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Abstract
Sounding rocket impact points are subject to dispersion due to uncertain-
ties in simulation model parameters and perturbations of the rocket tra-
jectory during flight. Estimating the area of dispersion assumes that as-
sociated model uncertainties and magnitude of perturbations have already
been inferred. In this thesis, a method to inversely quantify uncertainty in
rocket simulation models based on launch data is presented. We take on a
probabilistic approach based on Bayesian hierarchical modeling, to address
both epistemic and aleatory uncertainty while incorporating prior knowl-
edge about the modeled system. Bayesian computational techniques, includ-
ing Markov Chain Monte Carlo simulations and modular Bayesian analysis,
are accounted for and employed in numerical case studies. Surrogate deep
neural network models are shown to ease otherwise infeasible computa-
tional burden that posterior distribution exploration suffers from. Numerical
experiments are carried out based on actual launch data from Esrange Space
Center, serving as validation of the methodology and providing posterior
distributions of the target dispersion parameters. The results imply almost
certainly that the currently used dispersion parameters can be reduced, for
all considered sources of uncertainty in the study. Updating said parameters
accordingly yields a potential 20% decrease in theoretically estimated disper-
sion area, which is in good agreement with empirical observations.

Key Words: Uncertainty quantification, Bayesian inference, Rocket disper-
sion, Neural networks, Markov Chain Monte Carlo.
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Sammanfattning
Sondraketers nedslagspunkter är föremål för spridning på grund av osäker-
heter i simuleringsmodellens parametrar och störningar av raketbanan un-
der flygning. Uppskattning av spridningsområdet förutsätter att modellosä-
kerheter och störningarnasmagnitud redan är kända. I detta arbete presente-
ras en metod för att inverst kvantifiera osäkerhet i raketsimuleringsmodeller
baserad på uppskjutningsdata. Med ett probabilistiskt tillvägagångssätt ba-
serat på Bayesiansk hierarkisk modellering kan epistemisk och aleatorisk
osäkerhet adresseras simultant, samtidigt som förkunskaper om det model-
lerade systemet kan införlivas. Bayesianska beräkningstekniker, inklusive
Markovkedje-Monte Carlo-simuleringar och modulär Bayesiansk analys, re-
dogörs för och används i numeriska fallstudier. Surrogatmodeller i form av
djupa neurala nätverk visas underlätta den beräkningsbörda som utforsk-
ning av a posteriori-fördelningar ofta innebär i praktiska tillämpningar. Nu-
meriska experiment utförs baserat på uppskjutningsdata från Esrange Space
Center, vilket validerar metodiken och tillhandahåller a posteriori-estimat
av eftersökta spridningsparametrar. Resultaten implicerar nästan säkert att
de för närvarande använda spridningsparametrarna kan reduceras, för al-
la studerade källor till osäkerhet. Uppdatering av nämnda parametrar ger en
potentiell 20%minskning i teoretiskt uppskattad spridningsarea, vilket stäm-
mer väl överens med empiriska observationer.

Nyckelord: Osäkerhetskvantifiering, Bayesiansk inferens, Raketspridning,
Neurala nätverk, Markovkedje-Monte Carlo.
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Chapter 1

Introduction

Models of physical systems are inevitably incomplete. Accepting this fact is
easier once one knows just how much model based predictions can be ex-
pected to deviate from actual observations. Estimating uncertainty in com-
putational models is an important part of validating the use of simulations
in engineering practice. In particular, it becomes crucial in cases where pre-
diction error is associated with risk. Launching sounding rockets is an excel-
lent example of such an application. Sending vehicles without active guiding
systems on ballistic trajectories to the upper part of the atmosphere requires
careful considerations to safety. Characterizing the dispersive nature of the
rocket ground impact point plays a critical role in this; safe operations neces-
sitates defining an area that most certainly will contain the impact point. In
industry, this region is referred to as the dispersion area. However, estimat-
ing named area presupposes that uncertainties in atmospheric conditions,
rocket manufacturing and performance characteristics have already been
quantified. Determining parametric uncertainties of this kind in a mathe-
matical model often relies on estimates based on expert opinions, prior ex-
perience and/or conventions. As data becomes available from experiments,
such estimates should preferably be revised considering that one has gained
knowledge of the actual behavior of the system. However, updating model
uncertainty based on observations is highly non-trivial. In fact, the main
body of this work is dedicated to this task, in the setting of sounding rocket
impact point dispersion.

1



2 CHAPTER 1. INTRODUCTION

1.1 Related Work
To this day and to the best knowledge of the writer, no established method
exists to estimate uncertainty in sounding rocket models based on launch
data. Nevertheless, the task fits well into a more general setting, namely as
an Uncertainty Quantification (UQ) problem. The ever-growing field of sci-
entific computing, in synergywith development of efficient hardware, allows
for constructing and numerically solving ambitiously parameterized models
of complex systems. In addition to the task of specifying the values of model
parameters, a parallel field of research is concerned with determining the
level of confidence, or uncertainty, in the same values. The field of UQ en-
gages with ubiquitous questions of this character. Probabilistic approaches
in UQ have received increasing attention in research, in particular under a
Bayesian framework [1]. The latter has shown to be a successful and robust
approach in engineering applications in a vast variety of fields such as nu-
clear physics [2, 3], geophysics [4], aerospace [5] and structural dynamics
[6], to name a few.

1.2 Objectives and Limitations
Themain objective of this thesis is to develop a statistical method to quantify
uncertainties in sounding rocket simulation models. Specifically, we target
inferring parameters governing the distributions of disturbances that cause
rocket impact point dispersion. Throughout this work, these parameters of
interest will be referred to as individual 𝜎-values or simply dispersion pa-
rameters. To demonstrate and validate the method, we implement it for the
specific example of commonly launched rockets from Esrange Space Center
by the Swedish Space Corporation (SSC). Employing the novel approach, we
compute updates of the currently used 𝜎-values considering provided launch
data. Method evaluation necessitates that available data is aggregated and
represented appropriately, including estimations of the empirically observed
impact dispersion. Thus, a condensed data analysis of the empirical disper-
sion of launched rockets at Esrange is entailed in the scope of this study.

The ultimate goal of revising 𝜎-values is to improve the accuracy of dis-
persion estimates. In addition to circumventing having ad-hoc estimated
parameters as basis of safety analysis, updates can potentially enable reduc-
ing the size of estimated dispersion area. Such an area reduction allows more
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frequent launches asmore rocket configurationswill meet the safety require-
ments, thus increasing efficiency of the operations at SSC.

In the numerical study, we limit ourselves to two different types of rockets.
In spite of this, we aim to present an approach with such a generality that
results are applicable in a wider sense, i.e. to dispersion estimates of simi-
lar rockets. To avoid the curse of high-dimensionality, the demonstration is
restricted to only consider the variables heavily dominating dispersion.

1.3 Report Outline
The thesis is organized as follows: Chapter 2 acquaints the reader with the
subject of sounding rockets in general and impact dispersion analysis in par-
ticular. In addition, we present statistical summaries of the launch data from
Esrange. Next, in Chapter 3 the thesis objective is re-phrased into the frame-
work of Bayesian Inverse Uncertainty Quantification. To this end, we give
an overview of Bayesian statistics and its applicability to UQ problems. The
probabilistic model of rocket dispersion derived in Section 3.3.2 is a particu-
larly significant outcome of this thesis. Solving the samemodel involves spe-
cialized computational methods; Chapter 4 accounts for a selection of such.
Accompanying standard approaches to full Bayesian inference, we present
approximate and modular alternatives to remedy issues associated with the
former. Chapter 5 introduces the use of surrogate models in UQ problems,
specifically deep neural networks, to ease potentially impractical computa-
tional time complexity. In Chapter 6, we tailor the proposed framework to
the specific case of rocket launches at Esrange by specifying variables, hy-
perparameters and designing algorithms. Numerical results obtained when
employing the methods from preceding chapters are presented in Chapter 7,
based on launch data and rocket simulation models provided by SSC. Chap-
ter 8 concludes the report with a discussion of results, contributions and
limitations of the study and future implications.



Chapter 2

Sounding Rockets

The first chapter is devoted to the main objects of interest, namely sound-
ing rockets. A basic technical definition is given in Section 2.1, followed by a
brief introduction to the operations carried out by the Swedish Space Corpo-
ration (SSC). Subsequent sections will introduce necessary general concepts
and terminology concerning sounding rocket dispersion, and for the rockets
launched from Esrange specifically.

2.1 Technical Definition
Herein, the term sounding rocket will be used in a general sense to encom-
pass suborbital launch vehicles, with trajectories reaching space at upper
atmospheric altitudes from 40 km up to 1500 km. The technical features
and capabilities vary greatly over different vehicles; rockets have different
propulsion and guiding systems, sizes, motors and consist of multiple stages,
depending on the mission objectives. While there are ways to aerodynami-
cally stabilize rockets during flight, e.g. spin stabilization using canted fins,
the sounding rockets launched from Esrange are typically unguided. Thus,
the only mode of control is to adjust the orientation of the launch rail prior
to take-off.

Most sounding rockets carry a payload for the purpose of doing scientific
research, including microgravity experiments in fields of biology, material
sciences and physics, as well as atmospheric research [7]. The main advan-
tages of using sounding rockets for scientific experiments include low costs
and short lead times, as compared to orbital launch missions. Furthermore,
sounding rockets cover a layer of the atmosphere otherwise difficult to ac-

4
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cess, as the altitudes in which they can operate are just above the maximum
height for balloon-borne experiments, but below the operational capabilities
of Low Earth Orbit (LEO) satellites [8].

2.2 Launch Procedures

The Swedish Space Corporation (SSC) is a state-owned company that owns
and operates Esrange Space Center, located outside Kiruna, Sweden. At Es-
range, sounding rockets are regularly launched on suborbital trajectories for
a variety of scientific purposes. Throughout this thesis, at the main focal
point for examples and results are two different rocket types, called Improved
Orion and VSB-30. Both rockets are unguided, carry a payload and are driven
by solid-propellant. The former is a small, single-stage rocket while the latter
consists of two stages. They are both spin stabilized via canted fins inducing
a roll rate, acting to increase aerodynamical stability by diminishing effects
of asymmetry in the rocket [9]. The VSB-30 is additionally stabilized via
spin-up motors further increasing the roll rate. The properties of the VSB-
30 rocket makes it exhibit a relatively large amount of dispersion. The term
rocket dispersion is central for this thesis, and thoroughly discussed in Sec-
tion 2.3. It refers to the phenomenon of statistical displacement from the
expected point of impact due to unknown perturbations to the rocket during
flight and uncertainties in launch conditions. Before further elaboration on
rocket dispersion, the procedure of obtaining the expected point of impact
is outlined in the following section.

2.2.1 Predicting Impact Point
The impact point (IP) prediction procedure can be summarized as follows.
Prior to launch, nominal launch settings, i.e. elevation 𝛾 and azimuth angle
𝛿 of the launch rail defined as in Fig. 2.1, are chosen to obtain a desired impact
point or aim point. For this setting, one assumes that no wind is affecting
the rocket trajectory. To determine the nominal point of impact, the rocket
trajectory is simulated using a numerical solver of the differential equations
representing the dynamical system of the rocket and its environment. It is
a six degrees of freedom (6DOF) simulation, and a call to the model code
on a standard CPU takes between 0.5 and 1 second depending on rocket
configuration.
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𝑁

𝑊

𝐸
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90
◦ − 𝛾

÷

Figure 2.1: Definition of launch angles 𝛾 and 𝛿.

Wind Weighting

The prevailing wind conditions during launch will cause the rocket to devi-
ate from a nominal trajectory. Prior to launch, wind data is collected through
multiple measurements from wind towers and atmospheric balloons. An av-
erage wind profile stretching from the ground to the top of the effective at-
mosphere is constructed from the aggregated data. Next, wind is compen-
sated for with a technique referred to as wind weighting, with the objective
of obtaining the desired aim point but in the presence of a non-trivial mea-
sured wind profile.

