Lecture 4: A new shadowing result and application to Arnold diffusion Master Class KTH, Stockholm

Tere M. Seara

Universitat Politecnica de Catalunya

May 20- 24 2024

May 20- 24 2024

1/16

- Justify all these facts requires a lot of technicalities.
- We will show a different mechanism that uses less knowledge of the inner dynamics in $\Lambda_{\theta,\varepsilon}$
- The basic idea is:

If we know an orbit of the scattering map $x_{i+1} = S_{\varepsilon}(x_i)$, is it true that there is a real orbit of the Poincaré map $z_{i+1} = \mathcal{P}_{\theta,\varepsilon}^{k_i}(z_i)$ such that z_i is "close" to x_i ?

If this is true we just need to find orbits of the scattering map with increasing action.

What we will see is that we have the following dichotomy:

- The inner dynamics (which is the dynamics of $\mathcal{P}_{\theta,\varepsilon}$ restricted to $\Lambda_{\theta,\varepsilon}$) itself gives orbits which diffuse or
- The outher dynamics (given by $\sigma_{\theta,\varepsilon}$) gives those orbits and we will find orbits of $\mathcal{P}_{\theta,\varepsilon}$ (given by $\sigma_{\theta,\varepsilon}$) which follows slosely them.
- We need a sahdowing lemma that does not need any invariant torus

イロト イポト イヨト イヨト 三日

A general Shadowing Lemma for NHIM's

Theorem 1 [Gidea, de la Llave, S.]

Given $f: M \to M$, is a C^r -map, $r \ge r_0$, $\Lambda \subseteq M$ NHIM, $\Gamma \subseteq M$ homoclinic channel. $\sigma = \sigma^{\Gamma} : \Omega^{-}(\Gamma) \to \Omega^{+}(\Gamma)$ is the scattering map associated to Γ . Assume that Λ and Γ are compact.

Then, for every $\delta > 0$ there exists $n^* \in \mathbb{N}$ and a family of functions $m_i^* : \mathbb{N}^{2i+1} \to \mathbb{N}$, $i \ge 0$, such that, for every pseudo-orbit $\{y_i\}_{i\ge 0}$ in Λ of the form

$$y_{i+1} = f^{m_i} \circ \sigma \circ f^{n_i}(y_i),$$

for all $i \ge 0$, with $n_i \ge n^*$ and $m_i \ge m_i^*(n_0, \ldots, n_{i-1}, n_i, m_0, \ldots, m_{i-1})$, there exists an orbit $\{z_i\}_{i>0}$ of f in M such that, for all $i \ge 0$,

$$\mathsf{z}_{i+1} = f^{m_i+n_i}(z_i), \quad ext{and} \quad d(z_i,y_i) < \delta.$$

One can use different scattering maps in the sequence!! Related result: Gelfreich, Turaev Arnold Diffusion in a priori chaotic symplectic maps, Commun. Math. Phys., 2017

イロト 不得 トイヨト イヨト 二日

May 20- 24 2024

3/16

Tere M-Seara (UPC)

First tool: the λ -Lemma

 $f: M \to M$, is a C^r -map, $r \ge r_0$, $\Lambda \subseteq M$ NHIM, Let Δ be a 1-dimensional C^1 submanifold transversely intersecting $W^s(\Lambda)$ at some point $p \in W^s(p_0)$ for some $p_0 \in \Lambda$. Let $\Delta^k = f^k(\Delta)$, for $k \ge 1$. and set $p_0^k = f^k(p_0)$. Then, there exist a neighborhoods U of Λ and $\forall \varepsilon > 0$, $\exists k_0$ and for $k \ge k_0$ there exists a C^1 -submanifold $\overline{\Delta}^k \subset \Delta^k$ such that

$$d_{C^1,U}(\bar{\Delta}^k, W^u(p_0^k)\cap U) < \varepsilon$$

Analogously, let Δ be a n_s -dimensional \mathcal{C}^1 submanifold transversely intersecting $W^u(\Lambda)$ at some point $p \in W^u(p_0)$, for some V. Let $\Delta^k = f^{-k}(\Delta)$, for $k \ge 1$ and set $p_0^{-k} = f^{-k}(p_0)$. Then, there exist a neighborhood U of Λ , and $\forall \varepsilon > 0$, $\exists k_0$ and for $k \ge k_0$ there exists a \mathcal{C}^1 -submanifold $\overline{\Delta}^{-k} \subset \Delta^{-k}$ such that

$$d_{C^1,U}(\bar{\Delta}^{-k},W^s(p_0^{-k})\cap U)<\varepsilon$$

Tere M-Seara (UPC)

