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Arnold example: 2 and a half degrees of freedom

The case of two or more degrees of freedom

In the case of one and a half degrees of freedom, the KAM tori (curves in
R2) act as barriers to instability.

Even if the separatrices of the periodic orbit (fix point for the Poincaré map)
split, this only causes “local chaos” not global one.

The previous argument does not work for periodic external perturbations of
systems of two or more degrees of freedom (Poincaré maps of dimension 4
or higher!).

n = 2: The KAM tori (2-dimensional) do not separate the phase space
(4-dimensional) (4� 2 = 2 > 1).

The main conjecture:

“Typical systems in action-angle variables have orbits whose actions change
widely even if the systems are close to integrable”
Arnold itself gave the most famous example, that we now explain.
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Arnold example: 2 and a half degrees of freedom

Best known example in the mathematical literature:

Arnol’d example:

H(I ,�, t; ", µ) = H0(I ) + "H1(I ;�, t; ", µ)

=
1

2
(I 21 + I 22 ) + "(cos�1 � 1) + µ"(cos�1 � 1) (sin�2 + cos t),

For " = 0 we have an integrable system H = H0(I ) =
1
2 (I

2
1 + I 22 ), therefore

I (t) = I (0), 8t 2 R

Theorem

For 0 < µ ⌧ " ⌧ 1, there exist orbits of the Hamilton’s equations with

|I (T )� I (0)| > 1 .

Answer to the Instability question: Instability, there exit perturbed motions whose
actions change O(1) even if the perturbative parameter " is small!
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Arnold example: 2 and a half degrees of freedom

Geometric idea of the Arnol’d example

H(I ,�, t; ", µ) = 1
2 (I

2
1 + I 22 ) + "(cos�1 � 1) + µ"(cos�1 � 1) (sin�2 + cos t)

The phase space is 5 dimensional: R2
⇥ T3.

The Poincaré map is 4 dimensional: P✓ : ⌃✓ ! ⌃✓, ⌃✓ ' R2
⇥ T2

" = 0: H(I ,�, t; 0, 0) = H0(I ) =
1
2 (I

2
1 + I 22 )

Equations: İ1 = İ2 = 0, �̇1 = I1, �̇2 = I2

Integrable system. Poincaré map P✓(x) = '(2⇡; x) is given by:

P✓(I
0
1 , I

0
2 ,�

0
1,�

0
2) = (I 01 , I

0
2 ,�

0
1 + 2⇡I 01 ,�

0
2 + 2⇡I 02 )

The 2- dimensional tori:

TI 0 = {I1 = I 01 , I2 = I 02 , (�1,�2) 2 T2
}

are invariant and foliate the space R2
⇥ T2.

The motion in the torus is quasiperiodic of frequency: !(I 0) = (I 01 , I
0
2 ).
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Arnold example: 2 and a half degrees of freedom

Geometric idea of the Arnol’d example

H(I ,�, t; ", µ) = 1
2 (I

2
1 + I 22 ) + "(cos�1 � 1) + µ"(cos�1 � 1) (sin�2 + cos t)

" > 0, µ = 0: intermediate Hamiltonian:

H(I ,�, t; ", 0) =
1

2
(I 21 + I 22 ) + "(cos�1 � 1)

Integrable system (model of a simple resonance)

�̇1 = I1

İ1 = " sin�1

�̇2 = I2

İ2 = 0

I2(t) = I2(0), and �2(t) = �2(0) + I2(0)t

(I1,�1) form a pendulum of Hamiltonian P(I1,�1; ") =
1
2 I

2
1 + "(cos�1 � 1).
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Arnold example: 2 and a half degrees of freedom

Geometric idea of the Arnol’d example

H(I ,�, t; ", µ) = 1
2 (I

2
1 + I 22 ) + "(cos�1 � 1) + µ"(cos�1 � 1) (sin�2 + cos t)

" > 0, µ = 0: intermediate Hamiltonian:

H(I ,�, t; ", 0) =
1

2
(I 21 + I 22 ) + "(cos�1 � 1)

Integrable system (model of a simple resonance)

Some 2 dimensional tori survive (KAM): they correspond to the rotational
orbits in the pendulum.

2-dimensional tori for the Poincaré map close to I1 = I 01 =
p
2h. I2 = I 02 ,

h > 1:
1

2
I 21 + "(cos�1 � 1) = h, h > 1 I2 = I 02 , �2 2 T
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Arnold example: 2 and a half degrees of freedom

Geometric idea of the Arnol’d example

H(I ,�, t; ", µ) = 1
2 (I

2
1 + I 22 ) + "(cos�1 � 1) + µ"(cos�1 � 1) (sin�2 + cos t)

" > 0, µ = 0: intermediate Hamiltonian:

H(I ,�, t; ", 0) = 1
2 (I

2
1 + I 22 ) + "(cos�1 � 1)

Integrable system (model of a simple resonance)

Other tori are destroyed (correspond to the resonance I1 = 0) given rise to
whiskered one-dimensional tori.

They are given by the critical point of the pendulum and the tori of the
rotator, which become one-dimensonal tori for the Poincaré map of
frequency ! = I2:

TI 02
= {I1 = �1 = 0, I2 = I 02 , �2 2 T}, P✓(0, 0, I

0
2 ,�2) = (0, 0, I 02 ,�2+2⇡I 02 )

They are hyperbolic tori whose two-dimensional stable and unstable
manifolds (whiskers) coincide along a homoclinic manifold.