Thewind response of an unguided rocket changes during the different phases
of the flight trajectory. During the acceleration phase, the rocket will turn
into the wind known as the weathervane effect, while a decelerating rocket
will drift with the wind [10]. Furthermore, sounding rockets are more sen-
sitive to winds in the lower parts of the atmosphere, due to the low rocket
velocity and the high atmospheric density. Consequently, the wind in differ-
ent altitude layers contribute in varying degrees to the total deflection from
a hypothetical no-wind impact point. Wind weighting relies on construct-
ing a so called ballistic wind (BW) with the same net effect on the impact
displacement as the total measured wind profile. In order to do so, one de-
termines the so called wind weighting function to obtain a relative measure
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of wind caused displacement to a given altitude. Formally, let Δ𝑊(𝑧) denote
impact displacement from a nominal, zero-wind trajectory due to a uniform
wind from the ground level to a given altitude 𝑧 [km]. Note that Δ𝑊(0) = 0
and

lim
𝑧→∞

Δ𝑊(𝑧) = Δ𝑊 ,

where Δ𝑊 denotes the total displacement from a uniform, constant wind
throughout the entire atmosphere. In practice, one considers a practical up-
per limit ℎ and sets Δ𝑊 = Δ𝑊(ℎ) for e.g. ℎ = 40 km. The wind weighting
function is defined by

𝑓 ∶ [0, ℎ] → [0, 1], 𝑓 (𝑧) ∶=
Δ𝑊(𝑧)
Δ𝑊

(2.1)

Now, via Eq. (2.1) one can compute the relative contribution to IP displace-
ment originating from wind in the 𝑘:th layer of the altitude strata, located at
[𝑧𝑘−1, 𝑧𝑘], 𝑘 = 1, … , 𝐾 . These relative contributions are referred to as wind
weighting coefficients, defined by Δ𝑓 (𝑧𝑘) ∶= 𝑓 (𝑧𝑘) − 𝑓 (𝑧𝑘−1).

The wind weighting coefficients serve as a basis when constructing the bal-
listic wind, a constant wind vector acting uniformly through the entire at-
mosphere that equates to the measured wind profile. As such, the ballistic
wind is a vehicle specificweightedwind average. Denote the averagewind in
the 𝑘:th layer by 𝑤𝑘. The ballistic wind is obtained from the wind weighting
coefficients via

𝑤𝑏𝑎𝑙𝑙𝑖𝑠𝑡𝑖𝑐 =
𝐾

∑
𝑘=1

Δ𝑓 (𝑧𝑘)𝑤𝑘 (2.2)

To estimate the total impact displacement, the ballistic wind is multiplied
with a vehicle specific Unit Wind Effect (UWE), quantifying the magnitude
of the wind displacement vector due to a ballistic wind. Finally, one de-
termines an updated set of launch settings in order to compensate for the
estimated displacement. This can be done by iterating launch settings by a
first order correction approach readily derived via geometric arguments. For
details, see e.g. [11].

Example: Constructing a Wind Weighting Curve
To illustrate the method of wind weighting, we conduct a toy study based
on a measured wind profile from a VSB-30 launch campaign from 1/12 2005.
The exact wind profile is found in Appendix A.1. In addition, it will allow us
to estimate the magnitude of the error introduced by the linearization in the
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wind weighting procedure. First, a no wind trajectory is simulated to obtain
a reference nominal impact point. Next, for each wind layer, a constant,
uniform wind perturbation of 0.3 m/s is applied from 0 to 𝑧𝑘, 𝑘 = 1,… , 𝐾
with 𝑧𝐾 = 40 km. We log the displacement Δ𝑊(𝑧𝑘) from the nominal IP and
use Eq. (2.1) to obtain the final wind weighting curve. Note that in Fig. 2.2,
the function 1 − 𝑓 (𝑧) is plotted. For conclusiveness, results from perturbing
either the east or north wind component is computed. The two resulting
curves show very good, yet not perfect, resemblance. The small differences,
small enough to barely be discerned in Fig. 2.2, are likely to stem from non-
linear dependence on the launch settings. In the example, the launch azimuth
angle is not aligned with north or east direction.

102 103 104

z [m]

0.0

0.2

0.4

0.6

0.8

1.0

1
−

f(
z)

Perturbed north component
Perturbed east component

Figure 2.2: Wind weighting curve for VSB-30 toy example.

Finally, the resulting ballistic wind is computed via Eq. (2.2) and given in
Eq. (2.3). We form an average from the results using the two different wind
weighting curves in Fig. 2.2. The components of 𝑤𝑏𝑎𝑙𝑙𝑖𝑠𝑡𝑖𝑐 are in north and
east direction respectively, given in m/s. In this example, the underlying
wind profile is dominated by a strong east component. As expected, we see
that this results in a ballistic wind with a large resulting east component.

𝑤𝑏𝑎𝑙𝑙𝑖𝑠𝑡𝑖𝑐 = [0.874, 3.46] (2.3)

The approximation error introduced by equating the ballistic wind to the
full wind profile is estimated by comparing the resulting respective impact
points. The discrepancy in impact point denoted by 𝜖 is of the magnitude 𝜖 ∼
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0.1 km, corresponding to a perturbation of the ballistic wind of the order 10−2
m/s. As a small note, the results have some dependency on the target wind
profile. A wind weighting curve based on perturbing the east component
yields a more accurate end result when compared to the ground truth. In all,
the results indicate that the wind weighting technique yields a satisfactorily
accurate result inmost applications, and that this relatively small model error
can be neglected in cases where uncertainty in wind is of orders larger than
10−2 m/s.

2.2.2 Rocket Launch Data
As part of a launch campaign, data is collected prior and post to launch and
summarized as the example entry in Table 2.1. Note that this example is
not exhaustive, since variables and parameters not directly relevant for the
purpose of this study have been excluded. In addition, the rocket type la-
bel contains all rocket specific parameters, e.g. characterizing engine and
aerodynamic properties, used for simulating the trajectory.

Rocket type Payload Ballistic wind Predicted IP Actual IP Launch setting

VSB-30 𝑀 kg 𝑤𝑏𝑎𝑙𝑙𝑖𝑠𝑡𝑖𝑐 m/s (𝑟, 𝛼̂) (𝑟 , 𝛼) (𝛾, 𝛿)

Table 2.1: Launch data description.

The impact point (IP) is commonly parameterized with polar coordinates
with range 𝑟 [km] from launch position and azimuth angle 𝛼 [deg]with north
defining 𝛼 = 0, illustrated in Fig. 2.3. Finally, define the downrange and
crossrange directions as parallel and perpendicular to the vector ⃗𝐼𝑃 − 𝑂⃗.

𝐸𝑊

𝑁

𝑟𝛼

IP

Figure 2.3: Conventional definition of IP parameterization. Downrange and
crossrange directions are indicated with dashed arrows.



10 CHAPTER 2. SOUNDING ROCKETS

2.3 Sounding Rocket Dispersion
During flight, sounding rockets are subject to disturbances that will cause the
trajectory to deviate from the nominal case. Disturbances can relate to wind
measurement errors and gusts, off-sets in the launch rail and engine imper-
fections resulting in impact deflection. In addition, uncertainties in flight en-
vironment and rocket specific parameters can also result in a non-negligible
discrepancy between predicted and actual IP. From a safety requirement per-
spective, it is crucial to estimate the size and shape of the dispersion area,
defined in the following section.

2.3.1 The 3𝜎 Vehicle Dispersion Area
The theoretical dispersion estimate must enclose the region within which
there is a non-negligible probability of ground impact. In the continuation
of this work, this estimate will be referred to as the 3𝜎 vehicle dispersion
area. Early practices aiming to estimate the dispersion area are based on
a symmetric simplification where the probability of a given displacement is
assumed to be identical in all directions. This will always yield a circular dis-
persion area. Furthermore, assuming that the statistical deviation of actual
IP from the predicted IP follows a bivariate normal distribution, the proba-
bility that the 3𝜎 dispersion area contains the IP is 0.989 [12].

Aerodynamical characteristics vary between different types of sounding rock-
ets, as well as sensitivity to launch conditions and external disturbances. Be-
fore a vehicle can be approved for a launch campaign, a trajectory analysis
to estimate the 3𝜎 vehicle dispersion area must be conducted and assured to
comply with the safety requirements of the launch site. At Esrange, sound-
ing rockets must comply with a 3𝜎 = 60 km requirement. 60 km refers to
the radius of the estimated dispersion disc [13]. Note that this is based on
the 2-dimensional isoprobability assumption. It is up to the practitioner to
generate the 3𝜎 dispersion of a vehicle, which in turn requires identification
of key perturbation factors that contribute to the dispersion of the vehicle
and a statistical description of these. In most practices, this means that one
estimates the individual 3𝜎-values of the key dispersion factors. Prescribing
the 𝜎-values is a way of quantifying the variability or uncertainty in the in-
put variable or parameter causing dispersion. Assuming that the statistics of
the input is well described by e.g. a normal distribution, 𝜎 can be interpreted
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as a standard deviation [10].

In Table 2.2, an example of the identified dispersion factors for a two stage
fin stabilized vehicle is presented, along with associated 𝜎-values. The con-
figuration of factors is not uniquely defined, but should be proposed and
motivated by the practitioner prior to a launch campaign. Also note that
some parameter values are given relative to the corresponding rocket spe-
cific quantity.

STAGE 1 3𝜎

Thrust 3%
Thrust alignment in pitch 0.1◦

Thrust alignment in yaw 0.1 ◦

Aerodynamic drag 20%
Fin alignment 0.1◦

STAGE 2
Thrust 3 %

Thrust alignment in pitch 0.1◦

Thrust alignment in yaw 0.1◦

Aerodynamic drag 20%
Ignition time 0.25 sec

Launch elevation 1◦

Launch azimuth 4◦

North wind 3 m/s
East wind 3 m/s

Table 2.2: Example of key dispersion factors for a two stage sounding rocket.

2.3.2 Theoretical Dispersion Estimation
Essentially two methods are used to estimate the dispersion area in industry
today, accounted for in the following sections. In both methods, impact dis-
placement from a simulated nominal unperturbed impact point in the center
of the dispersion area is considered.
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Residual Sum of Squares

Historically, the widely used method to estimate the 3𝜎 dispersion area is a
so called Residual Sum of Squares (RSS) procedure. It is also the proposed
method by FAA guidelines [12], and the method utilized by SSC. In a RSS
procedure, one considers the individual effect of each key dispersion factor
separately, assuming independence. For each factor, a series of simulations
are run when only perturbing the input under consideration by its 3𝜎-value,
e.g. by adding or subtracting it from the nominal value. Consider the ex-
ample of wind disturbance for illustrative purposes. Two simulations are
run when the headwind speed is equal to ±3m/s respectively, tabulating the
resulting impact deflections in downrange and crossrange directions. The
square root of summed squared impact displacements following these per-
turbations yields the so called total 3𝜎 dispersion area of the sounding rocket.
More generally one can allow the dispersion area to be elliptic, such that the
downrange and crossrange semiaxes are estimated separately. What follows
is a mathematical formulation of the procedure.

Let 𝑎+𝑖 denote the resulting displacement from the nominal IP in downrange,
𝑎, when applying a positive sign perturbation to the 𝑖:th variable with its
individual 3𝜎-value. The sign superscript corresponds to the respective sign
of the perturbation. Now, define 𝜎+

𝑎 by

3𝜎+
𝑎 =

√
∑(𝑎+𝑖 )2 (2.4)

The corresponding quantity when applying perturbations with a negative
sign, denoted by 𝜎−

𝑎 follows analogously. By taking the average, we obtain
the downrange semiaxis of the dispersion area

𝜎𝑎 =
𝜎+
𝑎 + 𝜎−

𝑎

2
(2.5)

The equivalent holds for displacements in the crossrange direction, 𝑏, to ob-
tain 𝜎𝑏. Assuming isoprobability, we obtain a circular dispersion area by
taking the average

𝜎 =
𝜎𝑎 + 𝜎𝑏

2
(2.6)

Monte Carlo Sampling

A more contemporary method is that of a large-sample Monte Carlo (MC)
approach. The dispersion area is estimated by simulating a series of trajecto-
ries when perturbations to model inputs, identified to cause dispersion, are
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drawn from their prescribed probability distributions. By the assumption
that the dispersion can be well approximated by a bivariate normal distribu-
tion, dispersion estimates are provided by the sample mean and covariance
matrix of the impact point displacements. We go back to the example of wind
disturbance. Assuming a nominal zero wind speed in north and east direc-
tions, we model their statistics (independently) as normally distributed with
𝜎 = 1 m/s. In each simulation run, the perturbed wind speeds are sampled
from standard normals [10].

As opposed to RSS, MC simulations account for all sources of dispersion si-
multaneously, and thus captures possible non-linear interactions between
perturbed inputs. Potentially, this yields a more precise and realistic esti-
mate, in particular for more exotic dispersion areas where the assumption
of a circular shape is invalid. However, the computational time complexity
of MC simulations is much greater than with RSS, as the former typically
requires thousands of forward model calls compared to the order of tens for
the latter [14].

