Lecture 3: Geometric methods in Arnold diffusion

Master Class

KTH, Stockholm

Tere M. Seara
Universitat Politecnica de Catalunya

May 20-24 2024

The case of two or more degrees of freedom

- In the case of one and a half degrees of freedom, the KAM tori (curves in \mathbb{R}^{2}) act as barriers to instability.
- Even if the separatrices of the periodic orbit (fix point for the Poincaré map) split, this only causes "local chaos" not global one.
- The previous argument does not work for periodic external perturbations of systems of two or more degrees of freedom (Poincaré maps of dimension 4 or higher!).
- $n=2$: The KAM tori (2-dimensional) do not separate the phase space (4-dimensional) $(4-2=2>1)$.

The main conjecture:

"Typical systems in action-angle variables have orbits whose actions change widely even if the systems are close to integrable"
Arnold itself gave the most famous example, that we now explain.

Best known example in the mathematical literature: Arnol'd example:

$$
\begin{aligned}
H(I, \phi, t ; \varepsilon, \mu) & =H_{0}(I)+\varepsilon H_{1}(I ; \phi, t ; \varepsilon, \mu) \\
& =\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\varepsilon\left(\cos \phi_{1}-1\right)+\mu \varepsilon\left(\cos \phi_{1}-1\right)\left(\sin \phi_{2}+\cos t\right)
\end{aligned}
$$

For $\varepsilon=0$ we have an integrable system $H=H_{0}(I)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)$, therefore

$$
I(t)=I(0), \forall t \in \mathbb{R}
$$

Theorem
For $0<\mu \ll \varepsilon \ll 1$, there exist orbits of the Hamilton's equations with

$$
|I(T)-I(0)|>1 .
$$

Answer to the Instability question: Instability, there exit perturbed motions whose actions change $O(1)$ even if the perturbative parameter ε, is small!

Geometric idea of the Arnol'd example

$H(I, \phi, t ; \varepsilon, \mu)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\varepsilon\left(\cos \phi_{1}-1\right)+\mu \varepsilon\left(\cos \phi_{1}-1\right)\left(\sin \phi_{2}+\cos t\right)$

- The phase space is 5 dimensional: $\mathbb{R}^{2} \times \mathbb{T}^{3}$.
- The Poincaré map is 4 dimensional: $\mathcal{P}_{\theta}: \Sigma_{\theta} \rightarrow \Sigma_{\theta}, \Sigma_{\theta} \simeq \mathbb{R}^{2} \times \mathbb{T}^{2}$
- $\varepsilon=0: H(I, \phi, t ; 0,0)=H_{0}(I)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)$
- Equations: $\dot{I}_{1}=\dot{I}_{2}=0, \dot{\phi}_{1}=I_{1}, \dot{\phi}_{2}=I_{2}$
- Integrable system. Poincaré map $\mathcal{P}_{\theta}(x)=\varphi(2 \pi ; x)$ is given by:

$$
\mathcal{P}_{\theta}\left(I_{1}^{0}, l_{2}^{0}, \phi_{1}^{0}, \phi_{2}^{0}\right)=\left(I_{1}^{0}, l_{2}^{0}, \phi_{1}^{0}+2 \pi l_{1}^{0}, \phi_{2}^{0}+2 \pi l_{2}^{0}\right)
$$

- The 2- dimensional tori:

$$
\mathbb{T}_{10}=\left\{I_{1}=I_{1}^{0}, I_{2}=I_{2}^{0},\left(\phi_{1}, \phi_{2}\right) \in \mathbb{T}^{2}\right\}
$$

are invariant and foliate the space $\mathbb{R}^{2} \times \mathbb{T}^{2}$.

- The motion in the torus is quasiperiodic of frequency: $\omega\left(I^{0}\right)=\left(I_{1}^{0}, I_{2}^{0}\right)$.

Geometric idea of the Arnol'd example

$H(I, \phi, t ; \varepsilon, \mu)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\varepsilon\left(\cos \phi_{1}-1\right)+\mu \varepsilon\left(\cos \phi_{1}-1\right)\left(\sin \phi_{2}+\cos t\right)$

- $\varepsilon>0, \mu=0$: intermediate Hamiltonian:

$$
H(I, \phi, t ; \varepsilon, 0)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\varepsilon\left(\cos \phi_{1}-1\right)
$$

- Integrable system (model of a simple resonance)

$$
\begin{aligned}
\dot{\phi}_{1} & =I_{1} \\
\dot{I}_{1} & =\varepsilon \sin \phi_{1} \\
\dot{\phi}_{2} & =I_{2} \\
\dot{I}_{2} & =0
\end{aligned}
$$

- $I_{2}(t)=I_{2}(0)$, and $\phi_{2}(t)=\phi_{2}(0)+I_{2}(0) t$
- $\left(I_{1}, \phi_{1}\right)$ form a pendulum of Hamiltonian $P\left(I_{1}, \phi_{1} ; \varepsilon\right)=\frac{1}{2} I_{1}^{2}+\varepsilon\left(\cos \phi_{1}-1\right)$.

Geometric idea of the Arnol'd example

$H(I, \phi, t ; \varepsilon, \mu)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\varepsilon\left(\cos \phi_{1}-1\right)+\mu \varepsilon\left(\cos \phi_{1}-1\right)\left(\sin \phi_{2}+\cos t\right)$

- $\varepsilon>0, \mu=0$: intermediate Hamiltonian:

$$
H(I, \phi, t ; \varepsilon, 0)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\varepsilon\left(\cos \phi_{1}-1\right)
$$

- Integrable system (model of a simple resonance)
- Some 2 dimensional tori survive (KAM): they correspond to the rotational orbits in the pendulum.

- 2-dimensional tori for the Poincaré map close to $I_{1}=I_{1}^{0}=\sqrt{2 h} \cdot I_{2}=I_{2}^{0}$, $h>1$:

$$
\frac{1}{2} I_{1}^{2}+\varepsilon\left(\cos \phi_{1}-1\right)=h, h>1 \quad I_{2}=I_{2}^{0}, \phi_{2} \in \mathbb{T}
$$

Geometric idea of the Arnol'd example

$$
H(I, \phi, t ; \varepsilon, \mu)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\varepsilon\left(\cos \phi_{1}-1\right)+\mu \varepsilon\left(\cos \phi_{1}-1\right)\left(\sin \phi_{2}+\cos t\right)
$$

- $\varepsilon>0, \mu=0$: intermediate Hamiltonian: $H(I, \phi, t ; \varepsilon, 0)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\varepsilon\left(\cos \phi_{1}-1\right)$
- Integrable system (model of a simple resonance)

- Other tori are destroyed (correspond to the resonance $I_{1}=0$) given rise to whiskered one-dimensional tori.
- They are given by the critical point of the pendulum and the tori of the rotator, which become one-dimensonal tori for the Poincaré map of frequency $\omega=I_{2}$:

$$
\mathcal{T}_{I_{2}^{0}}=\left\{I_{1}=\phi_{1}=0, I_{2}=I_{2}^{0}, \phi_{2} \in \mathbb{T}\right\}, \quad \mathcal{P}_{\theta}\left(0,0, I_{2}^{0}, \phi_{2}\right)=\left(0,0, I_{2}^{0}, \phi_{2}+2 \pi I_{2}^{0}\right)
$$

- They are hyperbolic tori whose two-dimensional stable and unstable manifolds (whiskers) coincide along a homoclinic manifold.

$$
W^{u}\left(\mathcal{T}_{I_{2}^{0}}\right)=W^{s}\left(\mathcal{T}_{I_{2}^{0}}\right)=\left\{\frac{1}{2} I_{1}^{2}+\varepsilon\left(\cos \phi_{1}-1\right)=0, \quad I_{2}=I_{2}^{0}, \quad \phi_{2} \in \mathbb{T}\right\}
$$

Geometric idea of the Arnol'd example

$$
\begin{aligned}
H(I, \phi, t ; \varepsilon, \mu)= & \frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\varepsilon\left(\cos \phi_{1}-1\right)+\mu \varepsilon\left(\cos \phi_{1}-1\right)\left(\sin \phi_{2}+\cos t\right) \\
& \varepsilon>0, \mu=0, \text { intermediate Hamiltonian: } \\
& H(I, \phi, t ; \varepsilon, 0)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\varepsilon\left(\cos \phi_{1}-1\right) .
\end{aligned}
$$