W u(TI 02 ) = W s(TI 02 ) = {
1

2
I 21 + "(cos�1 � 1) = 0, I2 = I 02 , �2 2 T}
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Arnold example: 2 and a half degrees of freedom

Geometric idea of the Arnol’d example

H(I ,�, t; ", µ) = 1
2(I

2
1 + I 22 )+ "(cos�1� 1)+µ"(cos�1� 1) (sin�2+cos t)

" > 0, µ = 0, intermediate Hamiltonian:

H(I ,�, t; ", 0) = 1
2(I

2
1 + I 22 ) + "(cos�1 � 1).

Dynamics of the intermediate Hamiltonian: " > 0, µ = 0
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Arnold example: 2 and a half degrees of freedom

Di↵usion mechanism when " > 0, µ > 0.

H(I ,�, t; ", µ) = 1
2(I

2
1 + I 22 )+ "(cos�1�1)+µ"(cos�1�1) (sin�2+cos t)

�̇1 = I1
İ1 = " sin�1 + "µ sin�1(cos t + cos�2)
�̇2 = I2
İ2 = �"µ cos�2(cos�1 � 1)

(1)

For µ > 0 all the 1-dimensional whiskered tori

TI 02
= {I1 = �1 = 0, I2 = I 02 , (�2, s) 2 T2

}

are preserved with the same dynamics: P✓(0, 0, I 02 ,�2) = (0, 0, I 02 ,�2+2⇡I 02 ).

Each torus has 2-dimensional stable and unstable manifolds (whiskers)
W u,s

µ (TI 02 ).

Tere M-Seara (UPC) May 20- 24 2024 9 / 58



Arnold example: 2 and a half degrees of freedom

Di↵usion mechanism when " > 0, µ > 0.

H(I ,�, t; ", µ) = 1
2 (I

2
1 + I 22 ) + "(cos�1 � 1) + µ"(cos�1 � 1) (sin�2 + cos t)

For " > 0, µ > 0.

• For µ > 0 the stable and unstable manifolds W u,s
µ (TI2) (whiskers of TI2) change.

• We need to prove that the 2-dimensional stable and unstable manifolds of the
tori TI 02 intersect transversally along a homoclinic manifold (containing
heteroclinic orbits bewteen the points of TI 02 ).

• This computation is the Poincaré-Melnikov method, analog to the one and a
half degrees of freedom case for the computation of homoclinic intersections
between the stable and unstable manifolds of periodic orbits.

• As we are in a 4-dimensional space for the Poincaré map, these transversal
homoclinic intersections will give rise to heteroclinic ones between tori wich are
close enough.
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Arnold example: 2 and a half degrees of freedom

Di↵usion mechanism when " > 0, µ > 0.

H(I ,�, t; ", µ) = 1
2 (I

2
1 + I 22 ) + "(cos�1 � 1) + µ"(cos�1 � 1) (sin�2 + cos t)

• Scaling I1 =
p
"p1, I2 =

p
"p2 and ⌧ =

p
"t:

�̇1 = p1

ṗ1 = sin�1 + µ sin�1(sin�2 + cos
⌧
p
"
)

�̇2 = p2

ṗ2 = �µ cos�2(cos�1 � 1)

K (p,�, ⌧ ;µ) = 1
2 (p

2
1 + p22) + (cos�1 � 1) + µ(cos�1 � 1) (sin�2 + cos ⌧p

"
)

It is a O(µ) perturbation of an integrable system with stable and unstable
manifolds which coincide. So one can “generalize” the Melnikov approach.

Warning! ! = 1p
"
, the Melnikov function will be exponentially small in

p
".

If µ = O(e�
Cp
" ), the calculation given by the Melnikov function is enough.

The stable and unstable manifolds of every torus TI 02 intersect transversaly
along a homoclinic orbit.
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Arnold example: 2 and a half degrees of freedom

Di↵usion mechanism when " > 0, µ > 0.

2

Transversal homoclinic orbits give rise to transversal heteroclinic orbits
between tori T

I 02
su�ciently close.

The unstable whisker of a torus T
I 02

intersects transversally the stable
whisker of another neighboring torus T

I 12
.
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Arnold example: 2 and a half degrees of freedom

Di↵usion mechanism when " > 0, µ > 0.

We find {T
I i2
}
N

i=1 such that W u

T
I i2

t W s

T
I i2

. (transition chain.)

2
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Arnold example: 2 and a half degrees of freedom

Di↵usion mechanism when " > 0, µ > 0.

There is an orbit that shadows the transition chain. (obstruction property)

2
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Arnold example: 2 and a half degrees of freedom

Di↵usion mechanism when " > 0, µ > 0.
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Arnold example: 2 and a half degrees of freedom

First observation: “a priori unstable systems”

The rigorous verification of Arnol’d mechanism uses the condition

µ = O(e
� Cp

" ) (still open for µ = O("p))
P. Holmes, J. Marsden (1982): take the intermediate Hamiltonian as the
unperturbed one: " = 1, 0 < µ ⌧ 1

H(I ,�, t;µ) =
1

2
(I 21 + I 22 ) + cos�1 � 1 + µ(cos�1 � 1)(sin�2 + cos t)

Chierchia-Gallavotti:
a priori unstable system

H(I ,�, t; ") =
1

2
(I 21 + I 22 ) + cos�1 � 1 + "h(I ,�, t; ")

a priori stable system

H(I ,�, t; ") =
1

2
(I 21 + I 22 ) + "h(I ,�, t; ")
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Arnold example: 2 and a half degrees of freedom

Second observation: the “large gap” problem

Even in the a priori unstable system case, the Arnol’d example is based on the
fact that all the 1-dimensional (hyperbolic) tori TI2 are preserved.