Dispersion Estimate Example of a VSB-30 rocket

In this section, we use the dispersion factors presented in Table 2.2 to conduct
a benchmark dispersion study of a VSB-30 rocket. We will come back to
this example to evaluate the effect of updating the individual 𝜎-values. The
launch configuration for our hypothetical campaign is given in Table 2.3. We
make a note that the dispersion estimation depends on the choice of nominal
launch settings. A smaller launch elevation angle 𝛾 will cause the impact
range to increase, which in general may cause an increase in sensitivity to
perturbations thus a larger dispersion area.

Rocket type Payload mass Launch settings No wind IP

"VSB-30" 396.3 kg 𝛾 = 87.7◦, 𝛿 = 0◦ 𝑟 = 78.142 km, 𝛼 = 357.71◦

Table 2.3: Launch configuration for dispersion example.

For the Monte Carlo estimate, a sample of 104 simulations is used to estimate
the total dispersion parameter 𝜎, presented in Fig. 2.4.
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Figure 2.4: Comparison of theoretical dispersion estimation methods for a
VSB-30 rocket. Left: RSS. Right: Monte Carlo.

The general trend, visible in Fig. 2.4, is that the RSS method seems to slightly
overestimate the dispersion as compared to the Monte Carlo simulation in
this particular example. For this "simple" type of dispersion, when the as-
sumption of circular dispersion holds, the RSS procedure can be considered
sufficient and preferable. The main advantage is the low computational cost,
as it only requires a handful of model evaluations, compared to the tens of
thousands for an MC estimate. For more complex dispersion estimates, a
Monte Carlo procedure is likely to be more valid, capturing complex, non-
linear phenomenons.

2.3.3 Empirical Dispersion
As the size of the data set of rocket launches increases, so does the relevance
of studying the empirically observed dispersion at Esrange and compare it to
the theoretical estimates. One way to do so is by means of density estimation
and point estimators of the empirical 𝜎-value characterizing the dispersion
area. Stepping back to a more general setting, it is a common problem in data
modeling to fit an appropriate density to experimental data that is assumed
to be generated from an unknown underlying distribution. Next, we present
two approaches to this end, namely non-parametric and parametric density
estimation.

Non-parametric Density Estimation

An advantage with non-parametric density estimation is that it does not re-
quire any assumptions on the form of the underlying distribution of the data.
It is a useful tool for a first inspection and characterization of a data set; per-
haps the simplest and most familiar form of such estimation is a histogram.
Kernel density estimates is a popular non-parametric density estimator. For
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data {𝑦𝑖}𝑛𝑖=1 drawn from the density 𝑝𝑌 (⋅), we define the kernel density estima-
tor 𝑝̂ℎ of 𝑝𝑌 by

𝑝̂ℎ(𝑦) =
1
𝑛ℎ

𝑛

∑
𝑗=1

𝑘 (
𝑦 − 𝑦𝑗
ℎ ) , 𝑦 ∈ 𝐘, ℎ > 0, (2.7)

where 𝑘 is some kernel function, such that 𝑝̂ℎ(𝑦) is indeed a density, and ℎ is
called a band or windowwidth. One can interpret kernel density estimations
as a smoothed histogram, where the choice of ℎ governs the smoothness of
the estimator. Larger bandwidth leads to a smoother density distribution,
whereas a smaller bandwidth captures high-variance features. One natu-
ral class of kernel functions are (multivariate) probability density functions,
Gaussian kernels being a common choice. Moreover, the non-parametric
density estimation serves as a generative model from which one can sample
to generate "new" data points from the fitted density [15].

Parametric Density Estimation

In parametric density estimation, one makes assumptions of what paramet-
ric family 𝑃𝜃 = {𝑝𝜃(⋅), 𝜃 ∈ 𝚯} the underlying distribution of the data belongs
to. The task reduces to estimating the parameters 𝜃̂ that fits the data "best".
A standard approach is that of Maximum Likelihood Estimation (MLE), in
which the parameters are taken as the maximizers of the likelihood of the
data, or equivalently, minimizers of the negative log-likelihood [16]. Assum-
ing independent observations {𝑦𝑖}𝑛𝑖=1, the MLE estimate is obtained via

𝜃̂𝑀𝐿𝐸 = argmax
𝜃∈𝚯

𝑛

∏
𝑖=1

𝑝𝜃(𝑦𝑖) = argmin
𝜃∈𝚯

𝑛

∑
𝑖=1

− log(𝑝𝜃(𝑦𝑖)) (2.8)

Empirical Dispersion Estimates from Esrange Data

In this section, we analyze the impact data from a selection of rocket types
launched from Esrange in the course of the last decades.

First, we summarize the impact dispersion with point estimates. The em-
pirical 𝜎-values are estimated based on the assumption of a symmetric dis-
persion area. Again, denote downrange and crossrange displacement for the
𝑖:th launch by 𝑎𝑖 and 𝑏𝑖 for 𝑖 = 1, 2, … , 𝑛, respectively. For a collection of
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displacements {(𝑎𝑖, 𝑏𝑖)}𝑛𝑖=1, the sample variances are estimated according to

𝜎𝑎
2 =

1
𝑛 − 1

𝑛

∑
𝑖=1

(𝑎𝑖 − 𝑎̄)2, 𝜎𝑏
2 =

1
𝑛 − 1

𝑛

∑
𝑖=1

(𝑏𝑖 − 𝑏̄)2, (2.9)

where 𝑎̄ = 1
𝑛 ∑

𝑛
𝑖=1 𝑎𝑖. The unbiased pooled variance estimate is obtained as

the mean of the sample variances according to Eq. (2.10).

𝜎̂2 =
𝜎𝑎

2 + 𝜎𝑏
2

2
(2.10)

For the estimates presented herein, we consider two rocket types; the by
now familiar VSB-30 and Improved Orion. Note that the latter exhibits a
much smaller dispersion area. Impact point displacement from all launches
projected onto the downrange and crossrange axes, along with the estimated
empirical and theoretical 3𝜎-dispersion areas are plotted in Fig. 2.5. The 𝜎-
values are itemized in Table 2.4.
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Figure 2.5: Visualization of dispersion with theoretical and empirical 3𝜎-
values. Left: VSB-30. Right: Improved Orion. Non-nominal flight is marked
with red.

.

Some additional comments on the data sets are in place. Following early
launches, the launch rail used for the VSB-30 rocket was found not to be
entirely straight. This is likely to have caused increased dispersion due to the
unexpected misalignment when rockets left the rail. In 2014 the launcher’s
rail assembly was realigned and straightened. We present some additional



CHAPTER 2. SOUNDING ROCKETS 17

results when only considering launches after the realignment. Furthermore,
for ImprovedOrion one non-nominal launch due to early separation ofmotor
and payload, is contained in the data set. This data point will not be included
in the following analysis.

Rocket type Theoretical 3𝜎 [km] Empirical 3𝜎 [km]
VSB-30 57 44.80

Improved Orion 22.5 16.94

Table 2.4: Theoretical dispersion of commonly launched rockets at Esrange.

As evident from Table 2.4, the empirical 𝜎-values are significantly smaller
than the theoretical estimates. As illustrated in Fig. 2.5, all impacts are well
within the theoretical limit. This observation serves as an additional rein-
forcement for re-iterating over the theoretical dispersion estimation. In par-
ticular, it motivates the relevance of updating current beliefs on the magni-
tude of individual dispersion factor 𝜎-values.

Moving on to density estimates, we proceed with a disclaimer regarding sta-
tistical significance due to the scarcity of data. As it is necessary to differ-
entiate the analysis between rocket types, the size of the data sets shrink
dramatically. In general, scarcity of data hampers the validity of some sta-
tistical methods and estimates. For example, there is a risk of overfitting the
models to the available data, that is not necessarily representative for the
actual data generating distribution [15].

First, results from non-parametric density estimation of the empirical disper-
sion are presented in Fig. 2.6. In particular, we do kernel density estimates
with Gaussian kernels. The bandwidth is optimized via grid search cross-
validation with regards to a standard Euclidan metric. For implementation
details, refer to the documentation in Scikit-learn [17].
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Figure 2.6: Kernel density estimation. Top: VSB-30. Bottom: Improved
Orion.

Turning to parametric based density estimation, we fit the dispersion in
crossrange and downrange assuming underlying normal distributions. This
assumption implies that, theoretically, the total dispersion follows a Rayleigh
distribution. Mathematically, for identically distributed normal random vari-
ables 𝐴 ∼ 𝑁(0, 𝜎2) and 𝐵 ∼ 𝑁(0, 𝜎2), it follows that the root square sum√
𝐴2 + 𝐵2 ∼ 𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ(𝜎) [18]. Referring to this property, we fit a Rayleigh

distribution to the total dispersion. The resulting distributions with fitted
mean 𝜇 and standard deviation 𝜂 are presented in Fig. 2.7. The distributions
are fit based on MLE as implemented in SciPy. For details, refer to [19].
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Figure 2.7: Parametric density estimation. Top: VSB-30. Bottom: Improved
Orion.

Based on the distributions fitted in Fig. 2.7 and the theoretical 𝜎-values in
Table 2.4, we conclude this chapter by computing the probabilities of having
an impact displacement smaller than the theoretical 𝜎. Let 𝑦 and 𝑦̂ denote
actual and predicted impact point, respectively. The results are presented in
Table 2.5. We see that the theoretical dispersion area indeed complies with
the common definition to contain 98.9% of ground impact points [12].

Rocket type P(‖𝑦̂ − 𝑦‖) ≤ 𝜎) 𝑃(‖𝑦̂ − 𝑦‖) ≤ 3𝜎)

VSB-30 0.56 0.999
Improved Orion 0.61 0.999

Table 2.5: Probability statements for rocket displacement being below the
current theoretical 𝜎 dispersion radii.



Chapter 3

InverseUncertainyQuantification
(IUQ)

In this chapter, we account for the mathematical setting in which we will ap-
proach the thesis main objective. We propose a novel method to estimating
sounding rocket dispersion parameters, aiming to provide a data driven ap-
proach in order to avoid using values set by convention or ad hoc statements.
To this end, we re-formulate the problem in the framework of Bayesian In-
verse Uncertainty Quantification.

The first section introduces the key concepts of Uncertainty Quantification
(UQ) in general and inverse UQ in particular. As we will see, the appeal-
ing features of Bayesian statistics fit naturally with many IUQ problems.
To accustom the reader to this probabilistic approach, Section 3.2 serves
as an overview providing definitions and tools that will come in handy for
Bayesian IUQ. Finally, we introduce the methodology of Bayesian IUQ for
the problem at hand by formulating a probabilistic model of rocket disper-
sion.

3.1 Introduction to IUQ

At its very broadest definition, Uncertainty Quantification (UQ) aims to in-
vestigate the sources and degree of discrepancy between reality and the
mathematical models and simulations thereof. Thus, solving UQ problems
is a highly multidisciplinary task; it often requires tools from statistics, ap-
plied mathematics, engineering and computer science. Even if a constructed
model perfectly captures the structural behavior of a system, the accuracy

20
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of predictions will still be limited by the knowledge of physical and model
parameters. Lack of knowledge could mean, but is not limited to, uncertain
parameter values or model inputs that are subject to a variability that is not
precisely known [1].

Throughout this work, the following terminology will be used frequently.
Examples are given in the context of launching sounding rockets.

• Inputs: Model parameters, initial and environmental conditions, bound-
ary conditions, exogenous forces; e.g. aerodynamic coefficients, rocket
specific parameters, wind conditions and launcher settings.

• Outputs or Responses: Experimentally and/or numerically measur-
able quantities, i.e. sounding rocket impact point.

• Quantities of Interest (QoI): A problem specific quantity targeted
for statistical inference. In the context of rocket dispersion, our QoIs
are the 𝜎-values characterizing the distribution of factors contributing
to dispersion.

Given the wide definition of UQ, it umbrellas problems of different character.
One certain type of UQ problems, lying at the core of this thesis, are inverse
problems. As the name implies, problems of this type are the target of study
in the field of Inverse Uncertainty Quantification (IUQ). In essence, IUQ is
a process of characterizing model input uncertainty based on experimental
data. By this, one hopes to mitigate potentially ad-hoc "expert opinions" or
vaguely motivated conventions when estimating model uncertainties [20].
Once input uncertainties are quantified, they can be propagated through the
forward model to obtain uncertainty predictions in the output. This is often
required in order to to support risk assessments and safety decisions and ex-
actly what the theoretical rocket dispersion estimates amounts to.