Dynamics of the intermediate Hamiltonian: $\varepsilon>0, \mu=0$

Diffusion mechanism when $\varepsilon>0, \mu>0$.

$$
\begin{align*}
H(I, \phi, t ; \varepsilon, \mu)=\frac{1}{2}\left(I_{1}^{2}\right. & \left.+I_{2}^{2}\right)+\varepsilon\left(\cos \phi_{1}-1\right)+\mu \varepsilon\left(\cos \phi_{1}-1\right)\left(\sin \phi_{2}+\cos t\right) \\
\dot{\phi}_{1} & =I_{1} \\
\dot{I}_{1} & =\varepsilon \sin \phi_{1}+\varepsilon \mu \sin \phi_{1}\left(\cos t+\cos \phi_{2}\right) \\
\dot{\phi}_{2} & =I_{2} \tag{1}\\
\dot{I}_{2} & =-\varepsilon \mu \cos \phi_{2}\left(\cos \phi_{1}-1\right)
\end{align*}
$$

- For $\mu>0$ all the 1 -dimensional whiskered tori

$$
\mathcal{T}_{I_{2}^{0}}=\left\{I_{1}=\phi_{1}=0, \quad I_{2}=I_{2}^{0},\left(\phi_{2}, s\right) \in \mathbb{T}^{2}\right\}
$$

are preserved with the same dynamics: $\mathcal{P}_{\theta}\left(0,0, I_{2}^{0}, \phi_{2}\right)=\left(0,0, I_{2}^{0}, \phi_{2}+2 \pi I_{2}^{0}\right)$.

- Each torus has 2-dimensional stable and unstable manifolds (whiskers) $W_{\mu}^{u, s}\left(\mathcal{T}_{l_{2}^{0}}\right)$.

Diffusion mechanism when $\varepsilon>0, \mu>0$.

$H(I, \phi, t ; \varepsilon, \mu)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\varepsilon\left(\cos \phi_{1}-1\right)+\mu \varepsilon\left(\cos \phi_{1}-1\right)\left(\sin \phi_{2}+\cos t\right)$
For $\varepsilon>0, \mu>0$.

- For $\mu>0$ the stable and unstable manifolds $W_{\mu}^{\mu, s}\left(\mathcal{T}_{1_{2}}\right)$ (whiskers of $\mathcal{T}_{1_{2}}$) change.
- We need to prove that the 2-dimensional stable and unstable manifolds of the tori $\mathcal{T}_{l_{2}}$ intersect transversally along a homoclinic manifold (containing heteroclinic orbits bewteen the points of $\mathcal{T}_{1_{2}}$).
- This computation is the Poincaré-Melnikov method, analog to the one and a half degrees of freedom case for the computation of homoclinic intersections between the stable and unstable manifolds of periodic orbits.
- As we are in a 4-dimensional space for the Poincaré map, these transversal homoclinic intersections will give rise to heteroclinic ones between tori wich are close enough.

Diffusion mechanism when $\varepsilon>0, \mu>0$.

$H(I, \phi, t ; \varepsilon, \mu)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\varepsilon\left(\cos \phi_{1}-1\right)+\mu \varepsilon\left(\cos \phi_{1}-1\right)\left(\sin \phi_{2}+\cos t\right)$

- Scaling $I_{1}=\sqrt{\varepsilon} p_{1}, I_{2}=\sqrt{\varepsilon} p_{2}$ and $\tau=\sqrt{\varepsilon} t$:

$$
\begin{aligned}
& \dot{\phi}_{1}=p_{1} \\
& \dot{p}_{1}=\sin \phi_{1}+\mu \sin \phi_{1}\left(\sin \phi_{2}+\cos \frac{\tau}{\sqrt{\varepsilon}}\right) \\
& \dot{\phi}_{2}=p_{2} \\
& \dot{p}_{2}=-\mu \cos \phi_{2}\left(\cos \phi_{1}-1\right)
\end{aligned}
$$

- $K(p, \phi, \tau ; \mu)=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}\right)+\left(\cos \phi_{1}-1\right)+\mu\left(\cos \phi_{1}-1\right)\left(\sin \phi_{2}+\cos \frac{\tau}{\sqrt{\varepsilon}}\right)$
- It is a $\mathcal{O}(\mu)$ perturbation of an integrable system with stable and unstable manifolds which coincide. So one can "generalize" the Melnikov approach.
- Warning! $\omega=\frac{1}{\sqrt{\varepsilon}}$, the Melnikov function will be exponentially small in $\sqrt{\varepsilon}$.
- If $\mu=\mathcal{O}\left(e^{-\frac{c}{\sqrt{\varepsilon}}}\right)$, the calculation given by the Melnikov function is enough.
- The stable and unstable manifolds of every torus \mathcal{T}_{12} intersect transversaly

Diffusion mechanism when $\varepsilon>0, \mu>0$.

Transversal homoclinic orbits give rise to transversal heteroclinic orbits between tori $\mathcal{T}_{1_{2}^{0}}$ sufficiently close.
The unstable whisker of a torus $\mathcal{T}_{I_{2}^{0}}$ intersects transversally the stable whisker of another neighboring torus $\mathcal{T}_{I_{2}^{1}}$.

Diffusion mechanism when $\varepsilon>0, \mu>0$.

We find $\left\{\mathcal{T}_{I_{2}}\right\}_{i=1}^{N}$ such that $W_{\mathcal{T}_{i_{2}^{\prime}}}^{u} \pitchfork W_{\mathcal{T}_{i_{2}^{\prime}}}^{s}$. (transition chain.)

Diffusion mechanism when $\varepsilon>0, \mu>0$.

There is an orbit that shadows the transition chain. (obstruction property)

Diffusion mechanism when $\varepsilon>0, \mu>0$.

First observation: "a priori unstable systems"

The rigorous verification of Arnol'd mechanism uses the condition $\mu=\mathcal{O}\left(e^{-\frac{c}{\sqrt{\varepsilon}}}\right)\left(\right.$ still open for $\left.\mu=\mathcal{O}\left(\varepsilon^{p}\right)\right)$
P. Holmes, J. Marsden (1982): take the intermediate Hamiltonian as the unperturbed one: $\varepsilon=1,0<\mu \ll 1$

$$
H(I, \phi, t ; \mu)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\cos \phi_{1}-1+\mu\left(\cos \phi_{1}-1\right)\left(\sin \phi_{2}+\cos t\right)
$$

Chierchia-Gallavotti:
a priori unstable system

$$
H(I, \phi, t ; \varepsilon)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\cos \phi_{1}-1+\varepsilon h(I, \phi, t ; \varepsilon)
$$

a priori stable system

$$
H(I, \phi, t ; \varepsilon)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\varepsilon h(I, \phi, t ; \varepsilon)
$$

Second observation: the "large gap" problem

Even in the a priori unstable system case, the Arnol'd example is based on the fact that all the 1-dimensional (hyperbolic) tori \mathcal{T}_{2} are preserved.

- In general, $\mathcal{T}_{l_{2}}$ can be destroyed when $\varepsilon \neq 0 ;$ KAM Theorem. Large gaps are typical.
- $\mathcal{T}_{1^{\circ}}=\left\{I_{1}=\phi_{1}=0, \quad I_{2}=I_{2}^{0}, \phi_{2} \in \mathbb{T}\right\}$ Motion on $\mathcal{T}_{I_{2}^{0}}$ is $\mathcal{P}_{\theta}\left(0,0, I_{2}, \phi_{2}\right)=\left(0,0, I_{2}, \phi_{2}+I_{2} 2 \pi\right)$ frequency $\omega=I_{2}$
- The gaps between the tori that survive are balls of radius $\sqrt{\varepsilon}$ centered in the resonances $\left(I_{2}=m / n\right)$.
- The heteroclínic jumps are of order ε. (Melnikov theory would give $\left.x^{u}-x^{s}=\varepsilon M(v, \phi, \theta)+O\left(\varepsilon^{2}\right)\right)$.
- Arnold mechanism can not be applied to general perturbations of a priori unstable systems.

