Lecture 3: Geometric methods in Arnold diffusion Master Class KTH, Stockholm

Tere M. Seara

Universitat Politecnica de Catalunya

May 20- 24 2024

May 20- 24 2024 1 / 58

E

590

The case of two or more degrees of freedom

- In the case of one and a half degrees of freedom, the KAM tori (curves in \mathbb{R}^2) act as barriers to instability.
- Even if the separatrices of the periodic orbit (fix point for the Poincaré map) split, this only causes "local chaos" not global one.
- The previous argument does not work for periodic external perturbations of systems of two or more degrees of freedom (Poincaré maps of dimension 4 or higher!).
- n = 2: The KAM tori (2-dimensional) do not separate the phase space (4-dimensional) (4 2 = 2 > 1).

The main conjecture:

"Typical systems in action-angle variables have orbits whose actions change widely **even if the systems are close to integrable**"

Arnold itself gave the most famous example, that we now explain.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少へで

Best known example in the mathematical literature: Arnol'd example:

$$\begin{aligned} H(I,\phi,t;\varepsilon,\mu) &= H_0(I) + \varepsilon H_1(I;\phi,t;\varepsilon,\mu) \\ &= \frac{1}{2}(I_1^2 + I_2^2) + \varepsilon(\cos\phi_1 - 1) + \mu\varepsilon(\cos\phi_1 - 1)(\sin\phi_2 + \cos t), \end{aligned}$$

For $\varepsilon = 0$ we have an integrable system $H = H_0(I) = \frac{1}{2}(I_1^2 + I_2^2)$, therefore $I(t) = I(0), \ \forall t \in \mathbb{R}$

Theorem

For $0 < \mu \ll \varepsilon \ll 1$, there exist orbits of the Hamilton's equations with

$$|I(T) - I(0)| > 1$$
.

Answer to the Instability question: Instability, there exit perturbed motions whose actions change O(1) even if the perturbative parameter ε is small!

Tere M-Seara (UPC)

May 20- 24 2024 3 / 58

 $H(I,\phi,t;\varepsilon,\mu) = \frac{1}{2}(I_1^2 + I_2^2) + \varepsilon(\cos\phi_1 - 1) + \mu\varepsilon(\cos\phi_1 - 1)(\sin\phi_2 + \cos t)$

- The phase space is 5 dimensional: $\mathbb{R}^2 \times \mathbb{T}^3$.
- The Poincaré map is 4 dimensional: $\mathcal{P}_{\theta}: \Sigma_{\theta} \to \Sigma_{\theta}, \Sigma_{\theta} \simeq \mathbb{R}^2 \times \mathbb{T}^2$
- $\varepsilon = 0$: $H(I, \phi, t; 0, 0) = H_0(I) = \frac{1}{2}(I_1^2 + I_2^2)$
- Equations: $\dot{I}_1 = \dot{I}_2 = 0$, $\dot{\phi}_1 = I_1$, $\dot{\phi}_2 = I_2$
- Integrable system. Poincaré map $\mathcal{P}_{\theta}(x) = \varphi(2\pi; x)$ is given by:

$$\mathcal{P}_{\theta}(I_1^0, I_2^0, \phi_1^0, \phi_2^0) = (I_1^0, I_2^0, \phi_1^0 + 2\pi I_1^0, \phi_2^0 + 2\pi I_2^0)$$

• The 2- dimensional tori:

$$\mathbb{T}_{I^0} = \{I_1 = I_1^0, \ I_2 = I_2^0, \ (\phi_1, \phi_2) \in \mathbb{T}^2\}$$

are invariant and foliate the space $\mathbb{R}^2 \times \mathbb{T}^2$.

• The motion in the torus is quasiperiodic of frequency: $\omega(I^0) = (I_1^0, I_2^0)$.

SQ (?

 $H(I,\phi,t;\varepsilon,\mu) = \frac{1}{2}(I_1^2 + I_2^2) + \varepsilon(\cos\phi_1 - 1) + \mu\varepsilon(\cos\phi_1 - 1)(\sin\phi_2 + \cos t)$

• $\varepsilon > 0$, $\mu = 0$: intermediate Hamiltonian:

$$H(I,\phi,t;\varepsilon,0)=\frac{1}{2}(I_1^2+I_2^2)+\varepsilon(\cos\phi_1-1)$$

Integrable system (model of a simple resonance)

$$\phi_1 = I_1$$
$$\dot{I}_1 = \varepsilon \sin \phi_1$$
$$\dot{\phi}_2 = I_2$$
$$\dot{I}_2 = 0$$

• $I_2(t) = I_2(0)$, and $\phi_2(t) = \phi_2(0) + I_2(0)t$

• (I_1, ϕ_1) form a pendulum of Hamiltonian $P(I_1, \phi_1; \varepsilon) = \frac{1}{2}I_1^2 + \varepsilon(\cos\phi_1 - 1)$.

 $H(I,\phi,t;\varepsilon,\mu) = \frac{1}{2}(I_1^2 + I_2^2) + \varepsilon(\cos\phi_1 - 1) + \mu\varepsilon(\cos\phi_1 - 1)(\sin\phi_2 + \cos t)$

• $\varepsilon > 0$, $\mu = 0$: intermediate Hamiltonian:

$$H(I,\phi,t;\varepsilon,0) = \frac{1}{2}(I_1^2 + I_2^2) + \varepsilon(\cos\phi_1 - 1)$$

- Integrable system (model of a simple resonance)
- Some 2 dimensional tori survive (KAM): they correspond to the rotational orbits in the pendulum.

• 2-dimensional tori for the Poincaré map close to $I_1 = I_1^0 = \sqrt{2h}$. $I_2 = I_2^0$, h > 1: $\frac{1}{2}I_1^2 + \varepsilon(\cos \phi_1 - 1) = h, h > 1$ $I_2 = I_2^0, \phi_2 \in \mathbb{T}$

6 / 58

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少々で

 $H(I,\phi,t;\varepsilon,\mu) = \frac{1}{2}(I_1^2 + I_2^2) + \varepsilon(\cos\phi_1 - 1) + \mu\varepsilon(\cos\phi_1 - 1)(\sin\phi_2 + \cos t)$

- $\varepsilon > 0$, $\mu = 0$: intermediate Hamiltonian: $H(I, \phi, t; \varepsilon, 0) = \frac{1}{2}(I_1^2 + I_2^2) + \varepsilon(\cos \phi_1 - 1)$
- Integrable system (model of a simple resonance)
- Other tori are destroyed (correspond to the resonance $I_1 = 0$) given rise to whiskered one-dimensional tori.
- They are given by the critical point of the pendulum and the tori of the rotator, which become one-dimensional tori for the Poincaré map of frequency $\omega = I_2$:

$$\mathcal{T}_{I_2^0} = \{I_1 = \phi_1 = 0, I_2 = I_2^0, \phi_2 \in \mathbb{T}\}, \quad \mathcal{P}_{\theta}(0, 0, I_2^0, \phi_2) = (0, 0, I_2^0, \phi_2 + 2\pi I_2^0)$$

• They are hyperbolic tori whose two-dimensional stable and unstable manifolds (whiskers) coincide along a homoclinic manifold.