We remain at the notion of inverse problems for a moment. As opposed to
a forward problem where one makes inference about the response variable,
an inverse problem targets the model input. Mathematically, given an ob-
servation 𝑦 ∈ 𝑌 and computational model mapping  ∶ 𝑋 → 𝑌 , we care to
find and/or learn about 𝑥 ∈ 𝑋 such that (𝑥) = 𝑦. A simple illustration of
the difference between how information flows in forward and inverse prob-
lems is given in Fig. 3.1. As indicated by the solid arrows, in inverse problems
one goes in the direction from experimental observations and model outputs



22 CHAPTER 3. INVERSE UNCERTAINY QUANTIFICATION (IUQ)

towards model inputs. Forward problems in physical applications are well-
posed in general, meaning that a unique solution that depend continuously
on data exists. In contrast, inverse problems are known to suffer from ill-
posedness [1]. The phenomenon stems from often having under-determined
systems of equations due to lack of data contra model complexity as well as
corrupted, noisy observations. This leads to deterministicmethods often fail-
ing to produce meaningful results and the need for regularization to remedy
non-uniqueness [21].

Input
x

Forward

Inverse

Model
(x)

Data
y

Figure 3.1: An illustration of different information flows in UQ problems. In
inverse problems, output data is used to learn about the system inputs.

Epistemic Uncertainty and Aleatory Variability

It is common, and often convenient from amodeling perspective, to differen-
tiate uncertainty into different characteristic categories. One way of doing
so, albeit imprecise and subject of debate [22], is to make a distinction be-
tween epistemic uncertainty and aleatory uncertainty or sometimes aleatory
variability. The former acts as a way of addressing lack of knowledge – ex-
emplified as not knowing e.g. a physical constant to its true value. Epistemic
uncertainty is reducible in the sense that gathering more evidence allows
knowing the quantity of interest more exactly. For example, the aeorody-
namical drag coefficient of a rocket is considered to be a constant design
parameter. However, the lack of knowledge in its exact value introduces un-
certainty in the predicted point of impact. The term parametric is often used
to refer to this specific type of epistemic uncertainty in constant parameters.
With more data, one hopes to eventually know the parameter value more
exactly. Further, another subdivision of epistemic uncertainty is of struc-
tural nature, considering doubts about the exactness of the system model as
a whole. This topic is elaborated in section Section 3.3.2, where the case of
model discrepancy is discussed.
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In contrast, aleatory variability refers to uncertainty due to phenomenons of
variable nature in the system, e.g. a model input subject to some stochas-
ticity. In the following, we will use aleatory uncertainty and variability
interchangeably. This type of uncertainty is irreducible in the sense that
more data will not reduce variability in future observations. However, un-
certainties in e.g. hyperparameters governing the variability can be known
to a larger or lesser degree of confidence. Consider for example the actual
launcher setting, which is likely to differ from the prescribed setting with
slight variations for every launch, assuming that there is no evident off-set.
Consequently, we can expect to always have some uncertainty in this model
input, no matter the number of launched rockets.

As a final note, this differentiation is by nomeans definite or unique. Often, it
is not clear how to categorize uncertainties, leaving the decision completely
in the hands of the modeler. For example, model inputs can potentially suffer
from multiple different sources of uncertainty. The prevailing wind condi-
tions during launch is an example of such. In addition to error in the measur-
ing procedure, which can be considered epistemic uncertainty, the rocket is
likely to be perturbed by additional wind gusts, an inherently variable phe-
nomenon. One can argue that some uncertainty is indeed reducible, while
some sources are irreducible, and the distinct categorization is insufficient.
Nevertheless, an attempt to characterize model inputs indicates what the
modeler can expect or hope for in terms of reducing total uncertainty in the
system.

3.2 Bayesian Statistics
This section will serve as a gentle introduction to the main concepts and
definitions in Bayesian data analysis. The fundamental way in which the
Bayesian approach differs from the frequentist is how unknown or uncer-
tain quantities are represented. From a frequentist perspective, quantities of
interest are assumed to take one true, deterministic value, be it unknown.
Under a Bayesian framework, we take on a probabilistic approach where
unknown or uncertain quantities are represented as random variables, the
distribution of which is the target of inference. As a consequence, probabil-
ity statements about parameters or unobserved data make up for the main
final conclusion in Bayesian data analysis.
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The top-level workflowwhenmaking inference under a Bayesian framework
in a general problem setting can be summarized in the following steps.

1. Formulate a probabilistic model.

2. Condition on experimental data.

3. Evaluate fit of model and resulting posterior distributions.

Results from evaluation typically imply the need to update or expand the
model from step 1, yielding a re-iteration of the process until results are
deemed satisfactory [23].

3.2.1 Important Distributions and Definitions
First, a small comment on notation is in place. If not stated otherwise, ran-
dom variables (r.v.) will be denoted by capital letters whereas realizations
of such will be in lower case. We almost exclusively consider continuous
random variables, and will use the terms and notation for distribution and
density interchangeably to refer to continuous probability density functions.
Some abuse of notation will be allowed when indicating the distribution of
a r.v. Specifically, we write 𝑋 ∼ 𝑓 (𝑥) if 𝑋 is distributed according to the
density function 𝑓 . Sometimes, if the distribution is known on a standard
form, e.g. a Gaussian r.v. with mean 𝜇 and variance 𝜎2, we will make use of
the notation 𝑋 ∼  (𝜇, 𝜎2).

Likelihood
Consider a collection of observations, {𝑦𝑖}𝑁𝑖=1, where each 𝑦𝑖 is a realization
of a random variable 𝑌𝑖. Denote the full vector by 𝑌 ∶= (𝑌1, … , 𝑌𝑁 ). In the
example of rocket dispersion, 𝑦𝑖 is the observed impact point of the rocket
from the 𝑖:th launch. Assume now that the distribution of 𝑌 is parameter-
ized by the potentially unknown 𝜽. In Bayesian analysis, we think of 𝜽 as a
realization of the random vector 𝚯. The likelihood of the data quantifies the
probability of the observations conditioned on a particular value of 𝜽 via the
density

𝑓𝑌 |𝚯(𝑦|𝜽) ∶= 𝑓𝑌1,𝑌2,…,𝑌𝑁 |𝚯=𝜽(𝑦1, 𝑦2, … , 𝑦𝑁 |𝜽), (3.1)

referred to as the likelihood function.

Prior Distribution
Representing a parameter as a random variable lets uncertainty in its exact
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value be captured by specifying a probability distribution over it. We will
refer to the distribution of 𝚯 as a prior distribution, here given by the prior
density 𝜋𝚯(𝜽). Intuitively, if there is a large amount of uncertainty in 𝜽,
the prior density will be smeared out. On the other hand, resorting to the
classical framework, stating that its true value is indeed 𝜽0 corresponds to
specifying the prior, informally, as a point mass 𝜋𝚯(𝜽) = 𝛿(𝜽 − 𝜽0). Here
𝛿 is the Dirac delta function. With this definition in place, the conditional
likelihood can be written in accordance with its general definition such that

𝑓𝑌 |𝚯(𝑦|𝜽) =
𝑓𝑌 ,𝚯(𝑦, 𝜽)
𝜋𝚯(𝜽)

(3.2)

Posterior Distribution
At the heart of Bayesian statistics lies Bayes’ theorem. The first encounter
with it is usually in the context of conditional probabilities of events. For
events 𝐴 and 𝐵, we can flip the conditional probabilities via the formula

𝑃(𝐵|𝐴) =
𝑃(𝐴|𝐵)𝑃(𝐵)

𝑃(𝐴)
(3.3)

The corresponding identity for continuous random variables 𝜽 and 𝑌 is given
by

𝜋𝚯|𝑌 (𝜽|𝑦) =
𝑓𝑌 |𝚯(𝑦|𝜽)𝜋𝚯(𝜽)

𝑓𝑌 (𝑦)
=

𝑓𝑌 |𝚯(𝑦|𝜽)𝜋𝚯(𝜽)
∫ 𝑓𝑌 ,𝚯(𝑦|𝛾)𝜋𝚯(𝛾)𝑑𝛾

(3.4)

In the Bayesian context, the left-hand side in Eq. (3.4) is referred to as the
posterior distribution of 𝜽 given the data 𝑦. That is, by conditioning on the
data, we can view the posterior as an update of our prior beliefs about 𝜽,
now also reflecting seeing the observations 𝑌 = 𝑦. In essence, this is how
the Bayesian perspective is used for inference.

The posterior distribution is one of the main targets of computation, a task
that more often than not poses severe challenges in real life applications.
The marginal distribution of 𝑌 in Eq. (3.4) implies computing a potentially
complex, or even intractable, integral. However, the emergence and develop-
ment of specializedmethods, Markov ChainMonte Carlo being an important
class of algorithms [24, 25] and rapid increase in computational resources
have paved the way for applying Bayesian statistics in many engineering
applications [26]. The application to inverse uncertainty quantification will
be elaborated in Section 3.3, and the computational aspects in Chapter 4.
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Conjugate Priors
The task of specifying prior distributions is an important task for the mod-
eler. One is faced with the trade-off of having a model capturing the com-
plexity of the problem at hand and constructing a model that is tractable.
Some choices of priors can make computations more feasible as they re-
sult in posterior distributions that can be expressed in a closed form. An
important class of priors is so called conjugate priors. Suppose that the
likelihood function is chosen such that is belongs to a parametric family
 = {𝑓𝑌 |Θ(⋅|𝜃), 𝜃 ∈ 𝚯)}. We say that the family of priors Π is conjugate for 
if the posterior 𝜋𝚯|𝑌 (⋅|𝑦) is in Π for all choices of prior 𝜋𝚯 ∈ Π and 𝑦.

3.3 Bayesian IUQ
The Bayesian framework has proven to have appealing properties in chal-
lenging tasks of inverse problems in general [27] and IUQ in particular [6].
Today, many established techniques and approaches for reliable and robust
inverse uncertainty quantification under a Bayesian framework have been
established [3, 28]. Importantly, they apply when faced with ill-posed prob-
lems; for example with high-complexity models where experimental data is
scarce and noisy, which is true in general in engineering and science appli-
cations. The probabilistic approach of Bayesian inference is useful in prob-
lems where uncertainty is omnipresent, i.e. appears in not only one but sev-
eral levels of the system [29, 30]. One of the key attributes of the Bayesian
framework is how prior knowledge of the system can be incorporated to mit-
igate issues of non-uniqueness and the unstable nature of solutions to inverse
problems. Embedding all available information into the learning process, by
means of updating a prior distribution to the posterior after conditioning on
the observed data, acts as a way of regularization [31].

3.3.1 Hierarchical Bayesian Modeling
In this thesis, we propose a multilevel approach to probabilistic modeling of
sounding rocket dispersion. The notion of multiple levels is crucial. It ex-
pands the classical inverse problem to include all deterministic and stochastic
sub-models in the system, allowing to simultaneously address different types
of uncertainties on multiple hierarchical levels [29]. Potential sub-models
include the deterministic forward model, as well as stochastic components.
The latter comprises prescription of prior input uncertainty and variability,
as well as representation of forward model prediction errors. The full, as-
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sembled model represents the entire system and all associated uncertainty
therein.

In the context of sounding rocket dispersion estimates, the ultimate QoIs are
the so called 𝜎-values. By now, they should be familiar to the reader as the
parameters governing the epistemic uncertainty and aleatory variability in
model inputs used for predicting the ground impact point. Thus, we are not
necessarily interested in learning the model inputs, but the parameters gov-
erning their distributions. Classical Bayesian inversion fails to suffice to this
end [4], thus we resort to a hierarchical expansion. In the full system under
consideration, there is uncertainty in both fixed parameters andmodel input
that take on variable, launch specific values. Recalling the different types of
uncertainty discussed in Section 3.1, an approach that can simultaneously
address epistemic and aleatory uncertainty is desired.

The hierarchical modeling approach allows a natural way to address issues
arising when the data has a clear hierarchical structure. By prescribing pop-
ulation distributions to e.g. a set of variables, one enforces a structural de-
pendency among themodel parameters. This way, one reduces the imminent
risk of over-fitting, associated with non-hierarchical models that in general
requires many parameters to fit large, complex data sets [23].

