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The Melnikov- method

he case of one and a half degrees of freedom: the
Melnikov method

Let us consider a Hamiltonian with 1 + % degrees of freedom with 27 —periodic
time dependence:

H(p,q,t; 1) = Ho(p, q) + pHi(p, g, t; 1),

where Ho(p, q) = P(p, q) is a pendulum: P(p,q) = 5p*+ V(q).
Associated differential equations:

x = f(x,t;p) = JVH(x, t; ) = fo(x) + ph(x, tip), x=(q,p),teT
with:
fo(x) = JVHo(x), filx, t;u) = JVHi(x, t;p), x=(q,p),teT

and denote by ®(t; 0y, xo; 1+) the general solution such that ®(6y; 0o, x0; 1t) = Xo.
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The Melnikov- method

he unperturbed system

Observe that, for ;. = 0, we have: ®(t; 0y, x0;0) = ©(t — 0g, x0), where p(t, x) is
the flow of
x = fo(x) = JVHy(x), such that ¢(0,x) = x.

Assumptions:

® Ho(p,q) = P(p,q) is a pendulum: P(p,q) = 3p* + V(q), with V(q)
2m—periodic with a unique non-degenerate maximum, say at g = 0 and
take, for instance, V(0) = 0.

Therefore, x* = (0,0) is and equilibrium of saddle type of x = fy(x), that is,
the eigenvalues of Dfy(x*) are Ay = A <0 and A\, = -\ > 0.

@ One branch of the stable and unstable manifolds of x* coincide along a
separatrix I included in P~1(0) = {(q,p), & + V(q) = 0}.

@ fi(x,t+2m) = fi(x,t)

We want to study what happens with the critical point x* and its stable and
unstable manifolds for ;4 > 0 small.
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Unperturbed system

The dynamics of x = fo(x), x € R?

p‘/\
N

A

"

@ We have a critical point at x* with a homoclinic orbit I.

@ xp(t) is a parameterizaton of the homoclinic orbit " such that:
xp(t) = fo(xn(t)) and xu(t) — x* as t — Fo0.

@ This gives us a parameterizaton of the homoclinic manifold (curve)
[ ={x=xp(v),v e R} C WY(x") N W?*(x")

which satisfies: ¢(t, xp(v)) = xp(v + t) (because for ¢ = 0 the system is
autonomous).
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The Melnikov- method

he Poincaré (stroboscopic) map

Recall: a way to study a non-autonomous periodic differential equation is to
consider the global section

Yo = {(x,0), x € R?)

and the Poincaré map (identifying 6 ~ 6 + 27):
Po., - X9 — 2g given by

Po.u(x) = P(0 +2m; 0, x; 1)

d(t, 0, x; 1) is the solution of the system such that ®(6,60, x; u) = x
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Unperturbed system: the Poincaré map yu = 0

Let's denote Py o := Py, we have
@ Py(x) = d(0 +2m,0,x;0) = (27, x)

@ x* is a fixed point of the Poincaré map Py for any 6, because it is a critical
point of the vector field:

x(t) = fo(x(t)), (1)
Therefore (t,x*) = x*, Vt, and Py(x*) = p(27, x*) = x*.
@ Moreover:
DPy(x*) = Dyp(2m, x™)
As ©(t, x) is the solution of the equation (1) satifying (0, x) = x,
D, p(t,x*) is a fundamental solution of the variational equations:
Z' = Dfy(x*)z, z(0) =1d

Therefore Dyp(t, x*) = ePP)t and consequently:

DPy(x*) = Dbl )2
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The Melnikov- method

Unperturbed system: the Poincaré map

In conclusion we have seen that, for . = 0:
QO Py(x*) = x*
Q@ DPy(x*) = ePh(x)2m

© As the eigenvalues of Dfy(x*) are A < 0 < — A, the eigenvalues of
DPy(x*) are ™ < 1 < 2™

Therefore, for 1 = 0, x* is a hyperbolic fixed point of saddle type of the

Poincaré map Py for any 6 and has one dimensional stable and unstable
manifolds.
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The Melnikov- method

Unperturbed system: the Poincaré map

For 1 = 0, the dynamics of the Poincaré map Py is “the same” as the flow
(x = fo(x) is autonomous) for any 0: (observe that Py(x) = (27, x))

| 7 2pi
}\ a

S

@ We have a fixed point at x* with a homoclinic orbit T.