$$W^{u}(\mathcal{T}_{I_{2}^{0}}) = W^{s}(\mathcal{T}_{I_{2}^{0}}) = \{\frac{1}{2}I_{1}^{2} + \varepsilon(\cos\phi_{1} - 1) = 0, \ I_{2} = I_{2}^{0}, \ \phi_{2} \in \mathbb{T}\}$$

$$\begin{aligned} H(I,\phi,t;\varepsilon,\mu) &= \frac{1}{2}(I_1^2 + I_2^2) + \varepsilon(\cos\phi_1 - 1) + \mu\varepsilon(\cos\phi_1 - 1)(\sin\phi_2 + \cos t) \\ \varepsilon &> 0, \ \mu = 0, \text{ intermediate Hamiltonian:} \\ H(I,\phi,t;\varepsilon,0) &= \frac{1}{2}(I_1^2 + I_2^2) + \varepsilon(\cos\phi_1 - 1). \end{aligned}$$

Dynamics of the intermediate Hamiltonian: $\varepsilon > 0$, $\mu = 0$

Tere M-Seara (UPC)

May 20- 24 2024 8 / 58

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

 $H(I,\phi,t;\varepsilon,\mu) = \frac{1}{2}(I_1^2 + I_2^2) + \varepsilon(\cos\phi_1 - 1) + \mu\varepsilon(\cos\phi_1 - 1)(\sin\phi_2 + \cos t)$

$$\begin{split} \dot{\phi}_1 &= I_1 \\ \dot{I}_1 &= \varepsilon \sin \phi_1 + \varepsilon \mu \sin \phi_1 (\cos t + \cos \phi_2) \\ \dot{\phi}_2 &= I_2 \\ \dot{I}_2 &= -\varepsilon \mu \cos \phi_2 (\cos \phi_1 - 1) \end{split}$$

• For $\mu > 0$ all the 1-dimensional whiskered tori

$$\mathcal{T}_{I_2^0} = \{I_1 = \phi_1 = 0, \quad I_2 = I_2^0, (\phi_2, s) \in \mathbb{T}^2\}$$

are preserved with the same dynamics: $\mathcal{P}_{\theta}(0, 0, I_{2}^{0}, \phi_{2}) = (0, 0, I_{2}^{0}, \phi_{2} + 2\pi I_{2}^{0}).$

• Each torus has 2-dimensional stable and unstable manifolds (whiskers) $W^{u,s}_{\mu}(\mathcal{T}_{I_2^0})$.

 $H(I, \phi, t; \varepsilon, \mu) = \frac{1}{2}(I_1^2 + I_2^2) + \varepsilon(\cos \phi_1 - 1) + \mu \varepsilon(\cos \phi_1 - 1)(\sin \phi_2 + \cos t)$ For $\varepsilon > 0, \ \mu > 0.$

• For $\mu > 0$ the stable and unstable manifolds $W^{u,s}_{\mu}(\mathcal{T}_{I_2})$ (whiskers of \mathcal{T}_{I_2}) change.

• We need to prove that the 2-dimensional stable and unstable manifolds of the tori $\mathcal{T}_{I_2^0}$ intersect transversally along a homoclinic manifold (containing heteroclinic orbits bewteen the points of $\mathcal{T}_{I_2^0}$).

• This computation is the Poincaré-Melnikov method, analog to the one and a half degrees of freedom case for the computation of homoclinic intersections between the stable and unstable manifolds of periodic orbits.

• As we are in a 4-dimensional space for the Poincaré map, these transversal homoclinic intersections will give rise to heteroclinic ones between tori wich are close enough.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

 $H(I, \phi, t; \varepsilon, \mu) = \frac{1}{2}(I_1^2 + I_2^2) + \varepsilon(\cos \phi_1 - 1) + \mu\varepsilon(\cos \phi_1 - 1)(\sin \phi_2 + \cos t)$ • Scaling $I_1 = \sqrt{\varepsilon}p_1$, $I_2 = \sqrt{\varepsilon}p_2$ and $\tau = \sqrt{\varepsilon}t$:

$$\dot{\phi}_1 = p_1$$

$$\dot{p}_1 = \sin \phi_1 + \mu \sin \phi_1 (\sin \phi_2 + \cos \frac{\tau}{\sqrt{\varepsilon}})$$

$$\dot{\phi}_2 = p_2$$

$$\dot{p}_2 = -\mu \cos \phi_2 (\cos \phi_1 - 1)$$

• $K(p, \phi, \tau; \mu) = \frac{1}{2}(p_1^2 + p_2^2) + (\cos \phi_1 - 1) + \mu(\cos \phi_1 - 1)(\sin \phi_2 + \cos \frac{\tau}{\sqrt{\varepsilon}})$

• It is a $\mathcal{O}(\mu)$ perturbation of an integrable system with stable and unstable manifolds which coincide. So one can "generalize" the Melnikov approach.

• Warning! $\omega = \frac{1}{\sqrt{\varepsilon}}$, the Melnikov function will be exponentially small in $\sqrt{\varepsilon}$.

- If $\mu = O(e^{-\frac{C}{\sqrt{\varepsilon}}})$, the calculation given by the Melnikov function is enough.
- The stable and unstable manifolds of every torus \mathcal{T}_{2}^{0} intersect transversaly along a homoclinic orbit Tere M-Seara (UPC) May 20- 24 2024 11/58

Transversal homoclinic orbits give rise to transversal heteroclinic orbits between tori $\mathcal{T}_{I_2^0}$ sufficiently close. The unstable whisker of a torus $\mathcal{T}_{I_2^0}$ intersects transversally the stable whisker of another neighboring torus $\mathcal{T}_{I_2^1}$.

May 20- 24 2024

590

We find
$$\{\mathcal{T}_{l_2^i}\}_{i=1}^N$$
 such that $W_{\mathcal{T}_{l_2^i}}^u \pitchfork W_{\mathcal{T}_{l_2^i}}^s$. (transition chain.)

Tere M-Seara (UPC)

May 20- 24 2024 13 / 58

▲ロ▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

There is an orbit that shadows the transition chain. (*obstruction property*)

590

Arnold example: 2 and a half degrees of freedom

Diffusion mechanism when $\varepsilon > 0$, $\mu > 0$.

Tere M-Seara (UPC)

May 20- 24 2024 15 / 58

▲ロ▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

First observation: "a priori unstable systems"

The rigorous verification of Arnol'd mechanism uses the condition $\mu = \mathcal{O}(e^{-\frac{c}{\sqrt{\varepsilon}}})$ (still open for $\mu = \mathcal{O}(\varepsilon^{p})$) P. Holmes, J. Marsden (1982): take the intermediate Hamiltonian as the unperturbed one: $\varepsilon = 1$, $0 < \mu \ll 1$

$$H(I,\phi,t;\mu) = \frac{1}{2}(I_1^2 + I_2^2) + \cos\phi_1 - 1 + \mu(\cos\phi_1 - 1)(\sin\phi_2 + \cos t)$$

Chierchia-Gallavotti:

a priori unstable system

$$H(I,\phi,t;\varepsilon) = \frac{1}{2}(I_1^2 + I_2^2) + \cos\phi_1 - 1 + \varepsilon h(I,\phi,t;\varepsilon)$$

a priori stable system

$$H(I,\phi,t;\varepsilon) = \frac{1}{2}(I_1^2 + I_2^2) + \varepsilon h(I,\phi,t;\varepsilon)$$

Tere M-Seara (UPC)

▲□▶▲□▶▲■▶▲■▶ ■ のQ@

Second observation: the "large gap" problem

Even in the a priori unstable system case, the Arnol'd example is based on the fact that all the 1-dimensional (hyperbolic) tori \mathcal{T}_{l_2} are preserved.