3.3.2 Probabilistic Modeling of Rocket Dispersion
Now that the mathematical framework is in place, this section is devoted to
re-formulating the problem of rocket dispersion parameter estimation as a
Bayesian IUQ problem. As the first step in any Bayesian analysis, we begin
by setting up a probabilistic model for the problem at hand. This amounts to
determining a joint probability distribution for all observable and unobserv-
able quantities, accounting for our knowledge and beliefs about the under-
lying system and how data is acquired.

Minimal Model

For a first minimal model, we will allow the simplifying assumption of dis-
regarding uncertainty and variability in all model inputs but wind. All other
model inputs are considered deterministic and perfectly known, all com-
prised in the input vector d. These inputs can be variables taking on launch
specific values, i.e. for 𝑁 launches we have d𝑖, 𝑖 = 1, 2… , 𝑁 , or constant pa-
rameters. The choice of focusing on wind conditions is motivated by (1) The



28 CHAPTER 3. INVERSE UNCERTAINY QUANTIFICATION (IUQ)

high model output sensitivity to this variable, but also by (2) The novel way
in which the probabilistic model will be formulated, compared to classical
Bayesian inversion.

In addition, practitioners in industry today use different values on the wind
specific 𝜎-value. Observations by experts at SSC have indicated that there
is reason to believe that wind measurements are indeed more exact today
than what the currently used 𝜎-value at SSC implies. Ideally, the minimal
model will serve as an instructive introduction to the proposed method and
a benchmark to expand from. For illustrative purposes, we begin by deriving
the model when only considering a single observation 𝑦 ∈ ℝ2.

Let𝑊 = (𝑁 , 𝐸)𝑇 denote the wind vector, where 𝑁 and 𝐸 are continuous ran-
dom variables representing wind speed in north and east direction during
the launch under consideration. We will use lowercase letters 𝑤 = (𝑛, 𝑒)𝑇

to denote realizations of 𝑊 . Let  ∶ (𝑤,d) → (𝑤,d) denote the deter-
ministic forward model mapping. Specifically, the forward model is a 6-DOF
numerical simulation of the rocket trajectory, providing the predicted point
of impact prior to launch. To account for noisy observations and imperfec-
tions in model output, we introduce additive noise 𝜀 with density 𝑓𝜀(𝜀; Σ𝜀). A
more thorough discussion on how to handle model discrepancy is given in
Section 3.3.2. The statistical model, also referred to as the updating formula,
becomes

𝑦 = (𝑤, 𝐝) + 𝜀, (3.5)

To simultaneously account for variability in wind and represent the uncer-
tainty in the same variability, we impose a so called structural prior on 𝑊 ,
with unknown dispersion hyperparameter Θ. That is, we prescribe the con-
ditional prior distribution of 𝑊 denoted by 𝑓𝑊 |Θ. Then, we step into hierar-
chical modeling by putting a prior 𝜋Θ on 𝜃.

As previously explained, wind conditions naturally take on varying launch
specific values. A naive approach is to set the location of the structural prior
as the experimentally measured value, 𝜇𝑊 say, treating it as a known hyper-
parameter. However, this is a problem if we want to enforce hyperparam-
eters to apply over all different launches so that 𝑓𝑊 |𝜃 serves as a common
population distribution over the wind conditions. In here we propose yet an-
other representation, effectively equivalent. The wind variable is to split into
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a deterministic and stochastic part such that

𝑊 = 𝑑𝑊 + 𝑊̃ , (3.6)

were the deterministic vector 𝑑𝑊 = (𝑑𝑊 ,1, 𝑑𝑊 ,2)𝑇 comprises the at launch
measured (ballistic) wind speeds in north and east directions, respectively,
and 𝑊̃ ∶= (𝑁̃ , 𝐸̃)𝑇 represents the unknown perturbations. This formulation
yields the modified updating formula

𝑦 = (𝑤̃, 𝐝) + 𝜀, 𝜀 ∼ 𝑓𝜀(𝜀; Σ𝜀) (3.7)

We take a normal prior for 𝑊̃ |Θ = 𝜃 centered at 0 and proceed with the
assumption that the wind speed in the two directions are conditionally in-
dependent given Θ = 𝜃 and share the same variance 0 < 𝜃 < ∞. Mathemati-
cally, we have

𝑊̃ |Θ = 𝜃 ∼ 𝑁(0, Σ𝑊̃ ; 𝜃) Σ𝑊̃ =
[
𝜃 0
0 𝜃]

(3.8)

and thus

𝑁̃ |Θ = 𝜃 ∼ 𝑁(0, 𝜃) 𝐸̃|Θ = 𝜃 ∼ 𝑁(0, 𝜃). (3.9)

With the modified formulation as in Eq. (3.7), the full probabilistic model,
with a slight abuse of notation, is presented in Eqs. (3.10) to (3.12) for any
choice of hyperprior 𝜋Θ,

𝑌 |𝑊̃ = 𝑤̃ ∼ 𝑓𝜀(𝑦 −(𝑤̃,d); Σ𝜀) (3.10)
𝑊̃ |Θ ∼ 𝑓𝑊̃ |Θ(𝑤̃|𝜃) = 𝑓𝐸̃|Θ(𝑒|𝜃)𝑓𝑁̃ |Θ(𝑛̃|𝜃) (3.11)

Θ ∼ 𝜋Θ(𝜃) (3.12)

In Eq. (3.11), we have used the conditional independence of wind directions.

Now, following the outlined workflow for Bayesian inference, experimental
data is assimilated by conditioning on the observation 𝑦. Bayes’ theorem
yields the joint posterior of𝑊 and Θ up to a normalizing constant on a gen-
eral form as

𝜋(𝑤̃, 𝜃|𝑦) ∝ 𝑓𝑌 |𝑊̃ ,Θ(𝑦|𝑤̃, 𝜃)𝑓𝑊̃ ,Θ(𝑤̃, 𝜃)

= 𝑓𝜀(𝑦 −(𝑤̃,d); Σ𝜀)𝑓𝑊̃ |Θ(𝑤̃, |𝜃)𝜋Θ(𝜃)
. (3.13)
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It is a common and widely recognized choice to model noise as Gaussian
such that 𝜀 is distributed as  (0, Σ𝜀). Assuming independence and equal
variance in the components of 𝜀, the noise covariance matrix is given by

Σ𝜀 = [
𝜎2
𝜀 0
0 𝜎2

𝜀]
(3.14)

Note that the modeler has a choice whether to treat the hyperparameter 𝜎2
𝜀

as known or impose a prior 𝜋𝜎2
𝜀 also on this parameter, adding further hier-

archical structure and complexity to the probabilistic model. At this stage
we assume the former, and from Eq. (3.13) obtain the posterior

𝜋(𝑤̃, 𝜃|𝑦) ∝ exp(−
1
2𝜎2

𝜀
‖𝑦 −(𝑤̃, 𝑑)‖2)𝑓𝑊 |Θ(𝑤|𝜃)𝜋Θ(𝜃)

∝ exp(−
1
2𝜎2

𝜀
‖𝑦 −(𝑤̃, 𝑑)‖2)

1
𝜃
exp(−

1
2𝜃

‖‖𝑤̃
2‖‖)𝜋Θ(𝜃)

=
1
𝜃
exp [−

1
2 (

1
𝜎2
𝜀
‖𝑦 −(𝑤̃, 𝑑)‖2 +

1
𝜃
‖𝑤̃‖2)]𝜋Θ(𝜃),

(3.15)

where ‖⋅‖ denotes Euclidan distance. For any choice of prior 𝜋Θ(𝜃) the con-
ditional posteriors for 𝑊̃ and Θ, respectively are given by

𝜋(𝑤̃|𝑦, 𝜃) ∝ exp [−
1
2 (

1
𝜎2
𝜀
‖𝑦 −(𝑤̃, 𝑑)‖2 +

1
𝜃
‖𝑤̃‖2)] (3.16)

𝜋(𝜃|𝑦, 𝑤̃) ∝
1
𝜃
exp(−

1
2𝜃

‖𝑤̃‖2)𝜋Θ(𝜃) (3.17)

What remains is to choose a prior for Θ. A commonly considered choice of
prior for variances in hierarchical models are inverse-gamma distributions,
due to its conditional conjugate properties and potential non-informativeness
[32]. Looking closer at Eq. (3.17) one can note that an Inverse Gamma prior
parameterized as

𝑋 ∼ 𝐼𝐺(𝛼, 𝛽) ⟹ 𝑓 (𝑥) =
𝛽𝛼

Γ(𝛼)
𝑥−(𝛼+1)𝑒−

𝛽
𝑥 𝑥 > 0, (3.18)

is a conditional conjugate prior as this choice yields a conditional posterior
for 𝜃 as

𝜋(𝜃|𝑦, 𝑤̃) ∝
1
𝜃
exp(−

1
2𝜃

‖𝑤̃‖2)
1

𝜃𝛼+1
exp(−

𝛽
𝜃)

=
1

𝜃𝛼+2
exp [−(

‖𝑤̃‖2

2
+ 𝛽)

1
𝜃]

(3.19)
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From Eq. (3.19) we identify parameters seeing that also the conditional pos-
terior is an Inverse Gamma such that

Θ|𝑌 = 𝑦, 𝑊̃ = 𝑤̃ ∼ 𝐼𝐺(𝛼 + 1, 𝛽 +
‖𝑤̃‖2

2 ) (3.20)

Expanded Model

When attributing all impact point displacement to wind uncertainty only,
the resulting estimate of 𝜎wind is likely to be very conservative. In order to
obtain less conservative and more realistic results, the model in the preced-
ing section is expanded in the following, by attributing output dispersion
to multiple sources of uncertainties. By the principles of Bayesian IUQ, this
amounts to representing the corresponding model inputs as stochastic vari-
ables.

Let x ∈ ℝ𝑚 denote forward model input perturbations that take on launch
specific values, subject to a variability that is unknown. In the context of the
minimal model, the wind disturbance in east direction 𝐸̃ now corresponds
to one of the components of the random vector X that x is a realization of.
Furthermore, we increase the dimensionality of our hyperparameter space
such that 𝜽 ∈ ℝ𝑘

+. Every component 𝜃𝑗 of 𝜽 governs the dispersion in a block
𝑋𝑗 ofX; equivalently to when we had 𝜃 ∈ ℝ+ parameterizing the distribution
of the two dimensional wind disturbance vector 𝑊̃ . We denote the dimension
of the 𝑗 :th block of X by 𝑚𝑗 . Again, we put a structural prior 𝑓X|𝜽 on X
conditioned on 𝚯 to incorporate our prior beliefs on the variability in x. As
before, let d denote deterministic inputs. The full posterior can be readily
derived via Eq. (3.7) and Bayes’ rule to a general model of arbitrary finite
dimension. Up to a normalizing constant, the joint posterior of (X, 𝚯) given
the observation y is given by

𝜋(x, 𝜽|y) ∝ 𝑓Y|X,𝚯(y|x, 𝜽)𝑓X|𝚯(x, 𝜽)
= 𝑓𝜀(y −(x,d); Σ𝜀)𝑓X|𝚯(x|𝜽)𝜋𝚯(𝜽).

(3.21)

By assuming conditional independence between the blocks 𝑋𝑗 of X given
𝚯 and independence of the individual hyperparameters Θ𝑗 , the prior 𝑓X|𝚯
factorizes and Eq. (3.21) takes the form

𝜋(x, 𝜽|y) ∝ 𝑓𝜀(y −(x,d); Σ𝜀)
𝑘

∏
𝑗=1

𝑓𝑋𝑗 |Θ𝑗 (𝑥𝑗 |𝜃𝑗)𝜋Θ𝑗 (𝜃𝑗) (3.22)
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Finally, we construct the posterior when considering all available data. For
multiple observations, in our case launches, we will differentiate between
different data points with a superscript. For 𝑁 observations, i.e. launches,
the statistical model becomes

y𝑖 = (x𝑖, 𝐝𝑖) + 𝜺𝑖, 𝜺𝑖 ∼ 𝑓𝜺(𝜺; Σ𝜀𝑖), 𝑖 = 1, … , 𝑁 (3.23)

To simplify notation, let a set {z𝑖}𝑁𝑖=1 be denoted by ⟨z𝑖⟩. Assuming indepen-
dent observations, the derived posterior in Eq. (3.21) can readily be extended
to include the 𝑁 datapoints. Furthermore, we will assume homoscedastic-
ity such that Σ𝜀𝑖 = Σ𝜀 for all 𝑖. The joint posterior of ⟨X𝑖⟩ and 𝚯 given all
observations, up to a normalizing constant becomes

𝜋(⟨x𝑖⟩, 𝜽|⟨y𝑖⟩) ∝
(

𝑁

∏
𝑖=1

𝑓𝜀(y𝑖 −(x𝑖,d𝑖); Σ𝜀)𝑓X|𝚯(x𝑖|𝜽)
)
𝜋𝚯(𝜽) (3.24)

Recall that in the end, 𝜽 is the QoI. The marginal posterior distribution for 𝜽
is obtained by integrating out the nuisance variables.