4/16

A general Shadowing Lemma for NHIM's

- We have a pseudo-orbit: $y_{i+1} = f^{m_i} \circ \sigma \circ f^{n_i}(y_i)$
- The proof is based on the construction of a nested sequence of closed balls $B_{i+1} \subset B_i$ in a neighborhood of the first point of the pseudo-orbit y_0 , such that taking $z_0 \in B_k = \bigcap_{0 \le i \le k} B_i$ one has that

• $z_0 \in B_\delta(y_0)$

- $z_{i+1} = f^{m_i+n_i}(z_i) \in B_{\delta}(y_{i+1})$ for $i = 0, 1, \dots, k$, for any $k \in \mathcal{N}$.
- Moreover, taking $z_0 \in B_{\infty} = \bigcap_{i \ge 0} B_i \neq \emptyset$, one has that: $z_{i+1} \in B_{\delta}(y_{i+1})$ for any $i \in \mathcal{N}$.
- The argument will be done by induction.

イロト 不得 トイヨト イヨト 二日

Second tool: Poincaré recurrence

Definition

A point $x \in \Lambda$ is said to be recurrent for a map f on Λ , if for every open neighborhood $U \subseteq \Lambda$ of x, $f^k(x) \in U$ for some k > 0 large enough.

Theorem (Poincaré Recurrence Theorem)

Suppose that μ is a measure on Λ that is preserved by f, and $D \subset \Lambda$ is f-invariant with $\mu(D) < \infty$. Then μ -almost every point of D is recurrent.

Instead of recurrent points, in the arguments below we can use non-wandering points.

Proposition

Suppose that μ is a measure on Λ that is preserved by f, and $D \subset \Lambda$ is f-invariant with $\mu(D) < \infty$. Then every point $x \in D$ is non-wandering, that is, for every open neighborhood U of x in D, there exists $n \ge 1$ such that $f^n(U) \cap U \neq \emptyset$; moreover, n can be chosen arbitrarily large.

Shadowing Lemma for pseudo-orbits of the scattering map

Theorem 2 [Gidea, de la Llave, S.]

 $f: M \to M$ smooth map, $\Lambda \subseteq M$ is a NHIM, $\Gamma \subseteq M$ homoclinic channel and σ is the scattering map associated to Γ .

- f preserves a measure μ absolutely continuous with respect to the Lebesgue measure on $\Lambda,$
- σ sends positive measure sets to positive measure sets.

Let $\{x_i\}_{i=0,...,n}$ be a finite pseudo-orbit of the scattering map in Λ , i.e., $x_{i+1} = \sigma(x_i), i = 0, ..., n-1, n \ge 1$, that is contained in some open set $\mathcal{U} \subseteq \Lambda$ with almost every point of \mathcal{U} recurrent for $f|_{\Lambda}$. (The points $\{x_i\}_{i=0,...,n}$ do not have to be themselves recurrent.) Then, for every $\delta > 0$ there exists an orbit $\{z_i\}_{i=0,...,n}$ of f in M, with $z_{i+1} = f^{k_i}(z_i)$ for some $k_i > 0$, such that $d(z_i, x_i) < \delta$ for all i = 0, ..., n.

イロト 不得 トイヨト イヨト 二日

Shadowing Lemma for pseudo-orbits of the scattering map: Proof

- Choose a small open disk B_0 of x_0 in Λ , with $B_0 \subseteq \mathcal{U}$ such that $B_i := \sigma^i(B_0) \subseteq \mathcal{U}$, and diam $(B_i) \leq \delta/2$, for all i = 0, ..., n.
- For the given pseudo-orbit $\{x_i\}$ of σ , with $x_{i+1} = \sigma(x_i)$, we have that $x_i \in B_i$ for all *i*.
- We will use Poincaré recurrence to produce a new pseudo-orbit $\{y_i\}$, with $y_{i+1} = f^{m_i} \circ \sigma \circ f^{n_i}(y_i)$, where m_i, n_i are as in previous theorem, such that $y_i \in B_i$ for all i, and hence $d(y_i, x_i) \leq \delta/2$.
- The shadowing theorem will provide us with a true orbit $\{z_i\}$ with $z_{i+1} = f^{m_i+n_i}(z_i)$, such that $d(z_i, y_i) \le \delta/2$, hence $d(z_i, x_i) < \delta$.