- In general, \mathcal{T}_{I_2} can be destroyed when $\varepsilon \neq 0$; KAM Theorem. Large gaps are typical.
- $\mathcal{T}_{I_2^0} = \{I_1 = \phi_1 = 0, \quad I_2 = I_2^0, \phi_2 \in \mathbb{T}\}$ Motion on $\mathcal{T}_{I_2^0}$ is $\mathcal{P}_{\theta}(0, 0, I_2, \phi_2) = (0, 0, I_2, \phi_2 + I_2 2\pi)$ frequency $\omega = I_2$
- The gaps between the tori that survive are balls of radius $\sqrt{\varepsilon}$ centered in the resonances $(I_2 = m/n)$.
- The heteroclinic jumps are of order ε . (Melnikov theory would give $x^u x^s = \varepsilon M(v, \phi, \theta) + O(\varepsilon^2)$).
- Arnold mechanism can not be applied to general perturbations of a priori unstable systems.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少へで

Geometric methods

- Arnold's mechanism is the begining of wat are called "geometric methods".
- But some new ideas came after his example.
- We will explain these methods and see how they apply to Arnold example and to other more general Hamiltonians.

The model:

$$egin{aligned} & \mathcal{H}_arepsilon(p,q,l,\phi,t) = h_0(l) + \sum_{i=1}^n \pm \left(rac{1}{2}p_i^2 + V_i(q_i)
ight) + arepsilon \mathcal{H}_1(p,q,l,\phi,t;arepsilon), \ & \mathcal{H}_0\left(p,q,l,\phi
ight) \in \mathbb{R}^n imes \mathbb{T}^n imes \mathbb{R}^d imes \mathbb{T}^d \end{aligned}$$

- Recall Arnold model: $H(I,\phi,t;\mu) = \frac{1}{2}(I_1^2 + I_2^2) + \varepsilon(\cos\phi_1 - 1) + \mu\varepsilon(\cos\phi_1 - 1)(\sin\phi_2 + \cos t)$
- Call $p = I_1$, and $q = \phi_1$, $\varepsilon = 1$ and $\mu = \varepsilon$ $I_2 = I$, $\phi_2 = \phi$ and
- $H(p,q,I,\phi,t;\mu) = \frac{1}{2}I^2 + \frac{1}{2}p^2 + \cos q 1 + \varepsilon(\cos q 1)(\sin \phi + \cos t)$

Tere M-Seara (UPC)

 \mathcal{A}

First assumptions

 $H_{\varepsilon}(p,q,I,\phi,t) = h_0(I) + \sum_{i=1}^n \pm \left(\frac{1}{2}p_i^2 + V_i(q_i)\right) + \varepsilon H_1(p,q,I,\phi,t;\varepsilon),$

(A1.) The functions h_0 , H_1 and V_i , i = 1, ..., n, are uniformly C^r for $r \ge r_0$.

(A2.) Each potential $V_i : \mathbb{T}^n \to \mathbb{R}$, i = 1, ..., n, is 2π -periodic in q_i and has a non-degenerate global maximum at 0, and hence each 'pendulum' $\pm \left(\frac{1}{2}p_i^2 + V_i(q_i)\right)$ has a homoclinic orbit to (0,0), parametrized by $(p_i^0(\tau_i), q_i^0(\tau_i)), \tau_i \in \mathbb{R}$.

During this course we will take n = d = 1, and $h_0(I) = \frac{1}{2}I^2$, but the proofs can be easily generalized. The phase space for the flow will be 5-dimensional and for the Poincaré map $\mathcal{P}_{\theta,\varepsilon}$ will be 4-dimensional.

• $H_{\varepsilon}(p,q,I,\phi,t) = \frac{1}{2}I^2 + \frac{1}{2}p^2 + V(q) + \varepsilon H_1(p,q,I,\phi,t;\varepsilon).$

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Main tools in geometric methods

The main tools we will use are:

- Existence and persistence of normally hyperbolic invariant manifolds (NHIM)
- Existence and computation of the Scattering map in a NHIM

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少々で

First tool: Normally hyperbolic invariant manifolds

Definition of a NHIM for a map (analogous for flows (Fenichel, Hirsch, Pugh, Shub, Pessin)):

- Normally hyperbolic invariant manifold (NHIM):
 - $F: M \to M$, C^r -smooth, $r \ge r_0$, $m = \dim M$.
 - $F(\Lambda) \subset \Lambda$, $n_c = \dim \Lambda$.
 - For any $x \in \Lambda$ we have. $T_x M = T_x \Lambda \oplus E_x^u \oplus E_x^s$
 - $n_s = \dim E^s$, $n_u = \dim E^u$.

•
$$m = n_c + n_s + n_u$$

•
$$\exists C > 0, 0 < \lambda < \mu^{-1} < 1, \text{ s.t. } \forall x \in \Lambda$$

 $v \in E_x^s \Leftrightarrow \|DF_x^k(v)\| \le C\lambda^k \|v\|, \forall k \ge 0$
 $v \in E_x^u \Leftrightarrow \|DF_x^k(v)\| \le C\lambda^{-k} \|v\|, \forall k \le 0$
 $v \in T_x\Lambda \Leftrightarrow \|DF_x^k(v)\| \le C\mu^{|k|} \|v\|, \forall k \in \mathbb{Z}$

Examples: hypebolic fix points, hypebolic periodic orbits.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少々で

First tool: Normally hyperbolic invariant manifolds

- The normal hyperbolicity of Λ implies that there exist smooth stable and unstable manifolds $W^{u,s}(\Lambda)$.
- If $x^{u,s} \in W^{u,s}(\Lambda) \operatorname{dist}(F^n(x^{u,s}),\Lambda) \to 0 \text{ as } n \to \mp \infty$.
- Moreover $W^{u,s}(\Lambda) = \bigcup_{x \in \Lambda} W^{u,s}(x)$ where $W^{u,s}(x) = \{x^{u,s}, F^n(x^{u,s}) - F^n(x) \to 0, n \to \pm \infty\}$
- For any $x \in \Lambda$, $W^{u,s}(x)$ are smooth manifolds.
- In fact: $x^{u,s} \in W^{u,s}(x)$, $\rightarrow ||F^n(x^{u,s}) F^n(x)|| \le K\lambda^{|n|}, n \rightarrow \mp \infty$
- $W^{u,s}(x)$ are NOT invariant manifolds:

$$x^{u,s} \in W^{u,s}(x) \rightarrow F(x^{u,s}) \in W^{u,s}(F(x))$$

One can consider and the wave maps:

$$\Omega^+$$
 : $W^s(\Lambda) \ni x \mapsto x_+ \in \Lambda$, such that $x \in W^s_{loc}(x_+)$
 Ω^- : $W^u(\Lambda) \ni x \mapsto x_- \in \Lambda$, such that $x \in W^s_{loc}(x_-)$

These maps are smooth maps.

Tere M-Seara (UPC)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

May 20- 24 2024 23 / 58

596

Second tool: The scattering map

- Assume that there exists a transverse homoclinic manifold $\Gamma \subseteq W^u(\Lambda) \cap W^s(\Lambda)$
- For each $x \in \Gamma$, we have

$$T_{x}M = T_{x}W^{u}(\Lambda) + T_{x}W^{s}(\Lambda), \quad T_{x}\Gamma = T_{x}W^{u}(\Lambda) \cap T_{x}W^{s}(\Lambda).$$
 (2)

• For each $x \in \Gamma$, if $x_{\pm} \in \Lambda$ are such that $x \in W^{s}(x_{+}) \cap W^{u}(x_{-})$. Then:

$$T_{x}W^{s}(\Lambda) = T_{x}W^{s}(x^{+}) \oplus T_{x}\Gamma, \quad T_{x}W^{u}(\Lambda) = T_{x}W^{u}(x^{-}) \oplus T_{x}\Gamma.$$
 (3)

we say that Γ is a homoclinic channel.