Geometric methods

- Arnold's mechanism is the begining of wat are called "geometric methods".
- But some new ideas came after his example.
- We will explain these methods and see how they apply to Arnold example and to other more general Hamiltonians.

The model:

$$
H_{\varepsilon}(p, q, I, \phi, t)=\underbrace{h_{0}(I)+\sum_{i=1}^{n} \pm\left(\frac{1}{2} p_{i}^{2}+V_{i}\left(q_{i}\right)\right)}+\varepsilon H_{1}(p, q, I, \phi, t ; \varepsilon),
$$

$$
H_{0}(p, q, I, \phi) \in \mathbb{R}^{n} \times \mathbb{T}^{n} \times \mathbb{R}^{d} \times \mathbb{T}^{d}
$$

- Recall Arnold model:

$$
H(I, \phi, t ; \mu)=\frac{1}{2}\left(I_{1}^{2}+I_{2}^{2}\right)+\varepsilon\left(\cos \phi_{1}-1\right)+\mu \varepsilon\left(\cos \phi_{1}-1\right)\left(\sin \phi_{2}+\cos t\right)
$$

- Call $p=I_{1}$, and $q=\phi_{1}, \varepsilon=1$ and $\mu=\varepsilon I_{2}=I, \phi_{2}=\phi$ and
- $H(p, q, I, \phi, t ; \mu)=\frac{1}{2} I^{2}+\frac{1}{2} p^{2}+\cos q-1+\varepsilon(\cos q-1)(\sin \phi+\cos t)$

First assumptions

$$
H_{\varepsilon}(p, q, I, \phi, t)=h_{0}(I)+\sum_{i=1}^{n} \pm\left(\frac{1}{2} p_{i}^{2}+V_{i}\left(q_{i}\right)\right)+\varepsilon H_{1}(p, q, I, \phi, t ; \varepsilon)
$$

(A1.) The functions h_{0}, H_{1} and $V_{i}, i=1, \ldots, n$, are uniformly C^{r} for $r \geq r_{0}$.
(A2.) Each potential $V_{i}: \mathbb{T}^{n} \rightarrow \mathbb{R}, i=1, \ldots, n$, is 2π-periodic in q_{i} and has a non-degenerate global maximum at 0 , and hence each 'pendulum' $\pm\left(\frac{1}{2} p_{i}^{2}+V_{i}\left(q_{i}\right)\right)$ has a homoclinic orbit to $(0,0)$, parametrized by $\left(p_{i}^{0}\left(\tau_{i}\right), q_{i}^{0}\left(\tau_{i}\right)\right), \tau_{i} \in \mathbb{R}$.
During this course we will take $n=d=1$, and $h_{0}(I)=\frac{1}{2} I^{2}$, but the proofs can be easily generalized. The phase space for the flow will be 5-dimensional and for the Poincaré map $\mathcal{P}_{\theta, \varepsilon}$ will be 4-dimensional.

- $H_{\varepsilon}(p, q, I, \phi, t)=\frac{1}{2} I^{2}+\frac{1}{2} p^{2}+V(q)+\varepsilon H_{1}(p, q, I, \phi, t ; \varepsilon)$.

Main tools in geometric methods

The main tools we will use are:

- Existence and persistence of normally hyperbolic invariant manifolds (NHIM)
- Existence and computation of the Scattering map in a NHIM

First tool: Normally hyperbolic invariant manifolds

Definition of a NHIM for a map (analogous for flows (Fenichel, Hirsch, Pugh, Shub, Pessin)):

- Normally hyperbolic invariant manifold (NHIM):
- $F: M \rightarrow M, C^{r}$-smooth, $r \geq r_{0}, m=\operatorname{dim} M$.
- $F(\Lambda) \subset \Lambda, n_{c}=\operatorname{dim} \Lambda$.
- For any $x \in \Lambda$ we have.
$T_{x} M=T_{x} \wedge \oplus E_{x}^{u} \oplus E_{x}^{s}$
- $n_{s}=\operatorname{dim} E^{s}, n_{u}=\operatorname{dim} E^{u}$.
- $m=n_{c}+n_{s}+n_{u}$
- $\exists C>0,0<\lambda<\mu^{-1}<1$, s.t. $\forall x \in \Lambda$
$v \in E_{x}^{s} \Leftrightarrow\left\|D F_{x}^{k}(v)\right\| \leq C \lambda^{k}\|v\|, \forall k \geq 0$

$v \in E_{x}^{u} \Leftrightarrow\left\|D F_{x}^{k}(v)\right\| \leq C \lambda^{-k}\|v\|, \forall k \leq 0$
$v \in T_{x} \Lambda \Leftrightarrow\left\|D F_{x}^{k}(v)\right\| \leq C \mu^{|k|}\|v\|, \forall k \in \mathbb{Z}$
Examples: hypebolic fix points, hypebolic periodic orbits.

First tool: Normally hyperbolic invariant manifolds

- The normal hyperbolicity of Λ implies that there exist smooth stable and unstable manifolds $W^{u, s}(\Lambda)$.
- If $x^{u, s} \in W^{u, s}(\Lambda) \operatorname{dist}\left(F^{n}\left(x^{u, s}\right), \Lambda\right) \rightarrow 0$ as $n \rightarrow \mp \infty$.
- Moreover $W^{u, s}(\Lambda)=\bigcup_{x \in \Lambda} W^{u, s}(x)$ where $W^{u, s}(x)=\left\{x^{u, s}, F^{n}\left(x^{u, s}\right)-F^{n}(x) \rightarrow 0, n \rightarrow \pm \infty\right\}$
- For any $x \in \Lambda, W^{u, s}(x)$ are smooth manifolds.
- In fact: $x^{u, s} \in W^{u, s}(x), \rightarrow\left\|F^{n}\left(x^{u, s}\right)-F^{n}(x)\right\| \leq K \lambda^{|n|}, n \rightarrow \mp \infty$
- $W^{u, s}(x)$ are NOT invariant manifolds:

$$
x^{u, s} \in W^{u, s}(x) \rightarrow F\left(x^{u, s}\right) \in W^{u, s}(F(x))
$$

One can consider and the wave maps:

$$
\begin{array}{ll}
\Omega^{+}: & W^{s}(\Lambda) \ni x \mapsto x_{+} \in \Lambda, \text { such that } x \in W_{l o c}^{s}\left(x_{+}\right) \\
\Omega^{-}: & W^{u}(\Lambda) \ni x \mapsto x_{-} \in \Lambda, \text { such that } x \in W_{l o c}^{s}\left(x_{-}\right)
\end{array}
$$

These maps are smooth maps.

Geometric methods in Arnold diffusion

Second tool: The scattering map

- Assume that there exists a transverse homoclinic manifold $\Gamma \subseteq W^{u}(\Lambda) \cap W^{s}(\Lambda)$
- For each $x \in \Gamma$, we have

$$
\begin{equation*}
T_{x} M=T_{x} W^{u}(\Lambda)+T_{x} W^{s}(\Lambda), \quad T_{x} \Gamma=T_{x} W^{u}(\Lambda) \cap T_{x} W^{s}(\Lambda) \tag{2}
\end{equation*}
$$

- For each $x \in \Gamma$, if $x_{ \pm} \in \Lambda$ are such that $x \in W^{s}\left(x_{+}\right) \cap W^{u}\left(x_{-}\right)$. Then:

$$
\begin{equation*}
T_{x} W^{s}(\Lambda)=T_{x} W^{s}\left(x^{+}\right) \oplus T_{x}\left\ulcorner, \quad T_{x} W^{u}(\Lambda)=T_{x} W^{u}\left(x^{-}\right) \oplus T_{x} \Gamma .\right. \tag{3}
\end{equation*}
$$

we say that Γ is a homoclinic channel.