@ x(v) is a parameterizaton of the homoclinic manifold (curve)
= {x=xup(v),v e R} C W“(x*) N W?*(x*)

@ For any x4(v) €T, Po(xn(v)) = xp(v+271) €T

@ PJ(xn(v)) = xun(v +27n) = x* as n — Fo0.

@ [|P7(xn(v)) — P"(x*)|| < Ce* Ml for some constant C > 0.

@ This inequality is a consequence of the hyperbolicity of the fixed point x*.
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eyt
p # 0: Existence of the periodic orbit A,

From now on we consider the full system:
x = fo(x) + ph(x,t;p), xeR?, teT,
We have the following

Lemma

@ There exists g > 0 such that for 0 < |u| < o, it has a 2w-periodic solution
A(t; ).

@ Moreover, there exists a constant K > 0 such that |A(t; u) — x*| < Ku for
any t € R.

@ The periodic orbit A, = {x = A\(t; ), t € T} is also hyperbolic of saddle

type, and its characteristic multipliers are p-close to e*™*, e 2™,

May 20- 24 2024 9/31

Tere M-Seara (UPC)




p # 0: Existence of the periodic orbit A,

Proof
Consider the Poincaré map Py ,, and look for a point x = A(6; i) such that

M(x, 1) = Po u(x) —x =0

Observe that
@ M(x*,0) =Po(x*) —x*=0
o det(2¥)(x*,0) = det DPy(x*) — Id = det(e**PP(x") —1d) £ 0

The second condition is satisfied because €27Ph(x7) has eigenvalues

e?™ < 1 < e~?™ different from 1, therefore (e?™P%(x") —1d) has eigenvalues
different from 0.

The implicit function theorem gives the existence of a fixed point x = A(4, u) for
Peo.,, which is p-close to x*.

Moreover the eigenvalues of DPy ,,(A(6, (1)) are i close to the ones of DPy(x*),
which are e2™*, e—27A
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p # 0: Existence of the periodic orbit A,

@ The solution ®(t,0,A(0, 1); p) is 2m-periodic.
Proof:
As the differential equation is 27-periodic in time and we have that
x1(t) = ®(t,0,\(0, 11); n) is a solution and
xp(t) = ®(t 4 2m,0,\(0, u); 1) is also a solution.
Moreover
x1(0) = (0,0, A0, 1) 1) = MO, 1) = Po, (MO, 1)) =
OO+ 2w, 0, N0, 1); 1) = x2(6)
therefore, by the existence and uniqueness theorem we have that
x1(t) = xo(t) for any t € R
which gives:
O(t, 0, N0, 1); ) = P(t+2m,0,N6, 1)),
therefore the solution is a 27-periodic solution.

@ Moreover ®(t,0,\(0, 11); 1) = N(t, ) € Lt because is the fixed point of the
Poincaré map P; ,.
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The perturbed system

Invariant manifolds of Ry

@ Now that we know about the existence of the hyperbolic periodic orbit
Ay = Ugefo,2711M(0, 1)} which is of saddle type, we will find its stable and
unstable manifolds.

@ Fix 0 € [0,27] and work with the Poincaré map Py. By the stable manifold
theorem, we know that the W**(A(6, u)) are u-close to W4 *(x*) =T in a
neighborhood U of the origin (independent of p).

@ Now we take any point x € W“(A(0, u)) N U and xI' € T' N U such that
Xt — X = O(u).

@ exercice
For any t* > 0, there exists ug > 0, K > 0 such that the solution
®(t,0, x"; 1) and the solution ®(t, 0, xI"; 0) satisfy, for 0 < p < po:

O(t,0,x7; 1) — P t,H,Xh;O < Kpford <t<t"
1 1
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The perturbed system

Invariant manifolds of Ry

@ To prove the exercice use the Gronwall lemma:
If u(t) is a continuous non-negative function in [a, b], such that, there exist
¢ >0, L > 0 such that:

0§u(t)§c+L/tu(s)ds, t € [a, b]

Then:
u(t) < cetlt=2)

@ There is an analogous result for the stable manifold.