• In general, TI2 can be destroyed when " 6= 0; KAM Theorem. Large gaps are
typical.

TI 02
= {I1 = �1 = 0, I2 = I 02 ,�2 2 T}

Motion on TI 02
is P✓(0, 0, I2,�2) = (0, 0, I2,�2 + I22⇡) frequency ! = I2

The gaps between the tori that survive are balls of radius
p
" centered in

the resonances (I2 = m/n).

The heterocĺınic jumps are of order ". (Melnikov theory would give
xu � x s = "M(v ,�, ✓) + O("2)).

Arnold mechanism can not be applied to general perturbations of a priori
unstable systems.
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Geometric methods in Arnold di↵usion

Geometric methods

Arnold’s mechanism is the begining of wat are called ”geometric methods“.

But some new ideas came after his example.

We will explain these methods and see how they apply to Arnold example
and to other more general Hamiltonians.

The model:

H"(p, q, I ,�, t) = h0(I ) +
nX

i=1

±

✓
1

2
p2i + Vi (qi )

◆

| {z }

+"H1(p, q, I ,�, t; "),

H0 (p, q, I ,�) 2 Rn
⇥ Tn

⇥ Rd
⇥ Td

Recall Arnold model:
H(I ,�, t;µ) = 1

2 (I
2
1 + I 22 ) + "(cos�1 � 1) + µ"(cos�1 � 1)(sin�2 + cos t)

Call p = I1, and q = �1, " = 1 and µ = " I2 = I , �2 = � and

H(p, q, I ,�, t;µ) = 1
2 I

2 + 1
2p

2 + cos q � 1 + "(cos q � 1)(sin�+ cos t)
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Geometric methods in Arnold di↵usion

First assumptions

H"(p, q, I ,�, t) = h0(I ) +
P

n

i=1±
�
1
2p

2
i
+ Vi (qi )

�
+ "H1(p, q, I ,�, t; "),

(A1.) The functions h0, H1 and Vi , i = 1, . . . , n, are uniformly C r for
r � r0.

(A2.) Each potential Vi : Tn
! R, i = 1, . . . , n, is 2⇡-periodic in qi and

has a non-degenerate global maximum at 0, and hence each ‘pendulum’
±
�
1
2p

2
i
+ Vi (qi )

�
has a homoclinic orbit to (0, 0), parametrized by

(p0
i
(⌧i ), q0i (⌧i )), ⌧i 2 R.

During this course we will take n = d = 1, and h0(I ) =
1
2 I

2, but the proofs
can be easily generalized. The phase space for the flow will be
5-dimensional and for the Poincaré map P✓," will be 4-dimensional.

H"(p, q, I ,�, t) =
1
2 I

2 + 1
2p

2 + V (q) + "H1(p, q, I ,�, t; ").
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Geometric methods in Arnold di↵usion

Main tools in geometric methods

The main tools we will use are:

Existence and persistence of normally hyperbolic invariant manifolds
(NHIM)

Existence and computation of the Scattering map in a NHIM
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Geometric methods in Arnold di↵usion

First tool: Normally hyperbolic invariant manifolds

Definition of a NHIM for a map (analogous for flows (Fenichel, Hirsch, Pugh,
Shub, Pessin)):

Normally hyperbolic invariant manifold (NHIM):

F : M ! M, C r -smooth, r � r0, m = dimM.
F (⇤) ⇢ ⇤, nc = dim⇤.
For any x 2 ⇤ we have.
TxM = Tx⇤� E u

x � E s
x

ns = dimE s , nu = dimE u.
m = nc + ns + nu
9 C > 0, 0 < � < µ�1 < 1, s.t. 8 x 2 ⇤
v 2 E s

x , kDF k
x (v)k  C�k

kvk, 8k � 0
v 2 E u

x , kDF k
x (v)k  C��k

kvk, 8k  0
v 2 Tx⇤ , kDF k

x (v)k  Cµ|k|
kvk, 8k 2 Z

Examples: hypebolic fix points, hypebolic periodic orbits.
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Geometric methods in Arnold di↵usion

First tool: Normally hyperbolic invariant manifolds

The normal hyperbolicity of ⇤ implies that there exist smooth stable and
unstable manifolds W u,s(⇤).

If xu,s 2 W u,s(⇤) dist(F n(xu,s),⇤) ! 0 as n ! ⌥1.

Moreover W u,s(⇤) =
S

x2⇤ W
u,s(x) where

W u,s(x) = {xu,s , F n(xu,s)� F n(x) ! 0, n ! ±1}

For any x 2 ⇤, W u,s(x) are smooth manifolds.

In fact: xu,s 2 W u,s(x),! kF n(xu,s)� F n(x)k  K�|n|, n ! ⌥1

W u,s(x) are NOT invariant manifolds:

xu,s 2 W u,s(x) ! F (xu,s) 2 W u,s(F (x))

One can consider and the wave maps:

⌦+ : W s(⇤) 3 x 7! x+ 2 ⇤, such that x 2 W s

loc(x+)

⌦� : W u(⇤) 3 x 7! x� 2 ⇤, such that x 2 W s

loc(x�)

These maps are smooth maps.
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Geometric methods in Arnold di↵usion
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Geometric methods in Arnold di↵usion

Second tool: The scattering map

s

u

z

Assume that there exists a transverse homoclinic manifold
� ✓ W u(⇤) \W s(⇤)

For each x 2 �, we have

TxM = TxW
u(⇤) + TxW

s(⇤), Tx� = TxW
u(⇤) \ TxW

s(⇤). (2)

For each x 2 �, if x± 2 ⇤ are such that x 2 W s(x+) \W u(x�). Then:

TxW
s(⇤) = TxW

s(x+)� Tx�, TxW
u(⇤) = TxW

u(x�)� Tx�. (3)

we say that � is a homoclinic channel.

