), where �(t; ✓, x) is the solution of
the non autonomous Hamiltonian system such that �(✓; ✓, x) = x .

In the autonomous case, as �(t; ✓, q, p; ") = '(t � ✓, x), where
'(t, x) is the flow of the system, we have P✓(x) = '(2⇡, x) is
independent of ✓.

Exercice

We can follow the orbis using P✓:

Pk

✓ (x) = �(✓ + 2⇡k , ✓, x)

Goal: understand the global behaviour of the orbits.
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Hamiltonian Systems

Symplectic maps

A symplectic map is a di↵eomorphism that preserves a symplectic
structure.

The simplest example of symplectic map is a map F : R2 ! R2 which
preserves the area and orientation, i.e. such that for all points x 2 R2

we have
detDF (x) = 1

In terms of di↵erential forms, this can be expressed as

F ⇤(dq ^ dp) = dq ^ dp, x = (p, q)
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Hamiltonian Systems

Symplectic maps

More generally, if M and N are manifolds of dimension 2n and !M

and !N are symplectic forms (non-degenerate, closed, di↵erentiable
2-forms) on M and N, then a di↵eomorphism F : M ! N is a
symplectic map if F ⇤!N = !M .

By a theorem of Darboux, for each point x 2 M one can always find
local coordinates such that this is equivalent to:

DF (x)tJDF (x) = J,

where J =

✓
0 In

�In o

◆

The Poincaré map of a time dependent Hamiltonian system is a
symplectic map.
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Hamiltonian Systems

Integrable Hamiltonian systems

Observe that if H = H(p), the equations of motion are:

q̇ = @H
@p (p)

ṗ = 0
(2)

Therefore the system can be integrated:

p(t) = p0, q(t) = q0 +
@H

@p
(p0)t,

If q 2 Tn the motion is confined in n-dimensional tori:

Tp0 = {(q, p), p = p0, q 2 Tn}

As '(t, p0, q0) = (p0, q0 + !(p0)t), where !(p0) =
@H
@p (p0) = rH0(p0),

the motion in the torus Tp0 is quasiperiodic with frequency !(p0).
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Hamiltonian Systems

Known facts

• A canonical transformation is a change of canonical coordinates (q, p) (Q,
P) that preserves the form of Hamilton’s equations (that is, the new Hamilton’s
equations resulting from the transformed Hamiltonian may be simply obtained by
substituting the new coordinates for the old coordinates). Any symplectic map
gives a canonical transformation.
• A first integral of ẋ = JrH(x) is a smooth function

F : U ! R

where U ⇢ Tn ⇥ Rn or U ⇢ R2n such that is constant on trajectories, that is, if
x(t) is a solution:

F (x(t)) = F (x(0))

• The Poisson bracket of two functions F (q, p), G (q, p) is given by:

{F ,G}(q, p) = (
nX

j=1

@F

@qj

@G

@pj
� @F

@pj

@G

@qj
)(q, p) = rF tJrGx) = DFJrG (x)

Tere M-Seara (UPC) May 20- 24 2024 13 / 29



Hamiltonian Systems

Integrable Hamiltonian systems

THEOREM ( Liouville-Arnold)
Let H(x) be a Hamiltonian system with n degrees of freedom
(x = (q, p) 2 R2n), and assume there are also known n first integrals of
motion F1 . . .Fn that are independent (rF1, . . .rFn are independent as
vectors) and are in involution:

{Fi ,Fj} = 0

Then there exists a canonical transformation

(p, q) ! (I ,�)

to action-angle coordinates in which the transformed Hamiltonian is
dependent only upon the action coordinates.

H(q, p) = H(I )
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Near integrable systems: stability

Near integrable systems

We will work with non-autonomous systems close to integrable:

H(I ,�, t; ") = H0(I ) + "H1(I ,�, t; "), (I ,�, t) 2 Rn ⇥ Tn+1,

The corresponding Poincaré map in ⌃✓ = {(I ,�, ✓)} with (I ,�) 2 Rn ⇥ Tn

given by P✓(I ,�; ") = �(✓ + 2⇡; ✓, I ,�; ").

When " = 0, the motion is given by

�(t; ✓, I0,�0; 0) = '(t � ✓, I0,�0) = (I0,�0 +rH0(I0)(t � ✓)),

The Poincaré map

P✓(I0,�0; 0) = (I0,�0 +rH0(I0)2⇡).