@ This result tells us that the stable and unstable manifolds of the periodic
orbit A, remain p-close to the ones of x* when we extend it for finite times.
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The perturbed system

Invariant manifolds of Ry

@ Fix a Poincaré section ¥4, we have the fixed point A(6, i1) with stable and
unstable curves W*"*(A(6, i)).

@ Take a point in the unperturbed homoclinic manifold: xg = x,(v) € I

@ Take straight line N transversal to [, for instance the ortogonal one:
N = N(x) = qo+ ((f(x0))") = x0 + (VP(x0)) = xu(v) + (VP(x(v)))

@ As a consequence of the exercise, W*“(A(6, 1)) = W (x*) + O(u) and, as
[ intersects N transversally, both manifolds intersect N in unique points x“,
x*®, which are p-close to xp = xu(v).

@ Our goal is to obtain information about the distance between the points x"“
and x*, that we already know is of O(u). s

N o
xb\?(\)ﬁn = X\\T'\
X} WS

\

wu
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The perturbed system

Distance between the invariant manifolds of /\u

We want to compute the distance between x“ and x°:

d(v,0; ) = |[x" = x*||

Theorem (Theorem 1, Melnikov-Poincaré)

Y H 2
d(v,0; ) = NP0 (v))| M(v,0) + O(n”)
where .
M(v,0) :/_ {Ho, H1 }(xn(v + s),0 + s5;0) ds
where:

is the Poisson bracket of P and Q.
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The perturbed system

he Melnikov function

The function:

+00
M(v, 0) :/ {Ho, H1}(xp(v + 5),0 + 5:0) ds (2)

— OO

is called the Melnikov function.
Exercice:
It is 27-periodic respect to 6 and satisfies:

M(v,0) = M(0,0 — v) = M(0 — v)

and

M(a) = /+OO Q (fo(xn(t)), fA(xn(t),a+ t;0)) dt

— OO

Is 2m-periodic.
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he Melnikov potential

Exercice:

@ Prove that M(v,0) = %(v,@), where

+00
L(v,e):/ (Hi(xn(v +5), 0+ 5:0) — Hy(x*,0+ 5: 0))ds

— o0

is called the Melnikov potential or Poincaré function ans also satisfies:
L(v,0) = L(0,0 —v)= L(6 — v), where:

o0
E(a):/ (Hy(n(£), a0+ £:0) — Hy(x*,c + £ 0))dt

— O

@ Analogously: M(a) = L'(«)
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The perturbed system

Now we have the following:

Theorem (Theorem 2)

@ IfVY0 M(v,0) has a simple zero v = v*(0), there exists g > 0 such that for
any 0 < p < po:
o The stable and unstable manifolds of the fixed point \(0, 11) of the
Poincaré map Py ,, intersect transversally in a point x*(v(0; (1)) where

v(8;p) = vi(0) + O(n), x*(v) = xn(v) + O(p).

o The stable and unstable manifolds of the periodic orbit \,, intersect
transversally along a curve

[, ={x=x"(v(0;n),0 € T},

@ If M(v,0) >0, for all v,0, then there exists jy > 0 such that for any
0 < u < o the stable and unstable manifolds of the periodic orbit \,, do

not intersect. )
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The perturbed system

Observe that as
M(v,0) = M(6 — v)

If there exists a* such that M(a*) = 0 and M’(a*) # 0,then, for any
6 € [0,27], taking v*(0) = 0 — o* is a simple zero of M(v,0).