Second tool: The scattering map

Scattering map associated to the homoclinic channel Γ.

$$
\sigma: \Omega^{-}(\Gamma) \subset \Lambda \rightarrow \Omega^{+}(\Gamma) \subset \Lambda, \quad \sigma=\Omega^{+} \circ\left(\Omega^{-}\right)^{-1}
$$

- It is a diffeomorphism from $\Omega^{-}(\Gamma)$ to $\Omega^{+}(\Gamma)$.
- If $\sigma\left(x^{-}\right)=x^{+}$, then there exits a unique $x \in \Gamma$ such that $W^{u}\left(x^{-}\right) \cap W^{s}\left(x^{+}\right) \cap \Gamma=\{x\}$.
- Note that:

$$
\begin{aligned}
& \operatorname{dist}\left(F^{-n}(x)-F^{-n}\left(x_{-}\right)\right) \rightarrow 0, \text { as } n \rightarrow \infty \\
& \operatorname{dist}\left(F^{m}(x)-F^{m}\left(x_{+}\right)\right) \rightarrow 0 \text { as } m \rightarrow \infty
\end{aligned}
$$

Second tool: The scattering map

The scattering map in Λ relates points x_{-}and $x_{+}=\sigma\left(x_{-}\right)$when there is an heteroclinic orbit between them.

- $F^{-M}(x)$ is close to $F^{-M}\left(x_{-}\right)$and $F^{N}(x)$ is close to $F^{N}\left(x_{-}\right)$
- Call $x_{1}=F^{-M}(x)$. Then x_{1} is close to $F^{-M}\left(x_{-}\right)$, and $F^{N+M}\left(x_{1}\right)$ is close to $F^{N}\left(x_{-}\right)$
- important: There is no orbit from x_{-}to x_{+}(it requires infinite time), but there is an orbit which begins close to x_{-}and arrives close to x_{+}.

The unperturbed problem $(\varepsilon=0)$: the NHIM

$H_{\varepsilon}(p, q, I, \phi, t)=\frac{1}{2} I^{2}+\frac{1}{2} p^{2}+V(q)+\varepsilon H_{1}(p, q, I, \phi, t ; \varepsilon)$
A different approach to Arnold diffusion: the use of normally hyperbolic manifolds. When $\varepsilon=0, H_{0}(p, q, I, \phi)=\frac{1}{2} I^{2}+\frac{1}{2} p^{2}+V(q)$, the dynamics is:

$$
\begin{aligned}
\dot{q} & =p \\
\dot{p} & =V^{\prime}(q) \\
\dot{\phi} & =I \\
\dot{i} & =0
\end{aligned}
$$

(p, q) form a pendulum, and (I, ϕ) a rotator: $I(t)=I^{0}, \phi(t)=\phi^{0}+I^{0} t$:

$p=q=0,(I, \phi) \in \mathbb{R} \times \mathbb{T}$ is a 2-dimensional invariant manifold (cilinder) for the Poincaré map $\mathcal{P}_{\theta} \cdot \mathcal{P}_{\theta}(0,0, I, \phi)=(0,0, I, \phi+2 \pi I)$

The unperturbed problem $(\varepsilon=0)$: the NHIM

$$
H_{0}(p, q, I, \phi)=\frac{1}{2} I^{2}+\frac{1}{2} p^{2}+V(q)
$$

- For any $I^{0} \in \mathbb{R}, \mathcal{T}_{1^{0}}=\left\{\left(0,0, I^{0}, \phi\right): \phi \in \mathbb{T}\right\}$ is a 1 -dimensional invariant torus with frequency $\omega\left(I^{0}\right)=I^{0}$.
- $\Lambda=\cup_{I \in \mathbb{R}} \mathcal{T}_{I}=\{(0,0, I, \phi):(I, \phi) \in \mathbb{R} \times \mathbb{T}\} \sim \mathbb{R} \times \mathbb{T}$ is a 2 -dimensional normally hyperbolic invariant manifold (cylinder) filled by 1-dimensional invariant tori \mathcal{T}_{1}.
- The Poincaré map $\mathcal{P}_{\theta}=\mathcal{P}_{\theta, 0}$ restricted to Λ (inner motion) is given by $\mathcal{P}_{\theta}(0,0, I, \phi)=(0,0, I, \phi+2 \pi I)$
- (I, ϕ) are good global coordinates in Λ
- Λ and \mathcal{T}_{I} are independent of θ.

The unperturbed problem $(\varepsilon=0)$: the stable and unstable manifolds of the NHIM

- Each torus \mathcal{T}_{10} is a "whiskered torus" and its 2-dimensional stable and unstable manifolds coincide along a 2-dimensional homoclinic manifold:

$$
W\left(\mathcal{T}_{1^{0}}\right)=\left\{\left(p, q, I^{0}, \phi\right), \frac{1}{2} p^{2}+V(q)=0, \phi \in \mathbb{T}\right\}
$$

- The 2-dimensional homoclinic manifold can be also parameterized by time: $W\left(\mathcal{T}_{10}\right)=\left\{\left(p_{h}(v), q_{h}(v), I^{0}, \phi\right), v \in \mathbb{R}, \phi \in \mathbb{T}\right\}$ where $\left(p_{h}(v), q_{h}(v)\right)$ is the homoclinic orbit of the pendulum: $\left(p_{h}(v), q_{h}(v)\right) \rightarrow 0$, as $v \rightarrow \pm \infty$
- Λ has 3-dimensional stable and unstable manifolds which coincide along the 3-dimensional homoclinic manifold given by the equation $\frac{1}{2} p^{2}+V(q)=0$, and can be parameterized by time;

$$
\Gamma=\left\{\left(p_{h}(v), q_{h}(v), I, \phi\right), v \in \mathbb{R}^{n},(I, \phi) \in \mathbb{R} \times \mathbb{T}\right\}
$$

The unperturbed problem $(\varepsilon=0)$: the Scattering map

$H_{0}(p, q, I, \phi)=\frac{1}{2} I^{2}+\frac{1}{2} p+V(q)$ Introducing the parametrizations:

$$
\begin{aligned}
& x_{0}=x_{0}(I, \phi)=(0,0, I, \phi) \in \Lambda \\
& x_{h}=x_{h}(v, I, \phi)=\left(p_{h}(v), q_{h}(v), I, \phi\right) \in \Gamma
\end{aligned}
$$

the Poincaré map \mathcal{P}_{θ} acts, for any $\theta \in \mathbb{T}$, as

$$
\begin{aligned}
\mathcal{P}_{\theta}^{n}\left(x_{0}(I, \phi)\right) & =(0,0, I, \phi+2 \pi I n)=x_{0}(I, \phi+2 \pi I n) \\
\mathcal{P}_{\theta}^{n}\left(x_{h}(v, I, \phi) ; 0\right) & =\underbrace{p_{h}(v+2 \pi n), q_{h}(v+2 \pi n)}_{\downarrow n \rightarrow \pm \infty}, I, \phi+I 2 \pi n)=x_{h}(v+2 \pi n, I, \phi+
\end{aligned}
$$

and it is therefore clear that $\forall v \in \mathbb{R} \mathcal{P}_{\theta}^{n}\left(x_{h} ; 0\right)-\mathcal{P}_{\theta}^{n}\left(x_{0} ; 0\right) \xrightarrow[n \rightarrow \pm \infty]{ } 0$.
That is, for any $v \in \mathbb{R}: x_{h}(v, I, \phi) \in W^{s}\left(x_{0}(I, \phi)\right) \cap W^{u}\left(x_{0}(I, \phi)\right)$

$$
\sigma_{0}\left(x_{0}\right)=x_{0}, \text { in coordinates: } \sigma_{0}(I, \phi)=(I, \phi)
$$

σ_{0} is the identity on \wedge.

The unperturbed problem $(\varepsilon=0)$: the Scattering map

$H_{\varepsilon}(p, q, I, \phi, t)=\frac{1}{2} I^{2}+\frac{1}{2} p+V(q)+\varepsilon H_{1}(p, q, I, \phi, t ; \varepsilon)$
When $\varepsilon=0$ we have:

- The tori $\mathcal{T}_{10}=\left\{\left(0,0, I^{0}, \phi\right): \phi \in \mathbb{T}\right\}$ are invariant and foliate Λ.
- The scattering map $\sigma_{0}(I, \phi)=(I, \phi)$, which gives $\sigma_{0}=I d$.
- In particular

$$
\sigma_{0}\left(\mathcal{T}_{1}^{0}\right)=\mathcal{T}_{1}^{0}
$$

- The unperturbed tori \mathcal{T}_{1}^{0} only have homoclinic connexions.
- No possibility of diffusion
- Main idea in Arnold's proof:

We want to see that, when $\varepsilon \neq 0$ we can define a scattering map such that, the image of one torus intersects other tori.