⌦�,⌦+ restricted to � are di↵eomorphisms.Tere M-Seara (UPC) May 20- 24 2024 24 / 58



Geometric methods in Arnold di↵usion

Second tool: The scattering map

Scattering map associated to the homoclinic channel �.

� : ⌦�(�) ⇢ ⇤ ! ⌦+(�) ⇢ ⇤, � = ⌦+
� (⌦�)�1,

It is a di↵eomorphism from ⌦�(�) to ⌦+(�).

If �(x�) = x+, then there exits a unique x 2 � such that
W u(x�) \W s(x+) \ � = {x}.

Note that:

dist(F�n(x)� F�n(x�)) ! 0, as n ! 1

dist(Fm(x)� Fm(x+)) ! 0 as m ! 1.
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Geometric methods in Arnold di↵usion

Second tool: The scattering map

The scattering map in ⇤ relates points x� and x+ = �(x�) when there is an
heteroclinic orbit between them.

F�M(x) is close to F�M(x�) and FN(x) is close to FN(x�)

Call x1 = F�M(x). Then x1 is close to F�M(x�), and FN+M(x1) is close to
FN(x�)

important: There is no orbit from x� to x+ (it requires infinite time), but
there is an orbit which begins close to x� and arrives close to x+.
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Geometric methods in Arnold di↵usion

The unperturbed problem (" = 0): the NHIM

H"(p, q, I ,�, t) =
1
2 I

2 + 1
2p

2 + V (q) + "H1(p, q, I ,�, t; ")
A di↵erent approach to Arnold di↵usion: the use of normally hyperbolic manifolds.
When " = 0, H0(p, q, I ,�) =

1
2 I

2 + 1
2p

2 + V (q), the dynamics is:

q̇ = p

ṗ = V 0(q)

�̇ = I

İ = 0

(p, q) form a pendulum, and (I ,�) a rotator: I (t) = I 0, �(t) = �0 + I 0t:

p = q = 0, (I ,�) 2 R⇥ T is a 2-dimensional invariant manifold (cilinder) for the
Poincaré map P✓. P✓(0, 0, I ,�) = (0, 0, I ,�+ 2⇡I )
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Geometric methods in Arnold di↵usion

The unperturbed problem (" = 0): the NHIM

H0(p, q, I ,�) =
1
2 I

2 + 1
2p

2 + V (q)

Λ

For any I 0 2 R, TI 0 = {(0, 0, I 0,�) : � 2 T} is a 1-dimensional invariant
torus with frequency !(I 0) = I 0.

⇤ = [I2RTI = {(0, 0, I ,�) : (I ,�) 2 R⇥ T} ⇠ R⇥ T
is a 2-dimensional normally hyperbolic invariant manifold (cylinder) filled by
1-dimensional invariant tori TI .

The Poincaré map P✓ = P✓,0 restricted to ⇤ (inner motion) is given by
P✓(0, 0, I ,�) = (0, 0, I ,�+ 2⇡I )

(I ,�) are good global coordinates in ⇤

⇤ and TI are independent of ✓.
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Geometric methods in Arnold di↵usion

The unperturbed problem (" = 0): the stable and unstable

manifolds of the NHIM

Each torus TI 0 is a “whiskered torus” and its 2-dimensional stable and
unstable manifolds coincide along a 2-dimensional homoclinic manifold:
W (TI 0) = {(p, q, I 0,�), 1

2p
2 + V (q) = 0, � 2 T}

The 2-dimensional homoclinic manifold can be also parameterized by time:
W (TI 0) =

��
ph(v), qh(v), I 0,�

�
, v 2 R,� 2 T

 
where (ph(v), qh(v)) is the

homoclinic orbit of the pendulum: (ph(v), qh(v)) ! 0, as v ! ±1

⇤ has 3-dimensional stable and unstable manifolds which coincide along the
3-dimensional homoclinic manifold given by the equation 1

2p
2 + V (q) = 0,

and can be parameterized by time;
� = {(ph(v), qh(v), I ,�) , v 2 Rn, (I ,�) 2 R⇥ T}
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Geometric methods in Arnold di↵usion

The unperturbed problem (" = 0): the Scattering map

H0(p, q, I ,�) =
1
2 I

2 + 1
2p + V (q)

Introducing the parametrizations:

x0 = x0(I ,�) = (0, 0, I ,�) 2 ⇤

xh = xh(v , I ,�) = (ph(v), qh(v), I ,�) 2 �

the Poincaré map P✓ acts, for any ✓ 2 T, as

P
n

✓ (x0(I ,�)) = (0, 0, I ,�+ 2⇡In) = x0(I ,�+ 2⇡In)

P
n

✓ (xh(v , I ,�); 0) = (ph(v + 2⇡n), qh(v + 2⇡n)| {z }, I ,�+ I2⇡n) = xh(v + 2⇡n, I ,�+ 2⇡In)

# n ! ±1

0

and it is therefore clear that 8v 2 R P
n

✓ (xh; 0)� P
n

✓ (x0; 0) �����!
n!±1

0.