Exercice: Prove the theorem 2.
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The perturbed system

I -periodic case

If we consider a T-periodic Hamiltonian system:

1
H(q, p,wt; p) = Ho(q, p) + phh(a, pywtip), tER, w= = (3)

the Melnikov function becomes:

+00
M(v,0) :/ {Ho, H1} (xn(v +5),0 + ws;0)) ds (4)

— OO

Exercice:
Prove the equivalent properties of the Melnikov function:

M(v,0) = M(0,0 —wv) = M(0 —wv) = L'(6 —wv).
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The perturbed system

Example

Consider the second order equation:
X =x— x>+ pcos(wt)
If we call y = x we have a Hamiltonian system in the plane:

= Y
= x — x>+ pcos(wt)

Exercice 1
@ When p = 0 we have the Duffing equation, which is a Hamiltonian
system of Ho(x,y) = % — % + %, and has a saddle point at the
origin (0,0).
@ (0,0) has an homoclinic orbit given by:
V2 V2sinh v

COShV’ _yh(V) — =

?

xp(Vv) =
h( ) cosh? v
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The perturbed system

example

Exercice 2

© Prove that the system has a periodic orbit A, if 1 is small enough
and that the corresponding Melnikov function satisfies:

M(v,0) = M(6 — wv) where

M(a) = /+OO yh(t) cos(a + wt) dt

— 00

O Prove that:

M(a) = —V2rw 2040

TTW
cosh 5

© Prove that the manifolds W*“(A,), W*(A,) intersect for p small
enough.
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The perturbed system

Proof of

heorem 1: Distance between the invariant

manifolds of A,

Remember, we have to compute: d(v,0; u) = [[x* — x|
@ The points x“* € W"S(A(0, 1)) N N, with N = xg + VP(x0), xo0 = xn(v).

@ There exist a** € R such that o** = O(u) and:
x! = x9+a"VP(xp), x* = x+a°VP(xg) — |[x" — x°|| = |a" — °||| VP(x0)||

Let's compute P(x*), * = u, s, expanding by Taylor:
P(x*) = P(x0) + DP(x0)a*VP(x0) + O(u*) = P(x0) + a*[|[VP(x0)[|* + O(u?)

up to order p, the quantities |P(x") — P(x®)| and ||x" — x®|| are the same:

P(x") = P(x*)| = |a" — o*[[[VP(x0) I + O(1?) = [Ix" = x*[[[[VP(x0) || + O(?)
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The perturbed system

Proof of Theorem 1: Distance between the invariant
manifolds of A,

We have to compute: d(v,0; ) = ||[x" — x*||. We will compute P(x") — P(x*)
instead.
@ Denote X(t) = xp(v — 6 + t) the solution of the unperturbed system such
that X(6) = xp(v) = xo.
@ Consider the solutions of the system x*(t) = ®(t, 0, x*; u) such that
x*(0) = x*, x = s, u.
@ Then P(x") — P(x®) = P(x"“(0)) — P(x*(0)).

N 2o

v

q
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The perturbed system

proof of Theorem 1: Distance between the invariant
manifolds of A,

In general, given a point x, the solution ®(t; 0, x; 1) is solution of:
x =JVP(x)+ pudVHi(x, t;u) = JVH(x, t; 1)
If we consider m(t) = P(®(t; 0, x; u)), using the fundamental theorem of calculus:

m(t) = m(0) _I_/e %m(a) do

P(&(t:6,x)) = P(x) + 1 /0 (P, H}(&(0, 8, x; ), 0 1) dor,

where {P, h} = g—’;g—g — g—’;g—g is the Poisson bracket of P and h (P = P(p, q)).
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The perturbed system

Proof of Theorem 1: Distance between the invariant
manifolds of A,

To compute P(x") = P(x"(#)) and P(x*) = P(x*(0)) we use the previous
computation and recall x“*(t) = ®(t; 0, x"*; u).

P(x*5(1)) = P(x**(8)) + /9 (P, H}(x*%(0), 0 1) do,

The same is true for the periodic solution A(t, u) = ®(t; 0, \(0; 1)):

P(A(t, ) = P(AN(O, 1)) + u/@ {P,Hi}(AN(o, 1), 0; u)do,
then:
P(x"*(t)) — P(A(t,pn)) = P(x*>(0)) — P(A(0, 1))

o / (P, i} (x**(0), ;1) — {P, Hy} (Mo 1), o 1)) dor
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The perturbed system

Proof of Theorem 1: Distance between the invariant
manifolds of A,

Recall that the points x“*(8) € W“*(A(0, 1)), therefore:
Py (x=(0)) — PG(AB, w)| < CeMl, v =2mA + O(p) < 0
and the solutions
X5 (£)=A(t,0)] = |®(t, 0, x"%; 1) — &(t, 0, A0, n); )| < Ce, for Ft € [0, 00)