Sketch of the proof of Arnold diffusion using geometric methods:

1) Persistence of Λ.
2) Study of the inner dynamics on Λ_{ε}.
3) Study of stable and unstable manifolds for Λ_{ε} and their intersection: the Melnikov method.
4) The perturbative scattering map.
5) Transition chains.
(5') Combining the inner and the outer dynamics
6) Shadowing lemmas.

$\varepsilon \neq 0$, Step 1: persistence of Λ.

In the Arnold model:
$H(p, q, I, \phi, t ; \varepsilon)=\frac{1}{2} I^{2}+\frac{1}{2} p^{2}+\cos q-1+\varepsilon(\cos q-1)(\sin \phi+\cos t)$

- $\Lambda=\{(0,0, I, \phi)\}$ persists for $\varepsilon>0$ and the dynamics on it is unchanged. $i=0, \dot{\phi}=I, \mathcal{P}_{\theta, \varepsilon}(0,0, I, \phi)=(0,0, I, \phi+I 2 \pi)$.
- In particular, all the whiskered tori \mathcal{T}_{1} are preserved for $\varepsilon>0$.
- The manifold Λ has 3 - dimensional stable and unstable manifolds, but these manifolds change. In particular they will not coincide anymore.
- To define a pertubed scattering map, we need to see that the invariant manifolds of Λ intersect transversally giving rise to a 2-dimensional homoclinic channel (to Λ) Γ_{ε}. This computation is the Poincaré, Melnikov method, analog to the one and a half degrees of freedom case.

$\varepsilon \neq 0$, Step 1: persistence of Λ.

$H_{\varepsilon}(p, q, I, \phi, t)=\frac{1}{2} I^{2}+\frac{1}{2} p^{2}+V(q)+\varepsilon H_{1}(p, q, I, \phi, t ; \varepsilon)$
As Λ is non compact, we restrict to $I \in[a, b]$, a compact interval the action space.
By the theory of NHIM applied to $\mathcal{P}_{\theta, \varepsilon}$, there exist smooth manifolds $\Lambda_{\theta, \varepsilon}$, $W_{\text {loc }}^{s}\left(\Lambda_{\theta, \varepsilon}\right), W_{\text {loc }}^{u}\left(\Lambda_{\theta, \varepsilon}\right)$

$$
\Lambda_{\theta, \varepsilon}=\Lambda+\mathcal{O}(\varepsilon), W^{s, u}\left(\Lambda_{\theta, \varepsilon}\right)=W^{s, u}(\Lambda)+\mathcal{O}(\varepsilon)
$$

Moreover $W_{\text {loc }}^{s, u}\left(\Lambda_{\theta, \varepsilon}\right)=\bigcup_{x \in \Lambda_{\theta, \varepsilon}} W_{\text {loc }}^{s, u}(x)$.
That is, for any $x^{s, u} \in W_{\text {loc }}^{s, u}\left(\Lambda_{\theta, \varepsilon}\right)$ there exist $x_{ \pm} \in \Lambda_{\theta, \varepsilon}$ such that

$$
\left|\mathcal{P}_{\theta, \varepsilon}^{n}\left(x^{s, u} ; \varepsilon\right)-\mathcal{P}_{\theta, \varepsilon}^{n}\left(x_{ \pm} ; \varepsilon\right)\right| \leqslant K \lambda_{\varepsilon}^{-|n|} n \rightarrow \pm \infty
$$

The local manifolds can be globalized $W^{s, u}\left(\Lambda_{\theta, \varepsilon}\right)=\bigcup_{+,-n<0} \mathcal{P}_{\theta}^{n}\left(W_{\text {loc }}^{s, u}\left(\Lambda_{\theta, \varepsilon}\right)\right)$. The manifold $\Lambda_{\theta, \varepsilon}$ is not unique, not invariant, but only locally invariant. The local invariance means that there exists a neighborhood \mathcal{V} of $\Lambda_{\theta, \varepsilon}$, such that any orbit of $\mathcal{P}_{\theta, \varepsilon}(x)$ that stays in \mathcal{V} for all time is actually contained in $\Lambda_{\theta, \varepsilon}$.

$\varepsilon \neq 0$: Step 2: The Melnikov method

- In general, $W^{s}\left(\Lambda_{\theta, \varepsilon}\right) \neq W^{u}\left(\Lambda_{\theta, \varepsilon}\right)$.
- To be able to define the scattering map in the perturbed case, we look for the points $x \in W^{s}\left(\Lambda_{\theta, \varepsilon}\right) \pitchfork W^{u}\left(\Lambda_{\theta, \varepsilon}\right)$.
- Totally analogous to the one and a half degrees of freedom case we consider Poincaré function (or Melnikov potential) associated to the homoclinic manifold:

$$
\begin{aligned}
L(v, I, \phi, \theta)=-\int_{-\infty}^{\infty} & {\left[H_{1}\left(p_{h}(v+t), q_{h}(v+t), I, \phi+I t, \theta+t ; 0\right)\right.} \\
& \left.-H_{1}(0,0, I, \phi+I t, \theta+t ; 0)\right] d t
\end{aligned}
$$

$\varepsilon \neq 0$: Step 2: The Melnikov method

Proposition

Fix the section $\Sigma_{\theta}=\{(p, q, I, \phi, t), t=\theta\}$. Assume that there exists a set $U^{-}:=\mathcal{I} \times \mathcal{J} \subset \mathbb{R}^{\times} \mathbb{T} \simeq \Sigma_{\theta}$, such that \mathcal{I} is a ball in \mathbb{R}, and for any values $(I, \phi) \in U^{-}$, the map

$$
v \in \mathbb{R}^{n} \rightarrow L(v, I, \phi, \theta) \in \mathbb{R}
$$

has a non-degenerate critical point v^{*}, which is locally given, by the implicit function theorem, by

$$
v^{*}=v^{*}(I, \phi, \theta) .
$$

Then, for $0<|\varepsilon|$ small enough, there exists a transversal homoclinic point $x(I, \phi ; \varepsilon) \in W^{u}\left(\Lambda_{\theta, \varepsilon}\right) \pitchfork W^{s}\left(\Lambda_{\theta, \varepsilon}\right)$, which is ε-close to the point $x_{h}\left(v^{*}, I, \phi\right)=\left(p_{h}\left(v^{*}\right), q_{h}\left(v^{*}\right), I, \phi\right) \in \Gamma:$
that is:

$$
x=x(I, \phi ; \varepsilon)=\left(p_{h}\left(v^{*}\right)+\mathcal{O}(\varepsilon), q_{h}\left(v^{*}\right)+O(\varepsilon), I, \phi\right) \in W^{s}\left(\Lambda_{\theta, \varepsilon}\right) \pitchfork W^{u}\left(\Lambda_{\theta, \varepsilon}\right) .
$$

The proof is identical to the one and a half degrees of freedom.

$\varepsilon \neq 0$: Step 2: The Melnikov method

Proof:

Fix the Poincaré section Σ_{θ} and take any point

$$
x_{h}=x_{h}(v, I, \phi)=\left(p_{h}(v), q_{h}(v), I, \phi\right) \in \Gamma
$$

we have a straight line N transversal to Γ in x_{h} :

q
$N=N\left(x_{h}\right)=x_{h}+\left\langle\nabla P\left(p_{h}(v), q_{h}(v)\right)\right\rangle$, the normal bundle to the 3 separatrix Γ in the 4 dimensional space Σ_{θ}, where ∇P denotes the vector: $\nabla P=\left(\frac{\partial P}{\partial p}, \frac{\partial P}{\partial q}, 0,0\right)$.