Tere M-Seara (UPC)

590

24 / 58

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Second tool: The scattering map

Scattering map associated to the homoclinic channel Γ .

$$\sigma: \Omega^{-}(\Gamma) \subset \Lambda
ightarrow \Omega^{+}(\Gamma) \subset \Lambda, \quad \sigma = \Omega^{+} \circ (\Omega^{-})^{-1},$$

- It is a diffeomorphism from $\Omega^{-}(\Gamma)$ to $\Omega^{+}(\Gamma)$.
- If σ(x⁻) = x⁺, then there exits a unique x ∈ Γ such that W^u(x⁻) ∩ W^s(x⁺) ∩ Γ = {x}.
- Note that:

dist
$$(F^{-n}(x) - F^{-n}(x_{-})) \rightarrow 0$$
, as $n \rightarrow \infty$
dist $(F^{m}(x) - F^{m}(x_{+})) \rightarrow 0$ as $m \rightarrow \infty$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少々で

Second tool: The scattering map

The scattering map in Λ relates points x_{-} and $x_{+} = \sigma(x_{-})$ when there is an heteroclinic orbit between them.

• $F^{-M}(x)$ is close to $F^{-M}(x_{-})$ and $F^{N}(x)$ is close to $F^{N}(x_{-})$

- Call $x_1 = F^{-M}(x)$. Then x_1 is close to $F^{-M}(x_-)$, and $F^{N+M}(x_1)$ is close to $F^N(x_-)$
- important: There is no orbit from x_− to x₊ (it requires infinite time), but there is an orbit which begins close to x_− and arrives close to x₊. =
 Tere M-Seara (UPC)
 May 20- 24 2024

The unperturbed problem ($\varepsilon = 0$): the NHIM

 $\begin{aligned} H_{\varepsilon}(p,q,I,\phi,t) &= \frac{1}{2}I^2 + \frac{1}{2}p^2 + V(q) + \varepsilon H_1(p,q,I,\phi,t;\varepsilon) \\ \text{A different approach to Arnold diffusion: the use of normally hyperbolic manifolds.} \\ \text{When } \varepsilon &= 0, \ H_0(p,q,I,\phi) = \frac{1}{2}I^2 + \frac{1}{2}p^2 + V(q), \text{ the dynamics is:} \end{aligned}$

 $\dot{q} = p$ $\dot{p} = V'(q)$ $\dot{\phi} = I$ $\dot{I} = 0$

(p,q) form a pendulum, and (I,ϕ) a rotator: $I(t) = I^0$, $\phi(t) = \phi^0 + I^0 t$:

p = q = 0, $(I, \phi) \in \mathbb{R} \times \mathbb{T}$ is a 2-dimensional invariant manifold (cilinder) for the Poincaré map \mathcal{P}_{θ} . $\mathcal{P}_{\theta}(0, 0, I, \phi) = (0, 0, I, \phi + 2\pi I)$

Tere M-Seara (UPC)

May 20- 24 2024 27 / 58

The unperturbed problem ($\varepsilon = 0$): the NHIM

 $H_0(p,q,I,\phi) = \frac{1}{2}I^2 + \frac{1}{2}p^2 + V(q)$

- For any $I^0 \in \mathbb{R}$, $\mathcal{T}_{I^0} = \{(0, 0, I^0, \phi) : \phi \in \mathbb{T}\}$ is a 1-dimensional invariant torus with frequency $\omega(I^0) = I^0$.
- Λ = ∪_{I∈ℝ} T_I = {(0,0, I, φ) : (I, φ) ∈ ℝ × T} ~ ℝ × T is a 2-dimensional normally hyperbolic invariant manifold (cylinder) filled by 1-dimensional invariant tori T_I.
- The Poincaré map $\mathcal{P}_{\theta} = \mathcal{P}_{\theta,0}$ restricted to Λ (inner motion) is given by $\mathcal{P}_{\theta}(0,0,I,\phi) = (0,0,I,\phi+2\pi I)$
- (I, ϕ) are good global coordinates in Λ
- Λ and \mathcal{T}_{I} are independent of θ .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少々で

The unperturbed problem ($\varepsilon = 0$): the stable and unstable manifolds of the NHIM

- Each torus *T*_{I⁰} is a "whiskered torus" and its 2-dimensional stable and unstable manifolds coincide along a 2-dimensional homoclinic manifold: *W*(*T*_{I⁰}) = {(*p*, *q*, *I*⁰, φ), ½*p*² + *V*(*q*) = 0, φ ∈ T}
- The 2-dimensional homoclinic manifold can be also parameterized by time: *W*(*T*_I⁰) = {(*p*_h(*v*), *q*_h(*v*), *I*⁰, *φ*), *v* ∈ ℝ, *φ* ∈ T} where (*p*_h(*v*), *q*_h(*v*)) is the homoclinic orbit of the pendulum: (*p*_h(*v*), *q*_h(*v*)) → 0, as *v* → ±∞
- A has 3-dimensional stable and unstable manifolds which coincide along the 3-dimensional homoclinic manifold given by the equation $\frac{1}{2}p^2 + V(q) = 0$, and can be parameterized by time;

 $\Gamma = \{(p_h(v), q_h(v), I, \phi), v \in \mathbb{R}^n, (I, \phi) \in \mathbb{R} \times \mathbb{T}\}_{\square \land \neg \land \neg \neg \land}$

Tere M-Seara (UPC)

Sar

The unperturbed problem ($\varepsilon = 0$): the Scattering map

 $H_0(p,q,I,\phi) = \frac{1}{2}I^2 + \frac{1}{2}p + V(q)$

Introducing the parametrizations:

$$\begin{array}{rcl} x_{0} & = & x_{0}(I,\phi) = (0,0,I,\phi) \in \Lambda \\ x_{h} & = & x_{h}(v,I,\phi) = (p_{h}(v),q_{h}(v),I,\phi) \in \Gamma \end{array}$$

the Poincaré map $\mathcal{P}_{ heta}$ acts, for any $heta \in \mathbb{T}$, as

$$\mathcal{P}_{\theta}^{n}(x_{0}(I,\phi)) = (0,0,I,\phi+2\pi ln) = x_{0}(I,\phi+2\pi ln)$$

$$\mathcal{P}_{\theta}^{n}(x_{h}(v,I,\phi);0) = (\underbrace{p_{h}(v+2\pi n), q_{h}(v+2\pi n)}_{\downarrow n \to \pm \infty}, I,\phi+I2\pi n) = x_{h}(v+2\pi n,I,\phi-1)$$

and it is therefore clear that $\forall v \in \mathbb{R} \ \mathcal{P}_{\theta}^{n}(x_{h}; 0) - \mathcal{P}_{\theta}^{n}(x_{0}; 0) \xrightarrow[n \to \pm \infty]{} 0.$ That is, for any $v \in \mathbb{R}$: $x_{h}(v, I, \phi) \in W^{s}(x_{0}(I, \phi)) \cap W^{u}(x_{0}(I, \phi))$

 $\sigma_0(x_0) = x_0$, in coordinates: $\sigma_0(I, \phi) = (I, \phi)$

 σ_0 is the identity on Λ .