イロト イポト イヨト イヨト 三日

Theorem 3 [Gidea, de la Llave, S.] A Perturbative result

Given H_{ε} . Assume for all $0 < \varepsilon < \varepsilon_0$ there exist

- NHIM Λ_{ε}
- Homoclinic channel Γ_{ε} and corresponding scattering map $\sigma_{\varepsilon} = \mathrm{Id} + \varepsilon J \nabla S + O(\varepsilon^2)$
- Suppose that J∇S(x₀) ≠ 0 at some point x₀ ∈ Λ. Let γ̃ : [0, 1] → Λ₀ be an integral curve through x₀ for the vector field ẋ = J∇S(x).
- Suppose that there exists a neighborhood U of γ̃([0, 1]) in Λ_ε such that a.e. point in U is recurrent for F_{ε|Λ0}.

Then for every $\delta > 0$, there exists an orbit $\{z_i\}_{i=0,...,n}$ of F_{ε} in M, with $n = O(\mu(\varepsilon)^{-1})$, such that for all i = 0, ..., n - 1,

 $z_{i+1} = F_{\varepsilon}^{k_i}(z_i)$, for some $k_i > 0$, and

 $d(z_i, \gamma(t_i)) < \delta + K\varepsilon$, for $t_i = i \cdot \varepsilon$

where $0 = t_0 < t_1 < \ldots < t_n \le 1$.

イロト 不得 トイヨト イヨト ニヨー

Proof of Theorem 3

The main idea is that the scattering map is given by $\sigma_{\varepsilon} = \text{Id} + \varepsilon J \nabla S + O(\varepsilon^2)$ therefore, its orbits are close to the orbits obtained by applying the Euler method of step ε to the vector field

 $\dot{x} = J\nabla S(x)$

Therefore, one can find an orbit $x_{i+1} = s_{\varepsilon}(x_i)$ such that

$$x_0 = \gamma(0), \quad x_{i+1} = s_{\varepsilon}(x_i) \in \mathcal{U} \subset \Lambda,$$

and

$$d(\gamma(t_i), x_i) < K\varepsilon, \quad i = 0, \dots, n, \ n = O(1/\varepsilon)$$

then we apply Theorem 2 to obtain an orbit $z_{i+1} = F_{\varepsilon}^{k_i}(z_i)$ in M, for some $k_i > 0$, s.t. $d(z_i, x_i) < \delta$ for all i = 0, ..., n

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A general diffusion result

Corollary [Gidea, de la Llave, S.]

Given $H_{\varepsilon} = H_0 + \varepsilon H_1$. Assume for all $0 < \varepsilon < \varepsilon_0$ there exist

- NHIM $\Lambda_{\varepsilon} = k_{\varepsilon}(\Lambda_0)$
- Homoclinic channel Γ_{ε} and corresponding scattering map $s_{\varepsilon} = \operatorname{Id} + \varepsilon J \nabla S + O(\varepsilon^2)$, where $s_{\varepsilon} = k_{\varepsilon}^{-1} \circ \sigma_{\varepsilon} \circ k_{\varepsilon}$

•
$$\Lambda_0 \subseteq \mathbb{R}^d \times \mathbb{T}^d \ni (I, \varphi)$$

If $J\nabla S(I, \varphi)$ is transverse to some level set $\{I = I_*\}$ of I, then $\exists \varepsilon_1 < \varepsilon_0$, $\exists C > 0$, s.t. $\forall \varepsilon < \varepsilon_1 \exists x(t)$ with

$$\|I(x(T)) - I(x(0))\| > C$$
, for some $T > 0$.

• Remark:

• There are no requirements on the inner dynamics, except of being conservative

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

11/16

May 20- 24 2024

Tere M-Seara (UPC)

Proof of the Corollary

- Given J∇S(I, φ) transverse to {I = I₀}
 ⇒ J∇S(I, φ) transverse to {I = I_{*}} with ||I_{*} I₀|| < δ, for some δ > 0 independent of ε
 ⇒ there is a strip S of φ-size O(1) consisting of trajectories of the Hamiltonian system x = J∇S(x) along which I changes O(1).
 ⇒ there are orbits of the map s_ε along which I changes O(1)
- We have two possibilities
 - There is a bounded domain through the inner dynamics, then we have Poincaré recurrence and Theorem 3 applies
 - There is diffusion using only the inner dynamics