The motion is confined in n-dimensional invariant tori:

TI0 = {(I0,�), � 2 Tn, },

As P✓(I0,�0; 0) = (I0,�0 +rH0(I0)2⇡), the dynamics for the Poincaré map
is quasi-periodic with frequency !(I0) = (rH0(I0)).

What happens when " 6= 0?
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Near integrable systems: stability

Near integrable systems: Stability

The stability result is given by KAM theorem.

KAM theory shows that, under suitable regularity and non-degeneracy
assumptions, most (in measure theoretic sense) of the tori TI0 persist
(slightly deformed) under small Hamiltonian perturbations.

The union of persistent n-dimensional tori (Kolmogorov set) tend to fill the
whole phase space as the strength of the perturbation is decreased.

We will consider tori TI0 , I0 2 Rn such that the frequency vector ! = !(I0) is
rationally independent and ”badly” approximated by rationals, typically in a
Diophantine sense:

9�, ⌧, ||! · k || = |
nX

j=1

!iki | �
�

||k ||⌧ , 8k 2 Zd \ {0}

These tori cover the phase space except a set of measure O(
p
�).
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Near integrable systems: stability

Near integrable systems: Stability

Consider an integrable Hamiltonian system: H0(I ) and assume that @2
H0

@2I
is

invertible.

Consider I0 2 Rn such that the frequency vector ! = !(I0) = rH0(I0) is
rationally independent and ”badly” approximated by rationals, in a
Diophantine sense with � = ".

KAM theorem says that a Hamiltonian system of the form:

H(I ,�; ") = H0(I ) + "H1(I ;�; "),

has an invariant torus "-close to TI0 .

These tori cover the phase space except a set of measure O(
p
").

Resonances: values of I such that !(I ) · k = 0 for some k 2 Z

The set not covered ny KAM tori is the union of balls centered at the
resonances and of size O(

p
").
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Near integrable systems: stability

Near integrable systems: Instability

H(I ,�; ") = H0(I ) + "H1(I ;�; "),

Now that we know that there are a lot of bounded (stable) motions close to the
unperturbed ones, we want to understant the behavior of the rest of orbits of the
system.

Are they stable? are there some unstable motions?

Lots of researchers are trying to answer this question since Arnold
introduced his example in 1964 (we will show it later).

We will see that the number of degrees of freedom plays a crucial role in the
answer to this question.

We will give tools to answer this question based in the so called geometric
methods.
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Low dimensions

The case of one degree of freedom

If n = 1, the perturbed Hamiltonian system is also integrable!.

But not in the classical sense of Liouville-Arnold: we don’t have global
action-angle variables.

If we consider H(I ,�; ") = H0(I ) + "H1(I ,�), with (I ,�) 2 R⇥ T.
H is a first integral. In the level curves H(I ,�) = h we see the structure of
the KAM theorem.

Example: the pendulum equation:

H(I ,�; ") = H0(I ) + "H1(I ,�) =
I 2

2
+ "V (�) =

I 2

2
+ "(cos(�)� 1)

Equations:

�̇ = I

İ = �"V 0(�) = " sin�
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Low dimensions

The case of one degree of freedom

For " = 0, H(I ,�; 0) = H0(I ) =
I
2

2 , the system is integrable.

The 2-dimensional space is foliated by 1 dimensional tori (curves) of
the flow:

TI0 = {(I0,�), � 2 T}

The flow in TI0 is a rotation with frequency !(I0) = I0.

'(t; I0,�; 0) = (I0,�+ !(I0)t).

The same happens for the Poincaré map

P✓(I0,�) = (I0,�+ !(I0)2⇡)

Frequency: !(I ) = I , resonance I = 0.
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Low dimensions

The case of one degree of freedom

For " > 0, the level curves H(I ,�; ") = I
2

2 + "(cos(�)� 1) = h give the phase
portrait of the system.

When h > 0 is far from zero the level curves of H are close to the level
curves of H0: I = I0 + O("), I0 =

p
2h

(0, 0) is a saddle and its stable and unstable manifolds coincide along a
separatrix (homoclinic orbit)

H(I ,�; ") =
I 2

2
+ "(cos(�)� 1) = 0

The tori close to I = 0 (h = 0) have disapeared!

The energy level h = 0 contains an equilibrium point of saddle type and its
separatrices (stable and unstable manifolds which coincide due to the
integrability of H).

When h < 0 inside the separatrices of the saddle we have tori of di↵erent
topology (contractible to a point).

The Poincaré map has the same phase portrait as the flow:
P✓(I0,�0) = '(2⇡, I0,�0)
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Low dimensions

The case of one degree of freedom

Near the resonant value I = 0 the tori have been destroyed and
“new” objects appear: tori of lower dimension with stable and
unstable manifolds (whiskered tori) and tori of di↵erent toplology.