Use the previous formula for the stable manifold at t = T > 0 and the unstable
att=—T <O

P((T)) — PIN(T, 1)) = P(x*(6)) — P(A(6, 1))

| (P I 0e(0), o) — (P} (Ao, 1), 1)
P(x*(~T)) — PN~ T, 1)) = P(x“(9)) — P(A(, 1)

| P (o), o) — (P YA, ), 08
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The perturbed system

proof of Theorem 1: Distance between the invariant
manifolds of A,

We can write, taking T = +00 in the previous expressions (the integrals are
convergent!):

P(x*(0)) = P(MO, p)) = —p /QOO (1P, Fi}(x*(0), 07 ) =P, Hi}(A(o, p), 03 1))

P(x(0)) — P(MO, 1)) = —M/Q_OO (AP, Fi}(x*(0), 05 1) = 1P, Fij (Mo, p), o5 1)) d

Up to here these computations are exact. Now we use:

® Hi(x,o;p) = Hi(x,0,0) + O(p)

o A0, ) = x* + O(u), then P(A(0, u)) = P(x*) + DP(x*)O(u) = O(p?),
because DP(x*) = 0. Analogously
{P, Hi}(A(o, ) = {P, Hi}(x™) + O(n) = O(p).

o {P,Hi}(x*(0, 1), 0) = {P, Hi}(xu(0 — 0 + v),5;0) + Ou) for o > 6.
where xj, is the unperturbed homoclinic!

@ {P,Hi}(x"(o,1),0;0) ={P,Hi}(xp(c — 0+ v),0;0))+ O(u) for o < 0.
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The perturbed system

Proof of Theorem 1: Distance between the invariant
manifolds of A,

Using the previous approximations in the expressions:

P(x*(0)) — P(NO, 1)) = —p /eoo (1P, A1} (x*(0),0:0) = {P, Hi}(A(o, p),0:0)) d

P(x(0)) — P(A(0, 1)) = —u/e_oo ({P, Hi}(x*(0),0:0) = {P, Hi }(\(o, 1), 0:0)) d
We obtain:

P((0)) = —p /@ TP H Y (0 — 0+ v),:0) + O(2),
0
P(x*(0)) = u / [P, Hy}(xn(o — 0+ v), 0:0) + O(u),
PU(6)) ~ PO(0) =1 | TP Hy ) (o — 0+ v),0:0) + O(2)

+ o0
_ / (P, Hi} (xn(s + v), s+ 6:0) + O(2) = uM(v, 8) + O(;12)
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The perturbed system

Proof of Theorem 1: Distance between the invariant
manifolds of A,

Model x = JVP(x,y) + uHi(x, t; u). Hy can be T-periodic in time.

Tere M-Seara (UPC)

Recall that the points x“(6),x*(0) € W“(A,) NN
We wanted to compute ||x“(0) — x*(6)]]

Take the pendulum P(q, p) = %2 + V(q)
We saw that |P(x") — P(x*)| = [[x" = x*[[VP(qo)ll + O(1*).
We have seen that:

P(x") = P(x*)| = uM(v, 0) + O(11*)
Consequently:

U _ S|l = H v 2
I = = Ty M- 6) + O0?)

where M(v,0) = M(0 —wv) = ZL(v,0) = L'( — wv) is the Melnikov
function and L the melnikov potential.

May 20- 24 2024

30/31



The perturbed system

An example of fast forcing: The perturbed pendulum

In our original model w = % Let's do an examle.

t p? .t
H(7 7_):_ —1 —1 —
PG~ > + (cosq — 1) + u(cosq )sm\/&E

@ A, ={(0,0)} is a hyperbolic periodic orbit for this system. A(6; 1) = (0,0)
is the fixed point of the Poincaré map Py.

@ The Melnikov potential is:

[(v,0) = 4re 2VE (sin(v _ \%)) |

P(z°) — P(z") = 4me 2VE (sin(v —~ \%)) + O(p?)

T
We need i1 = O(e 2V¢) to make the error term smaller!
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