<ロト <部ト <きト <きト = 目

Application

Diffusion in an a priori unstable system

$$H_{\varepsilon}(p,q,I,\varphi,t) = \underbrace{h_{0}(I) + \sum_{i=1}^{n} \pm \left(\frac{1}{2}p_{i}^{2} + V_{i}(q_{i})\right)}_{\leftarrow} + \varepsilon H_{1}(p,q,I,\varphi,t;\varepsilon),$$

H

$$(p,q,l,arphi,t)\in \mathbb{R}^n imes \mathbb{T}^n imes \mathbb{R}^d imes \mathbb{T}^d imes \mathbb{T}^1$$

Theorem 4 [Gidea, de la Llave, S.]

Under the earlier assumptions,

there exists $\varepsilon_0 > 0$, and C > 0 such that, for each $\varepsilon \in (0, \varepsilon_0)$, there exists a trajectory x(t) such that

$$||I(x(T)) - I(x(0))|| > C$$
 for some $T > 0$.

<ロト < 同ト < ヨト < ヨト

- We make no asumptions on the dynamics of h_0 . No need of KAM tori, Aubry Mather sets etc, do not require any property on $\partial^2 h_0 / \partial I^2 \neq 0$
- No convexity of the unperturbed Hamiltonian; the argument works even if $\partial^2 h_0 / \partial I^2$ degenerate or non-positive definite (e.g., non-twist maps)
- We allow strong resonances etc.
- Any dimension.
- Works for perturbations in an open and dense set satisfying explicit non-degeneracy conditions

Proofs

- Proof of Theorem 4:
- Penduli \rightsquigarrow homoclinic orbit $(p_i^0(\sigma), q_i^0(\sigma))$ to (0, 0)

• Let

$$L(\tau, I, \varphi, s) = -\int_{-\infty}^{\infty} \left[H_1(p^0(\tau + \sigma), q^0(\tau + \sigma), I, \varphi + \omega(I)\sigma, s + \sigma; 0) - H_1(0, 0, I, \varphi + \omega(I)\sigma, s + \sigma; 0) \right] dt$$

- For generic H₁, the equation ∂/∂τ L(τ, I, φ, s) = 0 has a non degenerate solution τ = τ*(I, φ, s)
- Define $\mathcal{L}(I, \varphi, s) = L(\tau^*(I, \varphi, s), I, \varphi, s)$ and $\mathcal{L}^*(I, \theta) = \mathcal{L}(I, \theta, 0)$
- $s_{\varepsilon}(I, \varphi) = \mathrm{Id}(I, \varphi) + \varepsilon J \nabla \mathcal{L}^*(I, \varphi \omega(I)s) + O(\varepsilon^2)$
- For generic H_1 , $\nabla \mathcal{L}^*$ is transverse to some level set $\{I = I_0\}$
- Apply Theorem 3 and Corollary.

イロト イポト イヨト イヨト ニヨー

REFERENCES

- Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. John Guckenheimer, Philip Holmes. (Melnikov theory for one and a Half degrees of freedom)
- Instability of dynamical systems with several degrees of freedom, Arnold, V.I., Sov. Math. Doklady 5, pp: 581–585, 1964. (Arnold example)
- Geometric properties of the scattering map of a normally hyperbolic invariant manifold. Amadeu Delshams, Rafael de la Llave, Tere M.Seara. Advances in Mathematics 217, Issue 3, Pp:1096-1153, 2008 (Scattering map, properties, etc)
- A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model. Amadeu Delshams, Rafael de la Llave, Tere M. Seara. Mem. Amer. Math. Soc. 179 (844): 1–141, 2006. (Study of the "large gap problem")
- Differentiable invariant manifolds for partially hyperbolic tori and a lambda lemma E. Fontich, P. Martín, Nonlinearity 13 (5), pp: 1561–1593, 2000. (Lamda lemma for tori)
- A General Mechanism of Diffusion in Hamiltonian Systems: Qualitative Results. Marian Gidea, Rafael de la Llave, T. M. Seara. Communications on pure and applied mathematics, 73 (1): 110-149, 2020. (general shadowing for NHIM)
- An inclination lemma for normally hyperbolic manifolds with an application to diffusion. L.Sabbagh.Ergodic Theory and Dynamical Systems 35 (7), pp. 2269-2291, 2015. (general lambda lemma for NHIM)

<ロト < 同ト < ヨト < ヨト

May 20- 24 2024

16/16