That is, for any v 2 R: xh(v , I ,�) 2 W s(x0(I ,�)) \W u(x0(I ,�))

�0(x0) = x0, in coordinates: �0(I ,�) = (I ,�)

�0 is the identity on ⇤.
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Geometric methods in Arnold di↵usion

The unperturbed problem (" = 0): the Scattering map

H"(p, q, I ,�, t) =
1
2 I

2 + 1
2p + V (q) + "H1(p, q, I ,�, t; ")

When " = 0 we have:

The tori TI 0 = {(0, 0, I 0,�) : � 2 T} are invariant and foliate ⇤.

The scattering map �0(I ,�) = (I ,�), which gives �0 = Id .

In particular
�0(T

0
I ) = T

0
I

The unperturbed tori T 0
I

only have homoclinic connexions.

No possibility of di↵usion

Main idea in Arnold’s proof:
We want to see that, when " 6= 0 we can define a scattering map such that,
the image of one torus intersects other tori.
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Geometric methods in Arnold di↵usion

Sketch of the proof of Arnold di↵usion using geometric

methods:

1) Persistence of ⇤.

2) Study of the inner dynamics on ⇤".

3) Study of stable and unstable manifolds for ⇤" and their intersection:
the Melnikov method.

4) The perturbative scattering map.

5) Transition chains.

(5’) Combining the inner and the outer dynamics

6) Shadowing lemmas.

Tere M-Seara (UPC) May 20- 24 2024 32 / 58



Geometric methods in Arnold di↵usion

" 6= 0, Step 1: persistence of ⇤.

In the Arnold model:
H(p, q, I ,�, t; ") = 1

2 I
2 + 1

2p
2 + cos q � 1 + "(cos q � 1)(sin�+ cos t)

⇤ = {(0, 0, I ,�)} persists for " > 0 and the dynamics on it is
unchanged. İ = 0, �̇ = I , P✓,"(0, 0, I ,�) = (0, 0, I ,�+ I2⇡).

In particular, all the whiskered tori TI are preserved for " > 0.

The manifold ⇤ has 3- dimensional stable and unstable manifolds, but
these manifolds change. In particular they will not coincide anymore.

To define a pertubed scattering map, we need to see that the
invariant manifolds of ⇤ intersect transversally giving rise to a
2-dimensional homoclinic channel (to ⇤) �". This computation is the
Poincaré, Melnikov method, analog to the one and a half degrees of
freedom case.
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Geometric methods in Arnold di↵usion

" 6= 0, Step 1: persistence of ⇤.

H"(p, q, I ,�, t) =
1
2 I

2 + 1
2p

2 + V (q) + "H1(p, q, I ,�, t; ")
As ⇤ is non compact, we restrict to I 2 [a, b], a compact interval the action space.
By the theory of NHIM applied to P✓,", there exist smooth manifolds ⇤✓,",
W s

loc
(⇤✓,"), W u

loc
(⇤✓,")

⇤✓," = ⇤+O("), W s,u(⇤✓,") = W s,u(⇤) +O(")

Moreover W s,u
loc

(⇤✓,") =
S

x2⇤✓,"
W s,u

loc
(x).

That is, for any x s,u 2 W s,u
loc

(⇤✓,") there exist x± 2 ⇤✓," such that

��Pn

✓,"(x
s,u; ")� P

n

✓,"(x±; ")
�� 6 K��|n|

" n ! ±1

The local manifolds can be globalized W s,u(⇤✓,") =
S

+,�n<0 P
n

✓ (W
s,u
loc

(⇤✓,")).
The manifold ⇤✓," is not unique, not invariant, but only locally invariant. The
local invariance means that there exists a neighborhood V of ⇤✓,", such that any
orbit of P✓,"(x) that stays in V for all time is actually contained in ⇤✓,".
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Geometric methods in Arnold di↵usion

" 6= 0: Step 2: The Melnikov method

In general, W s(⇤✓,") 6= W u(⇤✓,").

To be able to define the scattering map in the perturbed case, we
look for the points x 2 W s(⇤✓,") t W u(⇤✓,").

Totally analogous to the one and a half degrees of freedom case we
consider Poincaré function (or Melnikov potential) associated to the
homoclinic manifold:

L(v , I ,�, ✓) = �

Z 1

�1

⇥
H1(ph(v + t), qh(v + t), I ,�+ It, ✓ + t; 0)

� H1(0, 0, I ,�+ It, ✓ + t; 0)
⇤
dt.
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Geometric methods in Arnold di↵usion

" 6= 0: Step 2: The Melnikov method

Proposition

Fix the section ⌃✓ = {(p, q, I ,�, t), t = ✓}. Assume that there exists a set
U� := I ⇥ J ⇢ R⇥T ' ⌃✓, such that I is a ball in R, and for any values
(I ,�) 2 U�, the map

v 2 Rn
! L(v , I ,�, ✓) 2 R

has a non-degenerate critical point v⇤, which is locally given, by the implicit
function theorem, by

v⇤ = v⇤(I ,�, ✓).

Then, for 0 < |"| small enough, there exists a transversal homoclinic point
x(I ,�; ") 2 W u(⇤✓,") t W s(⇤✓,"), which is "-close to the point
xh(v⇤, I ,�) = (ph(v⇤), qh(v⇤), I ,�) 2 �:
that is:

x = x(I ,�; ") = (ph(v
⇤) +O("), qh(v

⇤) + O("), I ,�) 2 W s(⇤✓,") t W u(⇤✓,").