𝜋(𝜽|⟨y𝑖⟩) = ∫ 𝜋(⟨x𝑖⟩, 𝜽|⟨y𝑖⟩)𝑑⟨x𝑖⟩ (3.25)

From now on, for a vector z ∈ ℝ𝑘 or set ⟨z𝑖⟩wewill use a negative subscript to
denote the exclusion of a component such that z−𝑗 = [𝑧1, … , 𝑧𝑗−1, 𝑧𝑗+1, … , 𝑧𝑘].
For conclusiveness, note that the conditional posteriors of 𝑋 𝑖

𝑗 , ⟨𝑋 𝑖
𝑗 ⟩ and Θ𝑗

up to normalizing constants are given by

𝜋(𝑥 𝑖
𝑗 |⟨y

𝑖⟩, 𝜽, ⟨x𝑖
−𝑗⟩) ∝ 𝑓𝜀(y𝑖 −(x𝑖,d𝑖); Σ𝜀)𝑓𝑋𝑗 |Θ𝑗 (𝑥

𝑖
𝑗 |𝜃𝑗) (3.26)

𝜋(⟨𝑥 𝑖
𝑗⟩|⟨y

𝑖⟩, 𝜽, ⟨x𝑖
−𝑗⟩) ∝ (

𝑁

∏
𝑖=1

𝑓𝜀(y𝑖 −(x𝑖,d𝑖); Σ𝜀)𝑓𝑋𝑗 |Θ𝑗 (𝑥
𝑖
𝑗 |𝜃𝑗))

(3.27)

𝜋(𝜃𝑗 |⟨y𝑖⟩, 𝜽−𝑗 , ⟨x𝑖⟩) ∝
(

𝑁

∏
𝑖=1

𝑓𝑋𝑗 |Θ𝑗 (𝑥
𝑖
𝑗 |𝜃𝑗))

𝜋Θ𝑗 (𝜃𝑗) (3.28)

As previously, we impose a Gaussian structural prior such that X|𝚯 = 𝜽 is
distributed as  (0, Σ𝜽), where the covariance matrix is on block diagonal
form,

(Σ𝜽) =
⎡
⎢
⎢
⎢
⎣

Σ𝜃1 … 0
⋮ ⋱ ⋮
0 … Σ𝜃𝑘

⎤
⎥
⎥
⎥
⎦

(3.29)
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where each block is a diagonal matrix constructed such that

(Σ𝜽𝑗 )𝑟𝑠 =

{
𝜃𝑗 , 𝑖𝑓 𝑟 = 𝑠
0, 𝑖𝑓 𝑟 ≠ 𝑠

, 1 ≤ 𝑟, 𝑠 ≤ 𝑚𝑗 (3.30)

For the dispersion parameters, take Θ𝑗 ∼ 𝐼𝐺(𝛼𝑗 , 𝛽𝑗), assuming independence
between Θ𝑖 and Θ𝑗 for all 𝑖 and 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑘. Inserting the choice of priors
in Eq. (3.28) yields the conditional posterior for Θ𝑗 ,

𝜋(𝜃𝑗 |⟨y𝑖⟩, 𝜽−𝑗 , ⟨x𝑖⟩) ∝
(

𝑁

∏
𝑖=1

𝑓𝑋𝑗 |Θ𝑗 (𝑥
𝑖
𝑗 |𝜃𝑗))

𝜋Θ𝑗 (𝜃𝑗)

∝
(

𝑁

∏
𝑖=1

1
𝜃𝑚𝑗/2
𝑗

exp [−
1
2𝜃𝑗

‖‖𝑥
𝑖
𝑗
‖‖
2

])
1

𝜃𝛼𝑗+1𝑗
exp [−

𝛽𝑗
𝜃𝑗 ]

=
1

𝜃
𝑚𝑗𝑁
2 +𝛼𝑗+1

𝑗

exp
[
−
1
𝜃𝑗 (

1
2

𝑁

∑
𝑖=1

‖‖𝑥
𝑖
𝑗
‖‖
2 + 𝛽𝑗)]

(3.31)

Identifying parameters in Eq. (3.31), find yet again that the conditional pos-
teriors follow an Inverse Gamma distribution. In particular, noticing that the
posterior 𝜃𝑗 ’s are independent implying 𝜋(𝜃𝑗 |⟨y𝑖⟩, 𝜽−𝑗 , ⟨x𝑖⟩) ≡ 𝜋(𝜃𝑗 |⟨y𝑖⟩, ⟨x𝑖⟩),
we have

Θ𝑗 |⟨Y𝑖⟩ = ⟨y𝑖⟩, ⟨X𝑖
𝑗⟩ = ⟨x𝑖

𝑗⟩ ∼ 𝐼𝐺
(
𝑚𝑗𝑁
2

+ 𝛼𝑗 ,
1
2

𝑁

∑
𝑖=1

‖‖𝑥
𝑖
𝑗
‖‖
2 + 𝛽𝑗)

. (3.32)

This concludes the formulation of the probabilistic model(s) of rocket dis-
persion and derivation of the relevant posterior distributions given launch
data. It is worth recognizing that this result is a corner stone of this the-
sis. Recall that the last step in Bayesian data analysis entails evaluating the
implications of these distributions. In order to do so, we can not disregard
actually computing the posteriors. The entirety of Chapter 4 is dedicated to
ways of undertaking this often challenging task.

Model Discrepancy

The question of model discrepancy is highly non-trivial yet important to
discuss. Clearly, structural model errors are not explicitly known. The eas-
iest way of treatment is to simply ignore them, which in principle implies
an enforcement of equality between real life and the computational model.
This assumption might be valid in cases when the impact of model errors are
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known to be negligible or small compared to the impact of parameter uncer-
tainties. However, there is a risk of over-fitting, as the parameter estimation
will act to match available data [20].

One way to address model discrepancy is to include it in the additive noise
in the statistical model. This is the route that we have taken in this study, by
the introduction of the Gaussian noise variable 𝜀 in Eq. (3.5). Efficiently this
implies that we have assumed no structural biases in our forward model.
A more elaborate approach is to include an additional variable, unknown
discrepancy term 𝛿(d) such that the model becomes

y = (x,d) + 𝛿(d) + 𝜺. (3.33)

Including 𝛿 in the Bayesian model requires a prior model 𝜋(𝛿(⋅)), and a full
solution will give a posterior also over 𝛿. In general, the more advanced
the method to account for model discrepancy, the higher the complexity of
the resulting model. Thus, in the end it is a trade-off between an accurate
representation of reality and computational complexity. For future develop-
ment of the model proposed in this thesis, it could be of interest to include
a systematic model discrepancy term like 𝛿. This could enable discovering
off-sets in e.g. launcher settings or similar. At this point, we will ignore it in
favor of model tractability.



Chapter 4

Bayesian Computation

The full solution to a Bayesian problem revolves around the posterior den-
sity. Unfortunately, with non-trivial high-dimensional models, the posterior
is seldom known in an explicit closed form. Analytic solutions are a rare
occurrence in practice, as complicated or even intractable integrals appear
increasingly with model complexity and dimension. In order to do infer-
ence, one has to resort to specialized methods that only require the tar-
get density up to a normalizing constant. Herein we account for some of
the commonly employed techniques in advanced Bayesian computation and
how they can be utilized for rocket dispersion parameter estimation. After
accounting for probabilistic sampling via Markov Chain Monte Carlo meth-
ods in Section 4.1, we elaborate on the use ofmodal estimations to summarize
the posterior density in Section 4.2. Finally, in Section 4.3 we introduce the
concept of modularization in Bayesian computation, serving as an alterna-
tive when full Bayesian analysis is impractical or even infeasible.

4.1 Markov Chain Monte Carlo
A common approach to Bayesian computation is to do probabilistic sampling
of the posterior. Markov Chain Monte Carlo (MCMC) sampling (or Markov
Chain simulation) is a historically pivotal method to this end [33]. In the fol-
lowing sections we account for the principles of theMetropolis-Hastings (M-
H) algorithm, which serves as the basis for a majority of MCMC-techniques.
Lastly, we account for convergence diagnostics of MCMC-methods and dis-
cuss the specific challenges that arise from hierarchical, high-dimensional
models.

35
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4.1.1 Introduction to Markov Chains
Without diving too deep into the mathematical details of Markov chains, we
give a top-level overview of concepts necessary for the purpose of under-
standing and evaluating MCMC-methods. For a more thorough description,
we refer to e.g. [34].

The RandomWalk

An important example of a Markov Chain is the random walk process. It is
also an essential component for theM-H algorithm. The sequence of random
variables {𝑍𝑛}𝑛=0 is called a random walk if its evolution satisfies

𝑍𝑛+1 = 𝑍𝑛 + 𝜌𝑛, (4.1)

where 𝜌𝑛 is a r.v. independentof {𝑍𝑛}𝑛=0. In addition, if the distribution of
𝜌𝑛 is centered symmetrically around zero, we say that the random walk is
symmetric.

Transition Kernel

Informally, the Markov chain is a special kind of stochastic process, the evo-
lution of which depends solely on the current state of the process. In general,
one can construct a Markov chain through a starting point 𝑍0 and defining a
transition kernel 𝜅. The transition kernel, in the continuous case, is a condi-
tional probability density determining the probability of transitioning from
the current state to the next. Allowing some abuse of notation, the chain
evolves according to 𝑍𝑛+1 ∼ 𝜅(𝑍𝑛+1|𝑍𝑛).

Stationary Distribution

Markov chains can possess a certain stability property, namely the existence
of a unique stationary probability distribution 𝜋. Stationary is meant in the
sense that if 𝑍𝑛 ∼ 𝜋, it implies 𝑍𝑛+1 ∼ 𝜋. This property is crucial in Markov
chain simulation. In fact, the fundamental idea of MCMC-methods is to con-
struct a Markov chain with the target distribution as its unique stationary
distribution.

Finally, we state a sufficient, but not necessary condition in order to check
that a distribution 𝜋 is a stationary distribution associated with a transition
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kernel 𝜅, namely the detailed balance condition. We say, that detailed balance
with respect to 𝜋 is fulfilled for a transition kernel 𝜅 if it holds that

𝜅(𝑥|𝑦)𝜋(𝑦) = 𝜅(𝑦|𝑥)𝜋(𝑥) (4.2)

for every (𝑥, 𝑦). The interpretation of Eq. (4.2) is that there is an equal prob-
ability of being in the state 𝑦 and transitioning to 𝑥 , as it is being in 𝑥 and
going to 𝑦 [33].

4.1.2 Metropolis-Hastings and Gibbs Sampler

Standard Metropolis-Hastings

Originally presented in [24], theMetropolis-Hastings algorithm is archetypi-
cal for Markov chain simulations. It is an iterative sampling algorithm, lever-
aging the limiting behavior of a cleverly constructed Markov chain. An ap-
pealing feature is that the constructed transition kernel only depends on the
ratio of the target density evaluated in different states, thus only requires
unscaled densities. This explains its frequent appearance in Bayesian com-
putation, when the posterior is known only up to a normalizing constant.

Fundamentally, the algorithm consists of two components; a proposal kernel
(sometimes referred to as a jumping distribution) 𝑝 and an acceptance rule 𝛼.
The idea is to construct a random walk by generating samples from 𝑝(⋅|𝑍𝑛)
given the current state 𝑍𝑛, but only accept candidates with probability 𝛼 in
order to adjust convergence to the desired target distribution. The construc-
tion of the acceptance probability 𝛼 defines the M-H algorithm. For a target
density 𝜋 and proposal kernel 𝑝, the acceptance probability is defined as

𝛼(𝑍∗|𝑍𝑛) ∶= 1 ∧
𝜋(𝑍∗)𝑝(𝑍𝑛|𝑍∗)
𝜋(𝑍𝑛)𝑝(𝑍∗|𝑍𝑛)

(4.3)

with the notation 𝑎∧𝑏 ∶= 𝑚𝑖𝑛(𝑎, 𝑏). One can show that this results in a mod-
ified transition kernel that fulfills a global detailed condition with regards to
the target density 𝜋.
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Algorithm 1Metropolis-Hastings algorithm
Initialize 𝑍0

for 𝑛 = 0,… , 𝑁 − 1 do
Draw 𝑍∗ ∼ 𝑝(𝑍∗|𝑍𝑛)
Accept 𝑍𝑛+1 ← 𝑍∗ with probability 𝛼(𝑍∗|𝑍𝑛)
Else, stay in current state 𝑍𝑛+1 ← 𝑍𝑛

end for

The resulting sequence {𝑍𝑛}𝑁𝑛=1 consists of correlated samples, approximately
from the target density 𝜋 [33].