Tere M-Seara (UPC)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The unperturbed problem ($\varepsilon = 0$): the Scattering map

 $H_{\varepsilon}(p, q, I, \phi, t) = \frac{1}{2}I^2 + \frac{1}{2}p + V(q) + \varepsilon H_1(p, q, I, \phi, t; \varepsilon)$ When $\varepsilon = 0$ we have:

- The tori $\mathcal{T}_{I^0} = \{(0, 0, I^0, \phi) : \phi \in \mathbb{T}\}$ are invariant and foliate Λ .
- The scattering map $\sigma_0(I, \phi) = (I, \phi)$, which gives $\sigma_0 = Id$.
- In particular

$$\sigma_0(\mathcal{T}_I^0) = \mathcal{T}_I^0$$

- The unperturbed tori \mathcal{T}_{I}^{0} only have homoclinic connexions.
- No possibility of diffusion
- Main idea in Arnold's proof: We want to see that, when ε ≠ 0 we can define a scattering map such that, the image of one torus intersects other tori.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Sketch of the proof of Arnold diffusion using geometric methods:

- 1) Persistence of Λ .
- 2) Study of the inner dynamics on Λ_{ε} .
- 3) Study of stable and unstable manifolds for Λ_{ε} and their intersection: the Melnikov method.
- 4) The perturbative scattering map.
- 5) Transition chains.
- (5') Combining the inner and the outer dynamics
 - 6) Shadowing lemmas.

May 20- 24 2024 32 / 58

 $\neg \land \land \land$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$\varepsilon \neq 0$, Step 1: persistence of Λ .

In the Arnold model:

 $H(p,q,I,\phi,t;\varepsilon) = \frac{1}{2}I^2 + \frac{1}{2}p^2 + \cos q - 1 + \varepsilon(\cos q - 1)(\sin \phi + \cos t)$

- $\Lambda = \{(0, 0, I, \phi)\}$ persists for $\varepsilon > 0$ and the dynamics on it is unchanged. $I = 0, \phi = I, \mathcal{P}_{\theta,\varepsilon}(0, 0, I, \phi) = (0, 0, I, \phi + I2\pi)$.
- In particular, all the whiskered tori \mathcal{T}_I are preserved for $\varepsilon > 0$.
- The manifold Λ has 3- dimensional stable and unstable manifolds, but these manifolds change. In particular they will not coincide anymore.
- To define a pertubed scattering map, we need to see that the invariant manifolds of Λ intersect transversally giving rise to a 2-dimensional homoclinic channel (to Λ) Γ_ε. This computation is the Poincaré, Melnikov method, analog to the one and a half degrees of freedom case.

▲□▶▲□▶▲□▶▲□▶ ■ のへで

$\varepsilon \neq 0$, Step 1: persistence of Λ .

 $H_{\varepsilon}(p,q,I,\phi,t) = \frac{1}{2}I^2 + \frac{1}{2}p^2 + V(q) + \varepsilon H_1(p,q,I,\phi,t;\varepsilon)$

As Λ is non compact, we restrict to $I \in [a, b]$, a compact interval the action space. By the theory of NHIM applied to $\mathcal{P}_{\theta,\varepsilon}$, there exist smooth manifolds $\Lambda_{\theta,\varepsilon}$, $W_{loc}^{s}(\Lambda_{\theta,\varepsilon}), W_{loc}^{u}(\Lambda_{\theta,\varepsilon})$

 $\Lambda_{\theta,\varepsilon} = \Lambda + \mathcal{O}(\varepsilon), \ W^{s,u}(\Lambda_{\theta,\varepsilon}) = W^{s,u}(\Lambda) + \mathcal{O}(\varepsilon)$

Moreover $W_{loc}^{s,u}(\Lambda_{\theta,\varepsilon}) = \bigcup_{x \in \Lambda_{\theta,\varepsilon}} W_{loc}^{s,u}(x)$. That is, for any $x^{s,u} \in W_{loc}^{s,u}(\Lambda_{\theta,\varepsilon})$ there exist $x_{\pm} \in \Lambda_{\theta,\varepsilon}$ such that

$$\left|\mathcal{P}_{\theta,\varepsilon}^{n}(x^{s,u};\varepsilon)-\mathcal{P}_{\theta,\varepsilon}^{n}(x_{\pm};\varepsilon)\right|\leqslant K\lambda_{\varepsilon}^{-|n|}n\to\pm\infty$$

The local manifolds can be globalized $W^{s,u}(\Lambda_{\theta,\varepsilon}) = \bigcup_{+,-n<0} \mathcal{P}^n_{\theta}(W^{s,u}_{loc}(\Lambda_{\theta,\varepsilon}))$. The manifold $\Lambda_{\theta,\varepsilon}$ is not unique, not invariant, but only locally invariant. The local invariance means that there exists a neighborhood \mathcal{V} of $\Lambda_{\theta,\varepsilon}$, such that any orbit of $\mathcal{P}_{\theta,\varepsilon}(x)$ that stays in \mathcal{V} for all time is actually contained in $\Lambda_{\theta,\varepsilon}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少々で

• In general, $W^{s}(\Lambda_{\theta,\varepsilon}) \neq W^{u}(\Lambda_{\theta,\varepsilon})$.

- To be able to define the scattering map in the perturbed case, we look for the points x ∈ W^s(Λ_{θ,ε}) ⊕ W^u(Λ_{θ,ε}).
- Totally analogous to the one and a half degrees of freedom case we consider Poincaré function (or Melnikov potential) associated to the homoclinic manifold:

$$\begin{split} L(v, I, \phi, \theta) &= -\int_{-\infty}^{\infty} \left[H_1(p_h(v+t), q_h(v+t), I, \phi + It, \theta + t; 0) \right. \\ &- H_1(0, 0, I, \phi + It, \theta + t; 0) \right] dt. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Proposition

Fix the section $\Sigma_{\theta} = \{(p, q, I, \phi, t), t = \theta\}$. Assume that there exists a set $U^- := \mathcal{I} \times \mathcal{J} \subset \mathbb{R}^{\times} \mathbb{T} \simeq \Sigma_{\theta}$, such that \mathcal{I} is a ball in \mathbb{R} , and for any values $(I, \phi) \in U^-$, the map

$$\mathbf{v} \in \mathbb{R}^n \to L(\mathbf{v}, \mathbf{I}, \phi, \theta) \in \mathbb{R}$$

has a non-degenerate critical point v^* , which is locally given, by the implicit function theorem, by

$$\mathbf{v}^* = \mathbf{v}^*(\mathbf{I}, \phi, \theta).$$

Then, for $0 < |\varepsilon|$ small enough, there exists a transversal homoclinic point $x(I,\phi;\varepsilon) \in W^u(\Lambda_{\theta,\varepsilon}) \pitchfork W^s(\Lambda_{\theta,\varepsilon})$, which is ε -close to the point $x_h(v^*, I, \phi) = (p_h(v^*), q_h(v^*), I, \phi) \in \Gamma$: that is:

 $x = x(I,\phi;\varepsilon) = (p_h(v^*) + \mathcal{O}(\varepsilon), q_h(v^*) + O(\varepsilon), I, \phi) \in W^s(\Lambda_{\theta,\varepsilon}) \pitchfork W^u(\Lambda_{\theta,\varepsilon}).$

The proof is identical to the one and a half degrees of freedom.

Tere M-Seara (UPC)

SQ (?

Proof:

Fix the Poincaré section Σ_{θ} and take any point

$$x_h = x_h(v, I, \phi) = (p_h(v), q_h(v), I, \phi) \in \Gamma$$

we have a straight line N transversal to Γ in x_h :

 $N = N(x_h) = x_h + \langle \nabla P(p_h(v), q_h(v)) \rangle$, the normal bundle to the 3 separatrix Γ in the 4 dimensional space Σ_{θ} , where ∇P denotes the vector: $\nabla P = \left(\frac{\partial P}{\partial p}, \frac{\partial P}{\partial q}, 0, 0\right)$.