The proof is identical to the one and a half degrees of freedom.
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Geometric methods in Arnold di↵usion

" 6= 0: Step 2: The Melnikov method

Proof:
Fix the Poincaré section ⌃✓ and take any point

xh = xh(v , I ,�) = (ph(v), qh(v), I ,�) 2 �

we have a straight line N transversal to � in xh:

q

v t0

x0

wu

ws

N = N(xh) = xh + hrP(ph(v), qh(v))i, the normal bundle to the 3 separatrix � in

the 4 dimensional space ⌃✓, where rP denotes the vector: rP =
⇣

@P
@p ,

@P
@q , 0, 0

⌘
.
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Geometric methods in Arnold di↵usion

" 6= 0: Step 2: The Melnikov method

Since W s,u(⇤✓,") = W s,u(⇤) +O("), W s,u(⇤✓,") intersect N in unique points
x s,u 2 W s,u(⇤✓,").
We try to find xh and in particular v , such that x s = xu. Note that

x s,u =

✓
ph(v) + �s,u @P

@p
(ph(v), qh(v)), qh(v) + �s,u @P

@q
(ph(v), qh(v)), I ,�

◆
,

where x s,u = x s,u(v , I ,�; ") and �s,u = �s,u(v , I ,�; ") = O(").
The computations done for one and half degrees of freedom give:

P(xu)� P(x s) = P(x�)| {z }
O("2)

�P(x+)| {z }
O("2)

+

+ "

Z 1

�1
{P ,H1}(p0(v + �), q0(v + �), I ,�+ I�, ✓ + �; 0)

� {P ,H1}(0, 0, I ,�+ I�, ✓ + �; 0)d�

+ O("2),

where x+,� = x0 +O(") 2 ⇤" are the points such that xu,s 2 W u,s(x⌥).
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Geometric methods in Arnold di↵usion

" 6= 0: Step 2: The Melnikov method

Therefore

P(xu)� P(x s) = "
@

@v

Z 1

�1
H1(ph(v + �), qh(v + �), I ,�+ I�, ✓ + �; 0)

� H1(0, 0, I ,�+ I�, ✓ + �; 0)d� +O("2)

= "
@

@v
L(v , I ,�, ✓) +O("2).

By the Implicit Function Theorem, non-degenerate critical points v⇤ = v⇤(I ,�, ✓)
of v 2 R 7! L(v , I ,�, ✓) 2 R give rise to ṽ = v⇤ +O(") where P(xu)� P(x s) = 0
and, therefore, there are transversal homoclinic points

xu = x s = x = x(I ,�, ✓; ") =

=

✓
ph(ṽ) + �

@P

@p
(ph(ṽ), qh(ṽ)), qh(ṽ) + �

@P

@q
(ph(ṽ), qh(ṽ)), I ,�

◆

in W s(⇤") t W u(⇤"), where � = �s,u = �(ṽ , I ,�, s; ") = O("), so that x is
"-close to xh(v⇤, I ,�) := (ph(v⇤), qh(v⇤), I ,�), v⇤ = v⇤(I ,�, ✓).
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Geometric methods in Arnold di↵usion

" 6= 0: Step 2: The Melnikov method

L(v , I ,�, ✓) is called the Melnikov potential.
Once that we know that x 2 W u(x�) \W s(x+), where
x± = (I±,�±) 2 ⇤" we want to compute the I coordinate of these
points, that we already know I± = I +O(").
The same kind of computations using I instead of P(p, q) give:

I (xu)� I (x s) = I� � I+ +

+ "

Z 1

�1
{I ,H1}(ph(v + �), qh(v + �), I ,�+ I�, ✓ + �)

� {I ,H1}(0, 0, I ,�+ I�, ✓ + �)d�

+ O("2)

= I� � I+ + "
@

@�
L(v , I ,� s) + O("2),

Therefore, if we take v = ṽ = ṽ(I ,�, ✓; "), then xu = x s and:
I� � I+ = " @

@�L(ṽ , I ,�, ✓) +O("2)

Tere M-Seara (UPC) May 20- 24 2024 40 / 58



Geometric methods in Arnold di↵usion

" 6= 0: Step 3: Formulas for the Scattering map

We will now define the scattering map for the perturbed Hamiltonian.

Take ✓ 2 [0, 2⇡].

Let U� := I ⇥ J ⇢ R⇥ T, such that I is a ball in R, and for any
values (I ,�, ✓) 2 U�

⇥ [0, 2⇡] 9v⇤ = v⇤(I ,�, ✓) critical point of

v 7! L(v , I ,�, ✓)

in such a way that

x = x(I ,�, ✓; ") 2 W s(⇤✓,") t W u(⇤✓,").

Let �✓," = {x(I ,�, ✓; "), (I ,�, ✓) 2 U�
⇥ [0, 2⇡]}.

For any x 2 �✓," there exist unique x± 2 ⇤✓," such that

P
n

✓,"(x)� P
n

✓,"(x±) ���!
n±1

0.
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Geometric methods in Arnold di↵usion

" 6= 0: Step 3: Formulas for the Scattering map

Let
H± =

[
{x±} =

[
{x±(I ,�, ✓; "), (I ,�, ✓) 2 U�

⇥ [0, 2⇡]}.