Different types of proposals yield differently behaving Markov chains. A
common choice, yielding the symmetric RandomWalk Metropolis-Hastings
(RWMH)makes use of a certain type of proposal, namely with the character-
istic structure 𝑝(𝑍∗|𝑍𝑛) = 𝑝̃(‖𝑍∗ − 𝑍𝑛‖) for some probability density function
𝑝̃ (in the continuous case). The symmetry of the proposal reduces Eq. (4.3)
to only depend on the target density such that

𝛼(𝑍∗|𝑍𝑛) = 1 ∧
𝜋(𝑍∗)
𝜋(𝑍𝑛)

(4.4)

The Gibbs Sampler

Although often considered a separate algorithm, the Gibbs sampler can be
interpreted as a special case of the M-H algorithm with yet another proposal
distribution, see for example [23]. The Gibbs sampler is a popular choice of
algorithm for high-dimensional target distributions. It is based on the as-
sumption that the target vector 𝑍 can be divided into sub-blocks (𝑍1, . . . , 𝑍𝑘),
where the conditional distributions of the blocks are easy to sample from.
For each block, we aim to sample from the conditional distribution given all
other blocks. In a Gibbs sweep, we traverse through the blocks sampling
from 𝜋(𝑍𝑗 |𝑍−𝑗) for 𝑖 = 1, 2, … , 𝑘. In many statistical applications some, or all
of, these conditional distributions are known in closed form thus allow direct
sampling. This is due to the fact that many models, including hierarchical,
are constructed using a sequence of conditional distributions [23].
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Algorithm 2 The Gibbs sampler
Initialize Z0

for 𝑙 = 0, … , 𝐿 − 1 do
for 𝑗 = 1, … , 𝑘 do

draw 𝑍 𝑙+1
1 ∼ 𝜋(𝑍 𝑙+1

1 |𝑍 𝑙
2 … , 𝑍 𝑙

𝑘)
draw 𝑍 𝑙+1

2 ∼ 𝜋(𝑍 𝑙+1
2 |𝑍 𝑙+1

1 , 𝑍 𝑙
3, … , 𝑍 𝑙

𝑘)
⋮
draw 𝑍 𝑙+1

𝑘 ∼ 𝜋(𝑍 𝑙+1
𝑘 |𝑍 𝑙+1

1 , … , 𝑍 𝑙+1
𝑘−1)

end for
end for

In Algorithm 2, the blocks are sampled from in a fixed order. However, it
is also possible to do e.g. random scans, where the order of the blocks are
randomized in every iteration [35].

Hybrid Sampling Schemes

A more general class of MCMC routines hybridizes the standard M-H algo-
rithm and Gibbs sampler. The target vector is still divided into blocks, and
whenever possible one samples directly from the conditional distributions.
However, if only an unscaled block conditional is available, one proceeds
with an M-H steps for this block specifically. We do not show here that such
samplers fulfill a detailed balance condition, but refer to for example [33].

4.1.3 Diagnostics
Monitoring and assuring convergence to the target distribution is crucial in
Markov Chain simulations. The notions of stationarity and mixing are im-
portant in evaluating MCMC performance. Loosely speaking, the term mix-
ing refers to how fast the Markov chain converges to its stationary distribu-
tion. Moreover, ensuring that chains have reached a stationary distribution
at all is required to have convergence.

The iterative nature of the sampling introduces potential difficulties to ad-
dress. Firstly, the samples in MC simulations are correlated by nature. This
makes inferences potentially less precise compared to when completely in-
dependent samples are used. Thus, checking the level of correlation is an
important part of diagnostics. One way of doing so is by looking at the auto-
correlation function (ACF) within sequences. A slowly decreasing ACF im-
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plies high correlation within the samples. In addition, it possible to derive
an efficient sample size, as an estimation of how many independent samples
the correlated sequence would correspond to. Secondly, the samples should
be representative draws from the target distribution, which presupposes that
the simulation has been run for a long enough time in order to prevent early
phases of the sequence to influence the final estimates. Discarding the first
samples in a sequence is a common procedure in Monte Carlo simulations,
referred to as a warm up period, or burn-in. Primarily, this is a measure to
avoid the influence of the starting point. The necessary length of warm up
depends on the specific problem, but in general, the slower the mixing, the
slower the chain reaches its stationary distribution and the longer the burn-
in. It also depends on how close the initialization is to the target distribution.
A conservative measure is to always disregard the first half of the sequence,
but this is not always necessary.

Visual inspection of trace plot of simulated parameters of interest is a qual-
itative way of assessing convergence. Although imprecise and inefficient
with a large number of parameters, it can give an indication of pathological
behavior of a chain by how the parameter space is explored. For example,
it yields a way to determine if the chain has reached stationarity or not. It
is also useful to study the evolution of distributional summaries like sample
mean and/or standard deviation of QoIs.

Gelman-Rubin Convergence Diagnostics

Amore sophisticated and quantitative way of assessing convergence, as pro-
posed by Gelman and Rubin [5], is to simulate multiple, independent chains
from dispersed starting points. Ideally, the starting distribution from which
initial points are drawn should resemble the target distribution, but overly
dispersed and cover the support of the distribution. Firstly, the use of multi-
ple sequences lets us evaluate the influence of the starting point. This can for
example reveal problems related to multi-modal distributions where chains
get stuck in local modes for a long time. We can also visually inspect if all
simulated chains havemixed; this is required to have convergence. Secondly,
it lets us study within- and between sequence variance. For 𝑆 simulated se-
quences of length 𝐿, one can estimate the between-sequence variance 𝐵 and
within-sequence variance 𝑊 for a scalar QoI 𝜃, respectively by

𝐵 =
𝐿

𝑆 − 1

𝑆

∑
𝑠=1

(𝜃̄𝑠 − 𝜃̄)2, 𝑊 =
1
𝑆

𝑆

∑
𝑠=1

𝜎̂2
𝑠 , (4.5)
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where

𝜃̄𝑠 ∶=
1
𝐿

𝐿

∑
𝑙=1

𝜃𝑙𝑠, 𝜃̄ ∶=
1
𝑆

𝑆

∑
𝑠=1

𝜃̄𝑠, 𝜎̂2
𝑠 ∶=

1
𝐿 − 1

𝐿

∑
𝑙=1

(𝜃𝑙𝑠 − 𝜃̄𝑠)2 (4.6)

𝑊 and 𝐵 can be used to calculate an estimate of the marginal variance of the
quantity of interest denoted by 𝜎2

𝜃 via

𝜎̂2
𝜃 =

𝑆 − 1
𝑆

𝑊 +
1
𝑆
𝐵 (4.7)

One can show that the estimate in Eq. (4.7) will overshoot the actual variance,
assuming that initial points have been drawn from an overdispersed starting
distribution, but unbiased under stationarity or as 𝑆 → ∞. The estimation𝑊
on the other hand, underestimates the target variance for finite 𝑆. This stems
from the fact that a finite sample has not yet explored the entire support of
the target distribution and subsequently, will show less variance. As the
number of samples increase, the expectation of 𝑊 will approach 𝜎2

𝜃 . Now,
define the potential scale reduction factor 𝑅̂ for each simulated parameter of
interest by

𝑅̂ ∶=

√
𝜎̂2
𝜃

𝑊
(4.8)

By the above reasoning, for finite 𝑆, it follows that 𝑅̂ > 1. The interpretation
of 𝑅̂ is that large values indicate that the scale/variance of the current distri-
bution estimate is larger than the target one, and continuing the simulation
is likely to improve the quality of the sample. As 𝑆 increases, one expects
𝑅̂ → 1. A criteria of convergence is for 𝑅̂ to be close to 1 for all quantities of
interest; a conventional limit is 1.1 [5].

4.1.4 Limitations of Standard MCMCMethods
As discussed in Section 4.1.3, Markov chain samples are correlated by con-
struction. In addition, a hierarchical structure inherently introduces even
more correlation. In fact, in multilevel modeling we are deliberately pre-
scribing dependence among themodel parameters. The degree of correlation
affects mixing of the chains, and play a crucial role in the speed of conver-
gence and sample quality in all MCMC methods. Improving efficiency often
translates to the task of reducing sequence auto-correlation. In general this
requires highly optimized, advanced sampling schemes due to insufficiencies
of the simple standardM-H algorithm. Furthermore, tuning the proposal dis-
tribution(s) in a M-H step to have reasonable acceptance rates is difficult, as
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is proper initialization. Hamiltonian Monte Carlo (HMC) is a common ad-
vanced sampler that has proven itself capable of reducing autocorrelation
and significantly improve sampling efficiency. The method leverages results
fromHamiltonian mechanics; by introducing auxiliary momentum variables
one mitigates issues with slow exploration of the state space stemming from
the diffusive random walk properties of M-H sampling [36].

Yet another potentially severe issue of iterative simulations in general, and
MCMC in particular, is multi-modality. To obtain a representative and large
enough sample from the full posterior we need the chain to traverse the en-
tire support to explore the global properties of the distribution. However,
when strong multimodality is present, there is a tendency for the sampler
to get stuck in local modes. If modes or high density regions of the poste-
riors are separated by regions of very low posterior density, extremely long
simulations are required as candidates proposed by M-H kernels are almost
always discarded based on the acceptance probability. Parallel tempering is
a way tp to remedy issues with sampling from multimodal distributions. In
short, tempering acts to rescale the target distribution with a temperature
variable 𝑇 , so that modes are flattened, which in turn facilitates more effi-
cient state space exploration. This is accomplished by embedding the target
distribution into augmented state spaces with increased temperatures. For a
more detailed description, we refer to [37].

High dimensionality often aggravates all aforementioned difficulties. In ad-
dition, increase in model size is associated with more computationally costly
algorithms. Unfortunately, there is a substantial risk of facing impractical or
even infeasible computational loads when aiming to do full Bayesian infer-
ence. In the following sections, we present approaches to Bayesian computa-
tion which do not target probabilistic sampling of the full posterior directly,
in order to circumvent the limitationwith standardMCMCmentioned above.

4.2 Modal Approximations
Finding modes of the posterior, local and potentially global, is a way to begin
characterizing a complex and multi-modal distribution. Modes can, and of-
ten do, serve as distribution summaries and/or point estimates in statistical
applications. They can also serve as a basis for distributional approximation
[23]. A central quantity is the maximum a posteriori (MAP) estimate; the
point in the parameter space corresponding to the global maximum of the
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posterior density. The MAP is sometimes referred to as the mode of a distri-
bution, assuming unimodality. In here, we will use the term mode to refer to
local maxima of the posterior density function. For the full posterior derived
from our model of rocket dispersion in Eq. (3.24), the joint MAP estimator is
given by

(⟨x̂𝑖⟩, 𝜽̂)𝑀𝐴𝑃 = argmax
(⟨x̂𝑖⟩,𝜽̂)

𝜋(⟨x𝑖⟩, 𝜽|⟨y𝑖⟩) (4.9)

Maximizing the posterior is equivalent to minimizing the negative log pos-
terior, so Eq. (4.9) can be reformulated as

(⟨x̂𝑖⟩, 𝜽̂)𝑀𝐴𝑃 = argmin
(⟨x̂𝑖⟩,𝜽̂)

− log 𝜋(⟨x𝑖⟩, 𝜽|⟨y𝑖⟩) (4.10)

Moreover, we only care for the maximizing argument and can disregard pro-
portional constants. Taking the logarithm, proportionality up to a normal-
izing constant now corresponds to discarding additive constants. Thus, in
order to find a global mode we seek to solve

argmin
(⟨x̂𝑖⟩,𝜽̂)

− log 𝜋(⟨x𝑖⟩, 𝜽|⟨y𝑖⟩) =

argmin
(⟨x̂𝑖⟩,𝜽̂)

𝑁

∑
𝑖=1

1
2𝜎𝜀2

‖‖y
𝑖 −(x𝑖,d𝑖)2‖‖

+
𝑘

∑
𝑗=1 [

1
𝜃𝑗 (

𝑁

∑
𝑖=1

||𝑥 𝑖
𝑗 ||2

2
+ 𝛽𝑗)

+ (
𝑚𝑗𝑁
2

+ 𝛼𝑗 + 1) log(𝜃𝑗)]

(4.11)

The task of findingmodes is an optimization problem, to which a rich variety
of numerical methods can be applied. The choice of an appropriate method
depends on the application and required accuracy. We give some examples
of simple optimization algorithms that are easy to implement, serving as a
baseline routine to begin characterizing the modes of the target distribu-
tion. Finding multiple modes can be done by initializing the optimization
algorithm at different points in the parameter space. More advanced op-
timization schemes include deterministic and stochastic, Newtons method
and Simulated Annealing being widely used examples of the two types, re-
spectively.