$\varepsilon \neq 0$: Step 2: The Melnikov method

Since $W^{s, u}\left(\Lambda_{\theta, \varepsilon}\right)=W^{s, u}(\Lambda)+\mathcal{O}(\varepsilon), W^{s, u}\left(\Lambda_{\theta, \varepsilon}\right)$ intersect N in unique points $x^{s, u} \in W^{s, u}\left(\Lambda_{\theta, \varepsilon}\right)$.
We try to find x_{h} and in particular v, such that $x^{s}=x^{u}$. Note that

$$
x^{s, u}=\left(p_{h}(v)+\lambda^{s, u} \frac{\partial P}{\partial p}\left(p_{h}(v), q_{h}(v)\right), q_{h}(v)+\lambda^{s, u} \frac{\partial P}{\partial q}\left(p_{h}(v), q_{h}(v)\right), l, \phi\right),
$$

where $x^{s, u}=x^{s, u}(v, l, \phi ; \varepsilon)$ and $\lambda^{s, u}=\lambda^{s, u}(v, l, \phi ; \varepsilon)=O(\varepsilon)$.
The computations done for one and half degrees of freedom give:

$$
\begin{aligned}
P\left(x^{u}\right)-P\left(x^{s}\right) & =\underbrace{P\left(x_{-}\right)}_{O\left(\varepsilon^{2}\right)}-\underbrace{P\left(x_{+}\right)}_{O\left(\varepsilon^{2}\right)}+ \\
& +\varepsilon \int_{-\infty}^{\infty}\left\{P, H_{1}\right\}\left(p_{0}(v+\sigma), q_{0}(v+\sigma), I, \phi+I \sigma, \theta+\sigma ; 0\right) \\
& -\left\{P, H_{1}\right\}(0,0, I, \phi+I \sigma, \theta+\sigma ; 0) d \sigma \\
& +\mathcal{O}\left(\varepsilon^{2}\right),
\end{aligned}
$$

where $x_{+,-}=x_{0}+\mathcal{O}(\varepsilon) \in \Lambda_{\varepsilon}$ are the points such that $\chi^{u, s} \in W^{u, s}\left(x_{\mp}\right)$.

$\varepsilon \neq 0$: Step 2: The Melnikov method

Therefore

$$
\begin{aligned}
P\left(x^{u}\right)-P\left(x^{s}\right) & =\varepsilon \frac{\partial}{\partial v} \int_{-\infty}^{\infty} H_{1}\left(p_{h}(v+\sigma), q_{h}(v+\sigma), I, \phi+I \sigma, \theta+\sigma ; 0\right) \\
& -H_{1}(0,0, I, \phi+I \sigma, \theta+\sigma ; 0) d \sigma+\mathcal{O}\left(\varepsilon^{2}\right) \\
& =\varepsilon \frac{\partial}{\partial v} L(v, I, \phi, \theta)+\mathcal{O}\left(\varepsilon^{2}\right) .
\end{aligned}
$$

By the Implicit Function Theorem, non-degenerate critical points $v^{*}=v^{*}(I, \phi, \theta)$ of $v \in \mathbb{R} \mapsto L(v, I, \phi, \theta) \in \mathbb{R}$ give rise to $\tilde{v}=v^{*}+\mathcal{O}(\varepsilon)$ where $P\left(x^{u}\right)-P\left(x^{s}\right)=0$ and, therefore, there are transversal homoclinic points

$$
\begin{aligned}
x^{u} & =x^{s}=x=x(I, \phi, \theta ; \varepsilon)= \\
& =\left(p_{h}(\tilde{v})+\lambda \frac{\partial P}{\partial p}\left(p_{h}(\tilde{v}), q_{h}(\tilde{v})\right), q_{h}(\tilde{v})+\lambda \frac{\partial P}{\partial q}\left(p_{h}(\tilde{v}), q_{h}(\tilde{v})\right), I, \phi\right)
\end{aligned}
$$

in $W^{s}\left(\Lambda_{\varepsilon}\right) \pitchfork W^{u}\left(\Lambda_{\varepsilon}\right)$, where $\lambda=\lambda^{s, u}=\lambda(\tilde{v}, I, \phi, s ; \varepsilon)=\mathcal{O}(\varepsilon)$, so that x is ε-close to $x_{h}\left(v^{*}, I, \phi\right):=\left(p_{h}\left(v^{*}\right), q_{h}\left(v^{*}\right), I, \phi\right), v^{*}=v_{*}^{*}(I, \phi, \theta)$.

$\varepsilon \neq 0$: Step 2: The Melnikov method

- $L(v, I, \phi, \theta)$ is called the Melnikov potential.
- Once that we know that $x \in W^{u}\left(x_{-}\right) \cap W^{s}\left(x_{+}\right)$, where $x_{ \pm}=\left(I_{ \pm}, \phi_{ \pm}\right) \in \Lambda_{\varepsilon}$ we want to compute the $/$ coordinate of these points, that we already know $I_{ \pm}=I+\mathcal{O}(\varepsilon)$.
- The same kind of computations using I instead of $P(p, q)$ give:

$$
\begin{aligned}
I\left(x^{u}\right)-I\left(x^{s}\right) & =I_{-} I_{+}+ \\
& +\varepsilon \int_{-\infty}^{\infty}\left\{I, H_{1}\right\}\left(p_{h}(v+\sigma), q_{h}(v+\sigma), I, \phi+I \sigma, \theta+\sigma\right) \\
& -\left\{I, H_{1}\right\}(0,0, I, \phi+I \sigma, \theta+\sigma) d \sigma \\
& +\mathcal{O}\left(\varepsilon^{2}\right) \\
& =I_{-}-I_{+}+\varepsilon \frac{\partial}{\partial \phi} L(v, I, \phi s)+O\left(\varepsilon^{2}\right),
\end{aligned}
$$

Therefore, if we take $v=\tilde{v}=\tilde{v}(I, \phi, \theta ; \varepsilon)$, then $x^{u}=x^{s}$ and:
$I_{-} I_{+}=\varepsilon \frac{\partial}{\partial \phi} L(\tilde{v}, I, \phi, \theta)+\mathcal{O}\left(\varepsilon^{2}\right)$

$\varepsilon \neq 0$: Step 3: Formulas for the Scattering map

- We will now define the scattering map for the perturbed Hamiltonian.
- Take $\theta \in[0,2 \pi]$.
- Let $U^{-}:=\mathcal{I} \times \mathcal{J} \subset \mathbb{R} \times \mathbb{T}$, such that \mathcal{I} is a ball in \mathbb{R}, and for any values $(I, \phi, \theta) \in U^{-} \times[0,2 \pi] \exists v^{*}=v^{*}(I, \phi, \theta)$ critical point of

$$
v \mapsto L(v, I, \phi, \theta)
$$

in such a way that

$$
x=x(I, \phi, \theta ; \varepsilon) \in W^{s}\left(\Lambda_{\theta, \varepsilon}\right) \pitchfork W^{u}\left(\Lambda_{\theta, \varepsilon}\right) .
$$

- Let $\Gamma_{\theta, \varepsilon}=\left\{x(I, \phi, \theta ; \varepsilon),(I, \phi, \theta) \in U^{-} \times[0,2 \pi]\right\}$.
- For any $x \in \Gamma_{\theta, \varepsilon}$ there exist unique $x_{ \pm} \in \Lambda_{\theta, \varepsilon}$ such that

$$
\mathcal{P}_{\theta, \varepsilon}^{n}(x)-\mathcal{P}_{\theta, \varepsilon}^{n}\left(x_{ \pm}\right) \underset{n \pm \infty}{\longrightarrow} 0
$$

$\varepsilon \neq 0$: Step 3: Formulas for the Scattering map

Let

$$
H_{ \pm}=\bigcup\left\{x_{ \pm}\right\}=\bigcup\left\{x_{ \pm}(I, \phi, \theta ; \varepsilon),(I, \phi, \theta) \in U^{-} \times[0,2 \pi]\right\}
$$