Tere M-Seara (UPC)

Since $W^{s,u}(\Lambda_{\theta,\varepsilon}) = W^{s,u}(\Lambda) + \mathcal{O}(\varepsilon)$, $W^{s,u}(\Lambda_{\theta,\varepsilon})$ intersect N in unique points $x^{s,u} \in W^{s,u}(\Lambda_{\theta,\varepsilon})$. We try to find x_h and in particular v, such that $x^s = x^u$. Note that

$$x^{s,u} = \left(p_h(v) + \lambda^{s,u} \frac{\partial P}{\partial p}(p_h(v), q_h(v)), q_h(v) + \lambda^{s,u} \frac{\partial P}{\partial q}(p_h(v), q_h(v)), I, \phi\right),$$

where $x^{s,u} = x^{s,u}(v, I, \phi; \varepsilon)$ and $\lambda^{s,u} = \lambda^{s,u}(v, I, \phi; \varepsilon) = O(\varepsilon)$. The computations done for one and half degrees of freedom give:

$$P(x^{u}) - P(x^{s}) = \underbrace{P(x_{-})}_{O(\varepsilon^{2})} - \underbrace{P(x_{+})}_{O(\varepsilon^{2})} + \varepsilon \int_{-\infty}^{\infty} \{P, H_{1}\}(p_{0}(v + \sigma), q_{0}(v + \sigma), I, \phi + I\sigma, \theta + \sigma; 0) - \{P, H_{1}\}(0, 0, I, \phi + I\sigma, \theta + \sigma; 0)d\sigma + \mathcal{O}(\varepsilon^{2}),$$

where $x_{+,-} = x_0 + \mathcal{O}(\varepsilon) \in \Lambda_{\varepsilon}$ are the points such that $x^{u,s} \in W^{u,s}(x_{\mp})$.

Tere M-Seara (UPC)

Therefore

$$P(x^{u}) - P(x^{s}) = \varepsilon \frac{\partial}{\partial v} \int_{-\infty}^{\infty} H_{1}(p_{h}(v + \sigma), q_{h}(v + \sigma), I, \phi + I\sigma, \theta + \sigma; 0)$$

- $H_{1}(0, 0, I, \phi + I\sigma, \theta + \sigma; 0) d\sigma + \mathcal{O}(\varepsilon^{2})$
= $\varepsilon \frac{\partial}{\partial v} L(v, I, \phi, \theta) + \mathcal{O}(\varepsilon^{2}).$

By the Implicit Function Theorem, non-degenerate critical points $v^* = v^*(I, \phi, \theta)$ of $v \in \mathbb{R} \mapsto L(v, I, \phi, \theta) \in \mathbb{R}$ give rise to $\tilde{v} = v^* + \mathcal{O}(\varepsilon)$ where $P(x^u) - P(x^s) = 0$ and, therefore, there are transversal homoclinic points

$$\begin{aligned} x^{u} &= x^{s} = x = x(I, \phi, \theta; \varepsilon) = \\ &= \left(p_{h}(\tilde{v}) + \lambda \frac{\partial P}{\partial p}(p_{h}(\tilde{v}), q_{h}(\tilde{v})), q_{h}(\tilde{v}) + \lambda \frac{\partial P}{\partial q}(p_{h}(\tilde{v}), q_{h}(\tilde{v})), I, \phi \right) \end{aligned}$$

in $W^{s}(\Lambda_{\varepsilon}) \pitchfork W^{u}(\Lambda_{\varepsilon})$, where $\lambda = \lambda^{s,u} = \lambda(\tilde{v}, I, \phi, s; \varepsilon) = \mathcal{O}(\varepsilon)$, so that x is ε -close to $x_{h}(v^{*}, I, \phi) := (p_{h}(v^{*}), q_{h}(v^{*}), I, \phi), v^{*} = v^{*}(I, \phi, \theta).$

Tere M-Seara (UPC)

- $L(v, I, \phi, \theta)$ is called the Melnikov potential.
- Once that we know that x ∈ W^u(x₋) ∩ W^s(x₊), where x_± = (I_±, φ_±) ∈ Λ_ε we want to compute the I coordinate of these points, that we already know I_± = I + O(ε).
- The same kind of computations using I instead of P(p,q) give:

$$\begin{split} I(x^{u}) - I(x^{s}) &= I_{-} - I_{+} + \\ &+ \varepsilon \int_{-\infty}^{\infty} \{I, H_{1}\}(p_{h}(v + \sigma), q_{h}(v + \sigma), I, \phi + I\sigma, \theta + \sigma) \\ &- \{I, H_{1}\}(0, 0, I, \phi + I\sigma, \theta + \sigma)d\sigma \\ &+ \mathcal{O}(\varepsilon^{2}) \\ &= I_{-} - I_{+} + \varepsilon \frac{\partial}{\partial \phi} L(v, I, \phi s) + \mathcal{O}(\varepsilon^{2}), \end{split}$$

Therefore, if we take $v = \tilde{v} = \tilde{v}(I, \phi, \theta; \varepsilon)$, then $x^u = x^s$ and: $I_- - I_+ = \varepsilon \frac{\partial}{\partial \phi} L(\tilde{v}, I, \phi, \theta) + \mathcal{O}(\varepsilon^2)$

Tere M-Seara (UPC)

May 20- 24 2024 40 / 58

- We will now define the scattering map for the perturbed Hamiltonian.
- Take $\theta \in [0, 2\pi]$.
- Let U⁻ := I × J ⊂ ℝ × T, such that I is a ball in ℝ, and for any values (I, φ, θ) ∈ U⁻ × [0, 2π] ∃v^{*} = v^{*}(I, φ, θ) critical point of

$$\mathbf{v}\mapsto \mathbf{L}(\mathbf{v},\mathbf{I},\phi,\theta)$$

in such a way that

$$x = x(I, \phi, \theta; \varepsilon) \in W^{s}(\Lambda_{\theta, \varepsilon}) \pitchfork W^{u}(\Lambda_{\theta, \varepsilon}).$$

- Let $\Gamma_{\theta,\varepsilon} = \{x(I,\phi,\theta;\varepsilon), (I,\phi,\theta) \in U^- \times [0,2\pi]\}.$
- For any $x \in \Gamma_{\theta,\varepsilon}$ there exist unique $x_{\pm} \in \Lambda_{\theta,\varepsilon}$ such that

$$\mathcal{P}_{\theta,\varepsilon}^n(x) - \mathcal{P}_{\theta,\varepsilon}^n(x_{\pm}) \xrightarrow[n\pm\infty]{} 0.$$

▲□▶▲□▶▲■▶▲■▶ ■ めのの

Let

$$H_{\pm} = \bigcup \{x_{\pm}\} = \bigcup \{x_{\pm}(I, \phi, \theta; \varepsilon), (I, \phi, \theta) \in U^{-} \times [0, 2\pi]\}.$$

Then the scattering map associated to the homoclinic manifold $\Gamma_{\theta,\varepsilon}$ is $\sigma_{\theta,\varepsilon}: H_- \mapsto H_+$ such that $\sigma(x_-) = x_+$.