Then the scattering map associated to the homoclinic manifold �✓," is
�✓," : H� 7! H+ such that �(x�) = x+.
By the previous formula applied to xu = x s = x = x(I ,�, ✓; ") 2 �✓,",

I+ � I� = "
@

@�
L(v⇤, I ,�, ✓) +O("2),

where v⇤ = v⇤(I ,�, ✓). Calling,

L⇤(I ,�, ✓) = L(v⇤, I ,�, ✓)

we have that

I+ = I� + "
@L⇤

@�
(I ,�, ✓) + O("2).
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" 6= 0: Step 3: Formulas for the Scattering map

It is easy to check that

L⇤(I ,�, ✓) = L⇤(I ,�� I✓, 0) =: L⇤(I ,�� I✓| {z }
↵

)

so that L⇤(I ,�, ✓) depends essentially on two variables: I and ↵ = �� I✓.
Therefore, defining the Poincaré reduced function as L⇤(I ,↵) = L⇤(I ,↵, 0)
we can write
I+ = I� + " @

@�L
⇤(I ,↵) + O("2), ↵ = �� I✓.

Finally, by the geometric properties of the scattering map �" is an (exact)
symplectic and smooth map and therefore it satisfies:

�✓,"(I ,�) =

✓
I + "

@

@�
{L

⇤(I ,↵)}+ O("2),�� "
@

@I
{L

⇤(I ,↵)}+ O("2)

◆
,

where ↵ = �� I✓, and (I ,�, ✓) 2 U�
⇥ [0, 2⇡].
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" 6= 0: Step 3: Formulas for the Scattering map

Summarizing:

�✓,"(I ,�) =

✓
I + "

@

@�
{L

⇤(I ,↵)}+ O("2),�� "
@

@I
{L

⇤(I ,↵)}+ O("2), s

◆
,

where ↵ = �� I✓, and (I ,�, ✓) 2 U�.
That is:

�" = Id� "JrL
⇤(I ,↵) + O("2), J =

✓
0 �1
1 0

◆

Therefore, except for an O("2) error, �✓," is the "-time map of the
hamiltonian �L

⇤(I ,↵), where ↵ = �� I✓, and is therefore "-close to the
identity.
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Geometric methods in Arnold di↵usion

Computation of the Melnikov potential in the Arnold

example

Remember the Arnold model after scaling variables and time:

H(p, q, I ,�, t; ", µ) =
1

2
I 2+

1

2
p2+(cos q�1)+µ(cos q�1) (sin�+cos

t
p
"
)

Perturbed parameter is µ, time frequency 1p
"
.

The unperturbed system has V (q) = cos q � 1, the classical pendulum,
and the homoclinic connection is

ph(t) =
2

cosh(t)
, qh(t) = 4 arctan et

and a perturbation H1 of the form H1(p, q, I ,�, t; ") = (cos q � 1)g(�, r),
r = tp

"
, where g(�, r) = sin�+ cos r .
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Geometric methods in Arnold di↵usion

Computation of the Melnikov potential in the Arnold

example

The Melnikov potetial satisfies: L(v , I ,�, ✓) = L(I ,�� Iv , ✓ � v) where, using
p
2
h

2 + cos qh � 1 = 0 and that ph(t) =
2

cosh t

L(I ,�, ✓) = �

Z 1

�1
(H1(ph(t), qh(t), I ,�+ It, ✓ + t; 0)

� �H1(0, 0, I ,�+ It, ✓ + t; 0)) dt

= �

Z 1

�1
(cos qh(t)� 1) g(�+ It,

✓ + t
p
"

) dt

=
1

2

Z 1

�1
p2h(t)

✓
sin(�+ It) + cos(

✓ + t
p
"

)

◆
dt

= 2

Z 1

�1

✓
sin� cos(It) + cos

✓
p
"
cos(

t
p
"
)

◆
1

cosh2 t
dt

= 2 sin�

Z 1

�1

cos(It)

cosh2 t
dt + 2 cos

✓
p
"

Z 1

�1

cos( tp
"
)

cosh2 t
dt
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Geometric methods in Arnold di↵usion

Computation of the Melnikov potential in the Arnold

example

Using residues theorem, one can easily compute:
Z 1

�1

cos I�

cosh2 �
d� =

⇡I

sinh ⇡I
2

And:

Z 1

�1

cos �p
"

cosh2 �
d� =

⇡
p
"

1

sinh ⇡
2
p
"

=
2⇡
p
"

e
� ⇡

2
p
"

1� e
� ⇡p

"

' O(e
� ⇡

2
p
" )

Tere M-Seara (UPC) May 20- 24 2024 47 / 58



Geometric methods in Arnold di↵usion

Computation of the Melnikov potential in the Arnold

example

Therefore:

L(I ,�, ✓) = 2⇡

 
sin�

I

sinh ⇡I
2

+
1
p
"
cos

✓
p
"

1

sinh ⇡
2
p
"

!

The critical points of L(I ,�� Iv , ✓ � v) can be computed and then the
reduced Poincaré function L

⇤(I ,�� I✓) and the scattering map for this
problem.
Remember that (↵ = �� I✓):

�µ(I ,�) =

✓
I + µ

@

@�
{L

⇤(I ,↵)}+ O(µ2),�� µ
@

@I
{L

⇤(I ,↵)}+ O(µ2), s

◆
,

It is very easy to see that to obtain heteroclinic connections between two
tori I = I 0 and I = Ī 0 > I 0, we need that @L⇤

@� > 0!
That’s a good exercice!

recall: to make everything rigourous we need µ ⌧ e
� ⇡

2
p

"
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Geometric methods in Arnold di↵usion

Step 4: Studying the inner dynamics in ⇤✓,"

Now we have a tool, the Scattering map, to “understand” the outer
dynamics: the dynamics following the homoclinic excursions to ⇤✓,".