Then the scattering map associated to the homoclinic manifold $\Gamma_{\theta, \varepsilon}$ is $\sigma_{\theta, \varepsilon}: H_{-} \mapsto H_{+}$such that $\sigma\left(x_{-}\right)=x_{+}$.
By the previous formula applied to $x^{u}=x^{s}=x=x(I, \phi, \theta ; \varepsilon) \in \Gamma_{\theta, \varepsilon}$,

$$
I_{+}-I_{-}=\varepsilon \frac{\partial}{\partial \phi} L\left(v^{*}, I, \phi, \theta\right)+\mathcal{O}\left(\varepsilon^{2}\right),
$$

where $v^{*}=v^{*}(I, \phi, \theta)$. Calling,

$$
L^{*}(I, \phi, \theta)=L\left(v^{*}, I, \phi, \theta\right)
$$

we have that

$$
I_{+}=I_{-}+\varepsilon \frac{\partial L^{*}}{\partial \phi}(I, \phi, \theta)+O\left(\varepsilon^{2}\right) .
$$

$\varepsilon \neq 0$: Step 3: Formulas for the Scattering map

It is easy to check that

$$
L^{*}(I, \phi, \theta)=L^{*}(I, \phi-I \theta, 0)=: \mathcal{L}^{*}(I, \underbrace{\phi-I \theta}_{\alpha})
$$

so that $L^{*}(I, \phi, \theta)$ depends essentially on two variables: I and $\alpha=\phi-I \theta$. Therefore, defining the Poincaré reduced function as $\mathcal{L}^{*}(I, \alpha)=L^{*}(I, \alpha, 0)$ we can write
$I_{+}=I_{-}+\varepsilon \frac{\partial}{\partial \phi} \mathcal{L}^{*}(I, \alpha)+O\left(\varepsilon^{2}\right), \alpha=\phi-I \theta$.
Finally, by the geometric properties of the scattering map σ_{ε} is an (exact) symplectic and smooth map and therefore it satisfies:

$$
\sigma_{\theta, \varepsilon}(I, \phi)=\left(I+\varepsilon \frac{\partial}{\partial \phi}\left\{\mathcal{L}^{*}(I, \alpha)\right\}+O\left(\varepsilon^{2}\right), \phi-\varepsilon \frac{\partial}{\partial I}\left\{\mathcal{L}^{*}(I, \alpha)\right\}+O\left(\varepsilon^{2}\right)\right),
$$

where $\alpha=\phi-I \theta$, and $(I, \phi, \theta) \in U^{-} \times[0,2 \pi]$.
$\varepsilon \neq 0$: Step 3: Formulas for the Scattering map

Summarizing:
$\sigma_{\theta, \varepsilon}(I, \phi)=\left(I+\varepsilon \frac{\partial}{\partial \phi}\left\{\mathcal{L}^{*}(I, \alpha)\right\}+O\left(\varepsilon^{2}\right), \phi-\varepsilon \frac{\partial}{\partial I}\left\{\mathcal{L}^{*}(I, \alpha)\right\}+O\left(\varepsilon^{2}\right), s\right)$,
where $\alpha=\phi-I \theta$, and $(I, \phi, \theta) \in U^{-}$.
That is:

$$
\sigma_{\varepsilon}=\operatorname{Id}-\varepsilon J \nabla \mathcal{L}^{*}(I, \alpha)+O\left(\varepsilon^{2}\right), J=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Therefore, except for an $\mathcal{O}\left(\varepsilon^{2}\right)$ error, $\sigma_{\theta, \varepsilon}$ is the ε-time map of the hamiltonian $-\mathcal{L}^{*}(I, \alpha)$, where $\alpha=\phi-I \theta$, and is therefore ε-close to the identity.

Computation of the Melnikov potential in the Arnold example

Remember the Arnold model after scaling variables and time:
$H(p, q, I, \phi, t ; \varepsilon, \mu)=\frac{1}{2} I^{2}+\frac{1}{2} p^{2}+(\cos q-1)+\mu(\cos q-1)\left(\sin \phi+\cos \frac{t}{\sqrt{\varepsilon}}\right)$
Perturbed parameter is μ, time frequency $\frac{1}{\sqrt{\varepsilon}}$.
The unperturbed system has $V(q)=\cos q-1$, the classical pendulum, and the homoclinic connection is

$$
p_{h}(t)=\frac{2}{\cosh (t)}, \quad q_{h}(t)=4 \arctan e^{t}
$$

and a perturbation H_{1} of the form $H_{1}(p, q, I, \phi, t ; \varepsilon)=(\cos q-1) g(\phi, r)$, $r=\frac{t}{\sqrt{\varepsilon}}$, where $g(\phi, r)=\sin \phi+\cos r$.

Computation of the Melnikov potential in the Arnold example

The Melnikov potetial satisfies: $L(v, I, \phi, \theta)=\mathcal{L}(I, \phi-I v, \theta-v)$ where, using $\frac{p_{h}^{2}}{2}+\cos q_{h}-1=0$ and that $p_{h}(t)=\frac{2}{\cosh t}$

$$
\begin{aligned}
\mathcal{L}(I, \phi, \theta) & =-\int_{-\infty}^{\infty}\left(H_{1}\left(p_{h}(t), q_{h}(t), I, \phi+I t, \theta+t ; 0\right)\right. \\
& \left.--H_{1}(0,0, I, \phi+I t, \theta+t ; 0)\right) d t \\
& =-\int_{-\infty}^{\infty}\left(\cos q_{h}(t)-1\right) g\left(\phi+I t, \frac{\theta+t}{\sqrt{\varepsilon}}\right) d t \\
& =\frac{1}{2} \int_{-\infty}^{\infty} p_{h}^{2}(t)\left(\sin (\phi+I t)+\cos \left(\frac{\theta+t}{\sqrt{\varepsilon}}\right)\right) d t \\
& =2 \int_{-\infty}^{\infty}\left(\sin \phi \cos (I t)+\cos \frac{\theta}{\sqrt{\varepsilon}} \cos \left(\frac{t}{\sqrt{\varepsilon}}\right)\right) \frac{1}{\cosh ^{2} t} d t \\
& =2 \sin \phi \int_{-\infty}^{\infty} \frac{\cos (I t)}{\cosh ^{2} t} d t+2 \cos \frac{\theta}{\sqrt{\varepsilon}} \int_{-\infty}^{\infty} \frac{\left.\cos ^{\left(\frac{t}{\sqrt{\varepsilon}}\right.}\right)}{\cosh ^{2} t} d t
\end{aligned}
$$

Computation of the Melnikov potential in the Arnold example

Using residues theorem, one can easily compute:

$$
\int_{-\infty}^{\infty} \frac{\cos I \sigma}{\cosh ^{2} \sigma} d \sigma=\frac{\pi I}{\sinh \frac{\pi I}{2}}
$$

And:

$$
\int_{-\infty}^{\infty} \frac{\cos \frac{\sigma}{\sqrt{\varepsilon}}}{\cosh ^{2} \sigma} d \sigma=\frac{\pi}{\sqrt{\varepsilon}} \frac{1}{\sinh \frac{\pi}{2 \sqrt{\varepsilon}}}=\frac{2 \pi}{\sqrt{\varepsilon}} \frac{e^{-\frac{\pi}{2 \sqrt{\varepsilon}}}}{1-e^{-\frac{\pi}{\sqrt{\varepsilon}}}} \simeq \mathcal{O}\left(e^{-\frac{\pi}{2 \sqrt{\varepsilon}}}\right)
$$

Computation of the Melnikov potential in the Arnold example

Therefore:

$$
\mathcal{L}(I, \phi, \theta)=2 \pi\left(\sin \phi \frac{I}{\sinh \frac{\pi I}{2}}+\frac{1}{\sqrt{\varepsilon}} \cos \frac{\theta}{\sqrt{\varepsilon}} \frac{1}{\sinh \frac{\pi}{2 \sqrt{\varepsilon}}}\right)
$$