By the previous formula applied to $x^u = x^s = x = x(I, \phi, \theta; \varepsilon) \in \Gamma_{\theta, \varepsilon}$,

$$I_{+} - I_{-} = \varepsilon \frac{\partial}{\partial \phi} L(v^*, I, \phi, \theta) + \mathcal{O}(\varepsilon^2),$$

where $v^* = v^*(I, \phi, \theta)$. Calling,

$$L^*(I,\phi,\theta) = L(v^*,I,\phi,\theta)$$

we have that

$$I_{+} = I_{-} + \varepsilon \frac{\partial L^{*}}{\partial \phi} (I, \phi, \theta) + O(\varepsilon^{2}).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少々で

It is easy to check that

$$L^*(I,\phi,\theta) = L^*(I,\phi-I\theta,0) =: \mathcal{L}^*(I,\underbrace{\phi-I\theta}_{\alpha})$$

so that $L^*(I, \phi, \theta)$ depends essentially on two variables: I and $\alpha = \phi - I\theta$. Therefore, defining the Poincaré reduced function as $\mathcal{L}^*(I, \alpha) = L^*(I, \alpha, 0)$ we can write

$$I_{+} = I_{-} + \varepsilon \frac{\partial}{\partial \phi} \mathcal{L}^{*}(I, \alpha) + O(\varepsilon^{2}), \ \alpha = \phi - I\theta$$

Finally, by the geometric properties of the scattering map σ_{ε} is an (exact) symplectic and smooth map and therefore it satisfies:

$$\sigma_{\theta,\varepsilon}(I,\phi) = \left(I + \varepsilon \frac{\partial}{\partial \phi} \{\mathcal{L}^*(I,\alpha)\} + O(\varepsilon^2), \phi - \varepsilon \frac{\partial}{\partial I} \{\mathcal{L}^*(I,\alpha)\} + O(\varepsilon^2)\right),$$

where $\alpha = \phi - I\theta$, and $(I, \phi, \theta) \in U^- \times [0, 2\pi]$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少々で

Summarizing:

$$\sigma_{\theta,\varepsilon}(I,\phi) = \left(I + \varepsilon \frac{\partial}{\partial \phi} \{\mathcal{L}^*(I,\alpha)\} + O(\varepsilon^2), \phi - \varepsilon \frac{\partial}{\partial I} \{\mathcal{L}^*(I,\alpha)\} + O(\varepsilon^2), s\right),$$

where $\alpha = \phi - I\theta$, and $(I,\phi,\theta) \in U^-$.

That is: ϕ

$$\sigma_{\varepsilon} = \mathrm{Id} - \varepsilon J \nabla \mathcal{L}^*(I, \alpha) + O(\varepsilon^2), \ J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Therefore, except for an $\mathcal{O}(\varepsilon^2)$ error, $\sigma_{\theta,\varepsilon}$ is the ε -time map of the hamiltonian $-\mathcal{L}^*(I,\alpha)$, where $\alpha = \phi - I\theta$, and is therefore ε -close to the identity.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣��

Remember the Arnold model after scaling variables and time:

$$H(p,q,I,\phi,t;\varepsilon,\mu) = \frac{1}{2}I^2 + \frac{1}{2}p^2 + (\cos q - 1) + \mu(\cos q - 1)(\sin \phi + \cos \frac{t}{\sqrt{\varepsilon}})$$

Perturbed parameter is μ , time frequency $\frac{1}{\sqrt{\varepsilon}}$.

The unperturbed system has $V(q) = \cos q - 1$, the classical pendulum, and the homoclinic connection is

$$p_h(t) = rac{2}{\cosh(t)}, \quad q_h(t) = 4 \arctan e^t$$

and a perturbation H_1 of the form $H_1(p, q, I, \phi, t; \varepsilon) = (\cos q - 1)g(\phi, r)$, $r = \frac{t}{\sqrt{\varepsilon}}$, where $g(\phi, r) = \sin \phi + \cos r$.

The Melnikov potetial satisfies: $L(v, I, \phi, \theta) = \mathcal{L}(I, \phi - Iv, \theta - v)$ where, using $\frac{p_h^2}{2} + \cos q_h - 1 = 0$ and that $p_h(t) = \frac{2}{\cosh t}$ $\mathcal{L}(I,\phi,\theta) = -\int^{\infty} (H_1(p_h(t),q_h(t),I,\phi+It,\theta+t;0))$ $- -H_1(0, 0, I, \phi + It, \theta + t; 0)) dt$ $= -\int_{-\infty}^{\infty} \left(\cos q_h(t) - 1\right) g(\phi + It, \frac{\theta + t}{\sqrt{\varepsilon}}) dt$ $= \frac{1}{2} \int_{-\infty}^{\infty} p_h^2(t) \left(\sin(\phi + lt) + \cos(\frac{\theta + t}{\sqrt{\varepsilon}}) \right) dt$ $= 2 \int_{-\infty}^{\infty} \left(\sin \phi \cos(lt) + \cos \frac{\theta}{\sqrt{\varepsilon}} \cos(\frac{t}{\sqrt{\varepsilon}}) \right) \frac{1}{\cosh^2 t} dt$ $= 2\sin\phi \int_{-\infty}^{\infty} \frac{\cos(lt)}{\cosh^2 t} dt + 2\cos\frac{\theta}{\sqrt{\varepsilon}} \int_{-\infty}^{\infty} \frac{\cos(\frac{t}{\sqrt{\varepsilon}})}{\cosh^2 t} dt$ ▲ ≣ ▶ ▲ ≣ ▶ ≡ • • • • • • • • □ • • 4 🗗 •

Tere M-Seara (UPC)

Using residues theorem, one can easily compute:

$$\int_{-\infty}^{\infty} \frac{\cos I\sigma}{\cosh^2 \sigma} \, d\sigma = \frac{\pi I}{\sinh \frac{\pi I}{2}}$$

And:

$$\int_{-\infty}^{\infty} \frac{\cos \frac{\sigma}{\sqrt{\varepsilon}}}{\cosh^2 \sigma} \, d\sigma = \frac{\pi}{\sqrt{\varepsilon}} \frac{1}{\sinh \frac{\pi}{2\sqrt{\varepsilon}}} = \frac{2\pi}{\sqrt{\varepsilon}} \frac{e^{-\frac{\pi}{2\sqrt{\varepsilon}}}}{1 - e^{-\frac{\pi}{\sqrt{\varepsilon}}}} \simeq \mathcal{O}(e^{-\frac{\pi}{2\sqrt{\varepsilon}}})$$

Tere M-Seara (UPC)

May 20- 24 2024 47 / 58

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Therefore:

$$\mathcal{L}(I,\phi,\theta) = 2\pi \left(\sin \phi \frac{I}{\sinh \frac{\pi I}{2}} + \frac{1}{\sqrt{\varepsilon}} \cos \frac{\theta}{\sqrt{\varepsilon}} \frac{1}{\sinh \frac{\pi}{2\sqrt{\varepsilon}}} \right)$$

The critical points of $\mathcal{L}(I, \phi - Iv, \theta - v)$ can be computed and then the reduced Poincaré function $\mathcal{L}^*(I, \phi - I\theta)$ and the scattering map for this problem.