Answer to the Instability question: No Instability, all the perturbed
motions are close to the unperturbed ones. The action changes at
most O(

p
").
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Low dimensions

The case of one and a half degrees of freedom

If we consider H(I ,�, t; ") = H0(I ) + "H1(I ,�, t; "), with (I ,�, t) 2 R⇥ T2,
equations:

�̇ =
@H

@I
(I ,�, t; ")

İ = �@H

@�
(I ,�, t; ")

To understand the dynamics we use the Poincaré map defined in ⌃✓ ' R⇥ T:

P✓ : R⇥ T ! R⇥ T
(I ,�) 7! �(✓ + 2⇡; ✓, I ,�; ")
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Low dimensions

The case of one and a half degrees of freedom

For " = 0, H(I ,�, s; 0) = H0(I ), the system is integrable.

�(t; ✓, I0,�; 0) = '(t � ✓, I0,�) = (I0,�+ !(I0)(t � ✓)), !(I0) = rH0(I0).

The Poincaré map P✓ has 1-dimensional invariant tori (invariant curves )

TI0 = {(I0,�), � 2 T} :

and P✓(I0,�) = '(2⇡, I0,�) = (I0,�+ !0(I )2⇡).

Resonances !(I0) +
l

k
= 0.
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Low dimensions

The case of one and a half degrees of freedom

When " 6= 0 the KAM theorem gives tori TI0," close to TI0 for the Poincaré
map associated to the perturbed Hamiltonian system.

We know that the invariant tori cover the whole space R⇥ T except a set of
measure

p
".

These tori (curves) are barriers to the unstable motion.

Answer to the Instability question: Instability (di↵usion) is not possible.
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Low dimensions

The case of one and a half degrees of freedom

Answer to the Instability question: No Instability, all the perturbed motions
are close to the unperturbed ones.

Near the resonant values the tori (curves in this case) have been destroyed
and “new” objects appear.

In the zones between the KAM curves we see “again” the invariant
manifolds of a fixed point of the Poincaré map, but now the invariant
manifolds do not coincide! This is known as the splitting of separatrices
phenomenon. We need a method that “measures” this splitting.

The system looks chaotic (local chaos)!
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Low dimensions

Splitting in one and a half degrees of freedom: the model

If we consider near integrable system

H(I ,�, t; ") = H0(I ) + "H1(I ,�, t) =
I 2

2
+ "V̄ (I ,�) + "Ṽ (I ,�, t)

One can think on V̄ (I ,�) as the average part (respect to t) of the function
H1(I ,�, t) and Ṽ (I ,�, t) as the rest:

V̄ (I , q) =

Z 2⇡

0
H1(I ,�, t) dt

Ṽ (I ,�, t) = H1(I ,�, t)� V̄ (I ,�)
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Low dimensions

Splitting in one and a half degrees of freedom: the model

Exercice: If we now do the changes:

I =
p
"p, q = �

and the change of time: ⌧ =
p
"t, we obtain a new Hamiltonian system:

q0 = p +
@H1

@p
(q, p,!⌧, µ) (3)

p0 = �V 0(q)� @H1

@q
(q, p,!⌧, µ) (4)

where:µ =
p
", ! = 1p

"
and:

V (q) = V̄ (0, q), H1(q, p, t;µ) = Ṽ (µp, q, t) + V̄ (µp, q)� V̄ (0, q)

Even if the perturbation is O(1) the efects of the large frequency make the term
H1 behave as a perturbation.

For this reason we will study systems of the form p
2

2 + V (q) + µH1(p, q,!t).
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Low dimensions

The case of one and a half degrees of freedom

We will study systems of the form p
2

2 + V (q) + µH1(p, q,!t).
Remember that, in our setting: µ =

p
". ! = 1p

"
.

To begin we will consider a Hamiltonian with 1 + 1
2 degrees of freedom with

2⇡�periodic time depenence:

H(p, q, t;µ) = H0(p, q) + µH1(p, q, t;µ),

where H0(p, q) =
1
2p

2 + V (q) is a pendulum, with V (q) 2⇡�periodic with a
unique non-degenerate maximum, say at q = 0 and V (0) = 0.
For µ = 0, (0, 0) is and equilibrium of saddle type, with associated separatrices
included in H�1

0 (0).
p

2pipi

q

0

We want to study what happends to the stable and unstable manifolds of (0, 0)
when µ 6= 0.
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