The critical points of $\mathcal{L}(I, \phi-I v, \theta-v)$ can be computed and then the reduced Poincaré function $\mathcal{L}^{*}(I, \phi-I \theta)$ and the scattering map for this problem.
Remember that $(\alpha=\phi-I \theta)$:
$\sigma_{\mu}(I, \phi)=\left(I+\mu \frac{\partial}{\partial \phi}\left\{\mathcal{L}^{*}(I, \alpha)\right\}+O\left(\mu^{2}\right), \phi-\mu \frac{\partial}{\partial I}\left\{\mathcal{L}^{*}(I, \alpha)\right\}+O\left(\mu^{2}\right), s\right)$,
It is very easy to see that to obtain heteroclinic connections between two tori $I=I^{0}$ and $I=\bar{I}^{0}>I^{0}$, we need that $\frac{\partial \mathcal{L}^{*}}{\partial \phi}>0$!
That's a good exercice!
recall: to make everything rigourous we need $\mu \ll e^{-\frac{\pi}{2 \sqrt{\varepsilon}}}$

Step 4: Studying the inner dynamics in $\Lambda_{\theta, \varepsilon}$

- Now we have a tool, the Scattering map, to "understand" the outer dynamics: the dynamics following the homoclinic excursions to $\Lambda_{\theta, \varepsilon}$.
- Next step is to understand the inner dynamics, that is, the dynamics in $\Lambda_{\theta, \varepsilon}$.
- Combining these two dynamics we will find "the skeleton" of the global ynamics.
- I will show you the classical methods that look for transition chains between the invariant objects inside $\Lambda_{\theta, \varepsilon}$.
- I will see that the classical KAM tori used by Arnold are not enough.
- I will show you a more recent result that does not need any knowledge about the invariant objects inside $\Lambda_{\theta, \varepsilon}$.

Step 4: Studying the inner dynamics in $\Lambda_{\theta, \varepsilon}$

- The idea of some works using geometric methods is to find the invariant sets inside $\Lambda_{\theta, \varepsilon}$ which act as "barriers" to difuse along $\Lambda_{\theta, \varepsilon}$ and try to jump them throught $\sigma_{\theta, \varepsilon}$.
- More specifically, we follow Arnold's idea: we look for an collection of invariant tori $\mathcal{T}_{i} \subset \Lambda_{\theta, \varepsilon}$ such that the unstable manifold of \mathcal{T}_{i} intersects trasversally the stable manifold of \mathcal{T}_{i+1} giving a transition chain.
- We will describe the steps necessary to verify this mechanism.
- The verification uses standard methods from the geometric theory of perturbations but is long and technical:
2.1 Compute the Hamiltonian flow in $\tilde{\Lambda}_{\varepsilon}=\cup_{\theta \in[0,2 \pi]} \Lambda_{\theta, \varepsilon}$ and use the Averaging method to simplify the flow up to some order hight enough.
2.2 Apply KAM theory to the averaged system. The whiskered tori and full dimensional tori inside $\Lambda_{\theta, \varepsilon}$.

Step 4.1: Averaging method

- As we have an 2-dimensional invariant manifold for any Poincaré section Σ_{θ}, we have a 3 -dimensional invariant manifold for the flow, that we denote by $\tilde{\Lambda}_{\varepsilon}$.
- One can see that the reduced flow in $\tilde{\Lambda}_{\varepsilon}$ is hamiltonian and its a Hamiltonian is of the form: $\frac{1}{2} I^{2}+\varepsilon K_{1}(I, \phi, t ; \varepsilon)$ and can be computed at any order in ε.
- We look for a change of variables that reduce the system to motion of the actions to constant up to any order in ε (eliminates the angles ϕ, t from the hamiltonian)
- In one step of averaging the hamiltonian becomes: $\frac{1}{2} I^{2}+\varepsilon h_{1}(I)+\varepsilon^{2} K_{1}^{1}(I, \phi, t ; \varepsilon)$.
- Averaging fails at resonances $l k+I=0$
- Far from resonances we obtain, after m steps $\frac{1}{2} I^{2}+\varepsilon h_{0}(I ; \varepsilon)+O\left(\varepsilon^{m}\right)$
- Close to simple resonances $I=\left(n_{0} / k_{0}\right)$ the motion is more complicated: $\frac{1}{2} I^{2}+\varepsilon h_{0}(I ; \varepsilon)+\varepsilon V\left(k_{0} \theta+n_{0} t\right)+O\left(\varepsilon^{m}\right)$. Motion is pendulum like

Step 4.1: Averaging method

The motion of the Poincaré map for the averaged system in $\Lambda_{\theta, \varepsilon}$ is:

We see here the new objects that fill the gaps: the secondary tori!

Step 4.2: KAM theorem

- Now we can apply the KAM theorem to the Poincaré map $\mathcal{P}_{\theta, \varepsilon}$ of the averaged system in $\Lambda_{\theta, \varepsilon}$ with $m=3$.
- We obtain invariant tori (primary or secondary) at a distance $O\left(\epsilon^{3 / 2}\right)$:

Step 5: Transition chains

- Once we know the structure in $\Lambda_{\theta, \varepsilon}$ given by the invariant tori of $\mathcal{P}_{\theta, \varepsilon}$ we use the scattering map $\sigma_{\theta, \varepsilon}$ to find heteroclinic intersections, even if the tori have different topology!.
- Lemma: If $\sigma_{\theta, \varepsilon}\left(\mathcal{T}_{1}\right) \cap \mathcal{T}_{2} \neq \emptyset$ then $W^{u}\left(\mathcal{T}_{1}\right) \pitchfork W^{s}\left(\mathcal{T}_{2}\right)$; and therefore there is an heteroclinic connection between \mathcal{T}_{1} and \mathcal{T}_{2}.

Step 6: Shadowing lemmas

- We need to see that there is a "real" orbit which follows the chain.
- We use a Lambda lemma, Fontich-Martín (Nonlinearity, 2000) that can be applied to tori of different topology.
- Let f be a symplectic map in a 4 symplectic manifold.
- Assume that the map leaves invariant a $\mathcal{C}^{1} 1$-dimensional torus \mathcal{T} and that the motion in the torus is an irrational rotation.
- Let ξ be a 2-dimensional manifold transversal to $W^{u}(\mathcal{T})$. Then, $W^{s}(\mathcal{T}) \subset \overline{\bigcup_{i>0} f^{-i}(\xi)}$.
- We use this lemma to see that:

Let $\left\{\mathcal{T}_{i}\right\}_{i=1}^{\infty}$ be a sequence of transition tori (tori with irrational rotation, such that $\left.W^{u}\left(\mathcal{T}_{i}\right) \pitchfork W^{s}\left(\mathcal{T}_{i+1}\right)\right)$
Given $\left\{\varepsilon_{i}\right\}_{i=1}^{\infty}$ a sequence of strictly positive numbers, we can find a point P and a increasing sequence of numbers T_{i} such that

$$
\Phi_{T_{i}}(P) \in N_{\varepsilon_{i}}\left(\mathcal{T}_{i}\right)
$$

where $N_{\varepsilon_{i}}\left(\mathcal{T}_{i}\right)$ is a neighborhood of size ε_{i} of the torus \mathcal{T}_{i}.

Step 6: Shadowing lemmas

The orbit of P has action I which increase along the orbit!!
proof Let $x \in W_{\mathcal{T}_{1}}^{s}$. We can find a closed ball B_{1}, centered on x, and such that

$$
\begin{equation*}
\Phi_{T_{1}}\left(B_{1}\right) \subset N_{\varepsilon_{1}}\left(\mathcal{T}_{1}\right) \tag{4}
\end{equation*}
$$

By the Lambda Lemma

$$
W_{\mathcal{T}_{2}}^{s} \cap B_{1} \neq \emptyset
$$

Hence, we can find a closed ball $B_{2} \subset B_{1}$, centered in a point in $W_{\mathcal{T}_{2}}^{s}$ such that, besidessatisfying (4):

$$
\Phi_{T_{2}}\left(B_{2}\right) \subset N_{\varepsilon_{2}}\left(\mathcal{T}_{2}\right)
$$

Proceeding by induction, we can find a sequence of closed balls

$$
\begin{aligned}
& B_{i} \subset B_{i-1} \subset \cdots \subset B_{1} \\
& \Phi_{T_{j}}\left(B_{i}\right) \subset N_{\varepsilon_{j}}\left(\mathcal{T}_{j}\right), \quad i \leq j
\end{aligned}
$$

Since the balls are compact, $\cap B_{i} \neq \emptyset$.
A point P in the intersection satisfies the required property.

The dynamics in Λ_{ε}