Remember that $(\alpha = \phi - I\theta)$:

$$\sigma_{\mu}(I,\phi) = \left(I + \mu rac{\partial}{\partial \phi} \{\mathcal{L}^{*}(I,\alpha)\} + O(\mu^{2}), \phi - \mu rac{\partial}{\partial I} \{\mathcal{L}^{*}(I,\alpha)\} + O(\mu^{2}), s
ight),$$

It is very easy to see that to obtain heteroclinic connections between two tori $I = I^0$ and $I = \overline{I}^0 > I^0$, we need that $\frac{\partial \mathcal{L}^*}{\partial \phi} > 0!$ That's a good exercice!

recall: to make everything rigourous we need $\mu \ll e^{-\frac{\pi}{2\sqrt{\varepsilon}}}$

Tere M-Seara (UPC)

< ⊒ > ⊒

Step 4: Studying the inner dynamics in $\Lambda_{\theta,\varepsilon}$

- Now we have a tool, the Scattering map, to "understand" the outer dynamics: the dynamics following the homoclinic excursions to $\Lambda_{\theta,\varepsilon}$.
- Next step is to understand the inner dynamics, that is, the dynamics in $\Lambda_{\theta,\varepsilon}$.
- Combining these two dynamics we will find "the skeleton" of the global ynamics.
- I will show you the classical methods that look for transition chains between the invariant objects inside $\Lambda_{\theta,\varepsilon}$.
- I will see that the classical KAM tori used by Arnold are not enough.
- I will show you a more recent result that does not need any knowledge about the invariant objects inside $\Lambda_{\theta,\varepsilon}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Step 4: Studying the inner dynamics in $\Lambda_{\theta,\varepsilon}$

- The idea of some works using geometric methods is to find the invariant sets inside Λ_{θ,ε} which act as "barriers" to difuse along Λ_{θ,ε} and try to jump them throught σ_{θ,ε}.
- More specifically, we follow Arnold's idea: we look for an collection of invariant tori $\mathcal{T}_i \subset \Lambda_{\theta,\varepsilon}$ such that the unstable manifold of \mathcal{T}_i intersects trasversally the stable manifold of \mathcal{T}_{i+1} giving a transition chain.
- We will describe the steps necessary to verify this mechanism.
- The verification uses standard methods from the geometric theory of perturbations but is long and technical:
 - 2.1 Compute the Hamiltonian flow in $\tilde{\Lambda}_{\varepsilon} = \bigcup_{\theta \in [0,2\pi]} \Lambda_{\theta,\varepsilon}$ and use the Averaging method to simplify the flow up to some order hight enough.
 - 2.2 Apply KAM theory to the averaged system. The whiskered tori and full dimensional tori inside $\Lambda_{\theta,\varepsilon}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Step 4.1: Averaging method

- As we have an 2-dimensional invariant manifold for any Poincaré section Σ_{θ} , we have a 3-dimensional invariant manifold for the flow, that we denote by $\tilde{\Lambda}_{\varepsilon}$.
- One can see that the reduced flow in $\tilde{\Lambda}_{\varepsilon}$ is hamiltonian and its a Hamiltonian is of the form: $\frac{1}{2}I^2 + \varepsilon K_1(I, \phi, t; \varepsilon)$ and can be computed at any order in ε .
- We look for a change of variables that reduce the system to motion of the actions to constant up to any order in ε (eliminates the angles ϕ, t from the hamiltonian)
- In one step of averaging the hamiltonian becomes: $\frac{1}{2}I^2 + \varepsilon h_1(I) + \varepsilon^2 K_1^1(I, \phi, t; \varepsilon).$
- Averaging fails at resonances lk + l = 0
- Far from resonances we obtain, after *m* steps $\frac{1}{2}I^2 + \varepsilon h_0(I;\varepsilon) + O(\varepsilon^m)$
- Close to simple resonances $I = (n_0/k_0)$ the motion is more complicated: $\frac{1}{2}I^2 + \varepsilon h_0(I;\varepsilon) + \varepsilon V(k_0\theta + n_0t) + O(\varepsilon^m)$. Motion is pendulum like

Step 4.1: Averaging method

The motion of the Poincaré map for the averaged system in $\Lambda_{\theta,\varepsilon}$ is:

We see here the new objects that fill the gaps: the secondary tori!

Tere M-Seara (UPC)

May 20- 24 2024 52 / 58

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Step 4.2: KAM theorem

- Now we can apply the KAM theorem to the Poincaré map $\mathcal{P}_{\theta,\varepsilon}$ of the averaged system in $\Lambda_{\theta,\varepsilon}$ with m = 3.
- We obtain invariant tori (primary or secondary) at a distance $O(\epsilon^{3/2})$:

Ξ.

< □ ▶ < @ ▶

Step 5: Transition chains

- Once we know the structure in $\Lambda_{\theta,\varepsilon}$ given by the invariant tori of $\mathcal{P}_{\theta,\varepsilon}$ we use the scattering map $\sigma_{\theta,\varepsilon}$ to find heteroclinic intersections, even if the tori have different topology!
- Lemma: If $\sigma_{\theta,\varepsilon}(\mathcal{T}_1) \cap \mathcal{T}_2 \neq \emptyset$ then $W^u(\mathcal{T}_1) \pitchfork W^s(\mathcal{T}_2)$; and therefore there is an heteroclinic connection between \mathcal{T}_1 and \mathcal{T}_2 .

54 / 58

Tere M-Seara (UPC)

Step 6: Shadowing lemmas

- We need to see that there is a "real" orbit which follows the chain.
- We use a Lambda lemma, Fontich-Martín (Nonlinearity, 2000) that can be applied to tori of different topology.
 - Let f be a symplectic map in a 4 symplectic manifold.
 - Assume that the map leaves invariant a C^1 1-dimensional torus \mathcal{T} and that the motion in the torus is an irrational rotation.
 - Let ξ be a 2-dimensional manifold transversal to $W^u(\mathcal{T})$.

Then, $W^{s}(\mathcal{T}) \subset \overline{\bigcup_{i>0} f^{-i}(\xi)}$.

• We use this lemma to see that:

Let $\{\mathcal{T}_i\}_{i=1}^{\infty}$ be a sequence of transition tori (tori with irrational rotation, such that $W^u(\mathcal{T}_i) \pitchfork W^s(\mathcal{T}_{i+1})$)

Given $\{\varepsilon_i\}_{i=1}^{\infty}$ a sequence of strictly positive numbers, we can find a point *P* and a increasing sequence of numbers T_i such that

$\Phi_{T_i}(P) \in N_{\varepsilon_i}(\mathcal{T}_i)$

where $N_{\varepsilon_i}(\mathcal{T}_i)$ is a neighborhood of size ε_i of the torus \mathcal{T}_i .

Tere M-Seara (UPC)

Step 6: Shadowing lemmas

The orbit of *P* has action *I* which increase along the orbit!!

1

590

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

proof Let $x \in W^s_{\mathcal{T}_1}$. We can find a closed ball B_1 , centered on x, and such that

$$\Phi_{\mathcal{T}_1}(B_1) \subset N_{\varepsilon_1}(\mathcal{T}_1). \tag{4}$$

By the Lambda Lemma

$$W^s_{\mathcal{T}_2} \cap B_1 \neq \emptyset.$$

Hence, we can find a closed ball $B_2 \subset B_1$, centered in a point in $W^s_{\mathcal{T}_2}$ such that, besidessatisfying (4):

$$\Phi_{\mathcal{T}_2}(B_2) \subset \mathcal{N}_{\varepsilon_2}(\mathcal{T}_2).$$

Proceeding by induction, we can find a sequence of closed balls

$$B_i \subset B_{i-1} \subset \cdots \subset B_1$$

 $\Phi_{T_j}(B_i) \subset N_{\varepsilon_j}(\mathcal{T}_j), \quad i \leq j.$

Since the balls are compact, $\cap B_i \neq \emptyset$.

A point P in the intersection satisfies the required property.

Tere M-Seara (UPC)

▲ E ▶ ▲ E ▶ E りへで