Next step is to understand the inner dynamics, that is, the dynamics
in ⇤✓,".

Combining these two dynamics we will find “the skeleton” of the
global ynamics.

I will show you the classical methods that look for transition chains
between the invariant objects inside ⇤✓,".

I will see that the classical KAM tori used by Arnold are not enough.

I will show you a more recent result that does not need any
knowledge about the invariant objects inside ⇤✓,".
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The dynamics in ⇤"

Step 4: Studying the inner dynamics in ⇤✓,"

The idea of some works using geometric methods is to find the invariant sets
inside ⇤✓," which act as “barriers” to difuse along ⇤✓," and try to jump them
throught �✓,".

More specifically, we follow Arnold’s idea: we look for an collection of
invariant tori Ti ⇢ ⇤✓," such that the unstable manifold of Ti intersects
trasversally the stable manifold of Ti+1 giving a transition chain.

We will describe the steps necessary to verify this mechanism.

The verification uses standard methods from the geometric theory of
perturbations but is long and technical:

2.1 Compute the Hamiltonian flow in ⇤̃" = [✓2[0,2⇡]⇤✓," and use the
Averaging method to simplify the flow up to some order hight enough.

2.2 Apply KAM theory to the averaged system. The whiskered tori and full
dimensional tori inside ⇤✓,".

Tere M-Seara (UPC) May 20- 24 2024 50 / 58



The dynamics in ⇤"

Step 4.1: Averaging method

As we have an 2-dimensional invariant manifold for any Poincaré section ⌃✓,
we have a 3-dimensional invariant manifold for the flow, that we denote by
⇤̃".

One can see that the reduced flow in ⇤̃" is hamiltonian and its a Hamiltonian
is of the form: 1

2 I
2 + "K1(I ,�, t; ") and can be computed at any order in ".

We look for a change of variables that reduce the system to motion of the
actions to constant up to any order in " (eliminates the angles �, t from the
hamiltonian)

In one step of averaging the hamiltonian becomes:
1
2 I

2 + "h1(I ) + "2K 1
1 (I ,�, t; ").

Averaging fails at resonances Ik + l = 0

Far from resonances we obtain, after m steps
1
2 I

2 + "h0(I ; ") + O("m)

Close to simple resonances I = (n0/k0) the motion is more complicated:
1
2 I

2 + "h0(I ; ") + "V (k0✓ + n0t) + O("m). Motion is pendulum like
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The dynamics in ⇤"

Step 4.1: Averaging method

The motion of the Poincaré map for the averaged system in ⇤✓," is:

We see here the new objects that fill the gaps: the secondary tori!

Tere M-Seara (UPC) May 20- 24 2024 52 / 58



The dynamics in ⇤"

Step 4.2: KAM theorem

Now we can apply the KAM theorem to the Poincaré map P✓," of the
averaged system in ⇤✓," with m = 3.

We obtain invariant tori (primary or secondary) at a distance O(✏3/2):
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The dynamics in ⇤"

Step 5: Transition chains

Once we know the structure in ⇤✓," given by the invariant tori of P✓,"

we use the scattering map �✓," to find heteroclinic intersections, even
if the tori have di↵erent topology!.
Lemma: If �✓,"(T1) \ T2 6= ; then W u(T1) t W s(T2); and therefore
there is an heteroclinic connection between T1 and T2.

2
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The dynamics in ⇤"

Step 6: Shadowing lemmas

We need to see that there is a “real” orbit which follows the chain.

We use a Lambda lemma, Fontich-Mart́ın (Nonlinearity, 2000) that can be
applied to tori of di↵erent topology.

Let f be a symplectic map in a 4 symplectic manifold.
Assume that the map leaves invariant a C

1 1-dimensional torus T and
that the motion in the torus is an irrational rotation.
Let ⇠ be a 2-dimensional manifold transversal to W u(T ).

Then, W s(T ) ⇢
S

i>0 f
�i (⇠).

We use this lemma to see that:
Let {Ti}1i=1 be a sequence of transition tori (tori with irrational rotation,
such that W u(Ti ) t W s(Ti+1))
Given {"i}1i=1 a sequence of strictly positive numbers, we can find a point P
and a increasing sequence of numbers Ti such that

�Ti
(P) 2 N"i (Ti )

where N"i (Ti ) is a neighborhood of size "i of the torus Ti .
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The dynamics in ⇤"

Step 6: Shadowing lemmas

2

The orbit of P has action I which increase along the orbit!!
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The dynamics in ⇤"

proof Let x 2 W s

T1 . We can find a closed ballB1, centered on x , and such
that

�T1(B1) ⇢ N"1(T1). (4)

By the Lambda Lemma
W s

T2 \ B1 6= ;.

Hence, we can find a closed ball B2 ⇢ B1, centered in a point in W s

T2 such
that, besidessatisfying (4):

�T2(B2) ⇢ N"2(T2).

Proceeding by induction, we can find a sequence of closed balls

Bi ⇢ Bi�1 ⇢ · · · ⇢ B1

�Tj
(Bi ) ⇢ N"j (Tj), i  j .

Since the balls are compact, \Bi 6= ;.
A point P in the intersection satisfies the required property.
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