Gradient Descent

Gradient based optimization, and gradient descent type algorithms in par-
ticular, has gained popularity through its extensive use in Machine Learning
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applications. For an objective function 𝐿(𝑧), 𝑧 ∈ ℝ𝑘 for some 𝑘, consider the
optimization problem of finding 𝑧∗ such that

𝑧∗ = argmin
𝑧

𝐿(𝑧). (4.12)

Gradient descent (GD) is an iterative algorithm to find (local) minima, where
the iterates are updated in the direction of the negative gradient of the objec-
tive function. Pseudo-code for a classic GD scheme is given in Algorithm 3.

Algorithm 3 Gradient descent
Initiate 𝑧0
for 𝑛 = 0,… , 𝑁 do

Update 𝑧𝑛+1 ← 𝑧𝑛 − 𝜂𝑛∇𝐿(𝑧𝑛)
end for

The step size 𝜂𝑛, known as learning rate in the ML community, governs the
distance covered in the the loss landscape in each update. Tuning the learn-
ing rate appropriately is important to assure efficient convergence. In gen-
eral, it does not have to be constant over iterations [38].

Conditional Maximization

As described in [23], conditional maximization is a simple optimization al-
gorithm that can leverage a known hierarchical structure of the underlying
model. In the presence of conditional conjugate prior distributions, the pro-
cedure is especially convenient. In each step we aim to decrease the neg-
ative log posterior, but we alter only a sub-set of the parameters, keeping
the remaining fixed. We do this by considering the conditional distributions,
taking steps as to always decrease the conditional negative log posterior of
the considered individual sub-set.

4.3 Modular Bayesian Analysis
Limitations in pursuing probabilistic sampling of the full posterior distribu-
tion has sparked creativity within the field of Bayesian analysis; particularly
in how one can make simplifications or modifications to the posterior dis-
tribution to enable inference. Modularization is an approach that has been
developed partly to this end. It is a way of partitioning the problem into sep-
arate components, or modules, aiming to reduce total computational com-
plexity but also as a way of preventing "suspect" parts of a full system from
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influencing the end results too much [39]. After having formulated the full
problem and derived a true posterior distribution via Bayes’ theorem, one
proceeds with modifying or approximating some modules of the full model.
Replacing posterior distributions of parameters with Maximum Likelihood
estimates as in [20] is an example of such a process.

Herein, we propose a modular approach as an alternative to full Bayesian
inference. Ideally, we want a model that does not suffer from the same ig-
norance as the minimal one, yet mitigates the extreme complexity of the full
Bayesian approach to the multidimensional model. The modularization al-
lows finding approximate posterior distributions of the QoIs, although they
might be inconsistent with Bayes’ theorem. Thus, it still enables probability
statements on the QoIs.

Recall that themarginal posterior distribution for 𝜽 is obtained by integrating
out the nuisance variables. Using the general product rule and assuming
independence of 𝜽 and ⟨y𝑖⟩, we obtain

𝜋(𝜽|⟨y𝑖⟩) = ∫ 𝜋(⟨x𝑖⟩, 𝜽|⟨y𝑖⟩)𝑑⟨x𝑖⟩

= ∫ 𝜋(⟨x𝑖⟩|𝜽, ⟨y𝑖⟩)𝜋(𝜽|⟨y𝑖⟩)𝑑⟨x𝑖⟩

= ∫ 𝜋(⟨x𝑖⟩|𝜽, ⟨y𝑖⟩)𝜋𝚯(𝜽)𝑑⟨x𝑖⟩

(4.13)

≈ 𝜋(⟨x̂𝑖⟩|𝜽, ⟨y𝑖⟩)𝜋𝚯(𝜽) (4.14)

The modularization takes place in the last step Eq. (4.14). The conditional
posterior of ⟨x𝑖⟩ is approximated by replacing it with an appropriately chosen
point mass. We end this section with a brief discussion on doing full versus
modular Bayesian analysis. In general, when possible and there is no reason
to believe that sub-parts of the full model are flawed, the full Bayesian ap-
proach would probably be preferred from a purist viewpoint. Theoretically,
full Bayesian analysis is superior; modifying posterior distributions is not en-
tirely without mathematical unease and should be done carefully, avoiding
ad-hoc fixes of inadequate mathematical modeling. However, a key advan-
tage of modularization is the increase computationally tractability, enabling
us to extract more information about posterior QoIs than allowed by point
estimates.



Chapter 5

Surrogate Modeling

Probabilistic sampling like MCMC or iterative optimization schemes con-
taining the likelihood function rely on a huge number of calls to potentially
computationally costly forward model codes, growing with the number of
data points. This can make such approaches infeasible in full scale engineer-
ing applications. In IUQ, a common way to remedy this issue is to introduce
surrogate or meta models. Such emulators captures the input/output rela-
tionship of the forward model to an acceptable accuracy with the purpose of
speeding up computations. In fact, in light of the previous section covering
modularization, we can think of the surrogate model as a replacement of the
module consisting of the deterministic forward model. The surrogate model
should be cheap to evaluate, easy to interpret and preferably compatible with
the computational framework in place. Common choices of modeling in-
clude Polynomial Chaos Expansion [40], Gaussian Process regression [20]
and Artificial Neural Networks (ANN) [41, 42]. The focus in this work will
be on ANNs, specifically on fully connected feed-forward neural networks
(FFNNs). The first section Section 5.1 introduces the concept of NNs, whereas
the second Section 5.2 accounts for constructing and evaluating models em-
ulating the rocket simulation software provided by SSC.

5.1 Introduction to Neural Networks
In line with the massive development and progress in the field of machine
learning, neural network based solutions to inverse problems in physics and
engineering applications have received increasing attention, e.g. in [43, 44].
The generality and adaptability of neural networks as function approxima-
tors is an appealing feature. In addition, ANN’s enjoy an inherent paral-

46
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lel structure and gradient preserving property. Thus, they are attractive
as computational units in parallel algorithms and automatic differentiation
schemes, for example in GPU-employed gradient based optimization.

5.1.1 Fully Connected Feed-Forward Neural Networks
The mathematical foundation motivating neural network (NN) approxima-
tors of non-linearmappings relies on the Universal Approximation Theorem.
With some constraints on regularity, the theorems states that any function
can be approximated arbitrarily well by a neural network [45]. The classical
form of the theorem considers a simple, multilayer feed-forward network,
often referred to as multilayer perceptron (MLP). It is one of the simplest
network architectures, often used as a prototypical example of an ANN.

An MLP consists of simple interconnected nodes, or neurons, serving as
computational units. Information flows through the network via layers of
neurons, where the outputs of the one layer is multiplied with correspond-
ing connection weights and summed to form the input to the nodes in the
next layer. Non-linearity is introduced through so called activation func-
tions; a non-linear function mapping the input to output associated with
each neuron. The term fully connected means that each neuron in a layer is
connected to all neurons in the next layer. An illustration of an MLP with an
input layer, two hidden layers and an output layer and flow of information
is presented in Fig. 5.1.

Input
layer

Hidden
layer

Hidden
layer

Output
layer

Figure 5.1: Illustration of a two-layer MLP architecture.

Deep learning refers to NNs with a potentially very large number of hid-
den layers. This kind of architectures has shown immense success in a vast
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variety of learning problems, but often pose specific challenges e.g. vanish-
ing/exploding gradients as well as degradation [46]. The use of skip connec-
tions to redeem these two issues gained popularity with the introduction of
ResNet [47]. In a skip connection, also referred to as a residual block, the
output of the preceding layer is fed through the next layer but also, directly
into the the layer after the block a few layers ahead. A conceptual illustration
of a residual block is presented in Fig. 5.2.

Layer 1 𝜎(𝑧)
Activation

Layer 2 ⊕

(𝑧) + 𝑧

𝑧

Skip connection

𝑧

(𝑧)

Figure 5.2: Illustration of skipping connections in neural networks. In addi-
tion to being fed forward through the succeeding layers in the residual block,
the input 𝑧 feeds directly into the layers after the block.

5.1.2 Training a Neural Network
Training a neural network aims to update the parameters defining the net-
work, 𝜃 say, given training data. Supervised learning means that the data has
a prescribed structure with input variables, or features, 𝑥 ∈ 𝑋 and associated
responses or ground truths 𝑦 ∈ 𝑌 .

In order to fit a model, 𝑓𝜃 ∶ 𝑋 → 𝑌 , 𝑓𝜃(𝑥) = 𝑦̂, given the data set {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1,
one defines a loss function 𝐿 ∶ 𝑌 × 𝑌 to quantify the prediction errors of the
model. Define the empirical risk 𝑅 as the sum of losses on the training data
by

𝑅(𝜃) =
𝑁

∑
𝑖=1

𝐿(𝑦𝑖, 𝑦̂𝑖) =
𝑁

∑
𝑖=1

𝐿(𝑦𝑖, 𝑓𝜃(𝑥𝑖)) (5.1)

Common choices of loss functions in regression tasks are 𝐿1- and 𝐿2 norms,
i.e. 𝐿(𝑦, 𝑦̂) = ‖(𝑦 − 𝑦̂)‖𝑝, for 𝑝 = 1, 2 respectively. Training the neural net-
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work equates to solving the minimization problem of finding 𝜃∗ such that

𝜃∗ = argmin
𝜃

𝑅(𝜃) (5.2)

Finding an approximate solution to Eq. (5.2) is almost exclusively done through
gradient based optimization schemes, where gradients are obtained via the
backpropagating algorithm [48].

5.2 Surrogate Models of Rocket Simulator
In this section, we account for the process of training and evaluating the sur-
rogate models that will be used in the numerical experiments conducted in
this thesis. The neural networks emulating the rocket simulation software
are built with PyTorch, a python based framework for machine learning and
automatic differentiation [49]. It is beyond the scope of this thesis to train
a highly optimized neural network; this is indeed a research question on its
own. For our purpose, a simple and small scale model to retain interpretabil-
ity and computational efficiency is sufficient. We settle for an accuracy that
is contained within the magnitude of modeled noise in the observations.

The network architecture comprises 12 hidden layers with 200 neurons per
layer, with skip connections at hidden layers 4, 6, 8 and 10. This yields a total
of 490, 002 trainable parameters. All hidden layers are equipped with ReLU
activation functions defined by Equation (5.3).

𝜎(𝑥) = max(0, 𝑥), 𝑥 ∈ ℝ (5.3)

5.2.1 Data Generation
The training and evaluation data is generated by running launch simula-
tions with input variables sampled uniformly from intervals as specified in
Table 5.1. The intervals are constructed to cover all relevant launch config-
urations, based on launches conducted at Esrange. The resulting simulated
impact points serve as ground truths when computing the loss in the neural
networks.

Aerodynamical responses of a 2-stage rocket like the VSB-30 are more in-
tricate than for one stage rockets like Improved Orion. To accommodate for
the more complex target function the network is learning, a larger training
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data set of 2 ⋅ 105 examples is generated for the former. For the latter, 105
examples constitutes the training set.

Variable Description Unit VSB-30 Improved Orion

Wind speed, north [m/s] [-8,8] [-8,8]
Wind speed, east [m/s] [-8,8] [-8,8]

Launch elevation, 𝛾 [deg] [84,90] [77,88]
Launch azimuth, 𝛿 [deg] [-50,50] [-50,50]

Thrust misalignment, pitch [deg] [-0.1,0.1] [-0.2,0.2]
Thrust misalignment, yaw [deg] [-0.1,0.1] [-0.2,0.2]

Table 5.1: Input variable intervals to generate training data for surrogate
models.

5.2.2 Training and Evaluation Setup
Models are trained with an 𝐿1 loss function, employing an Adam optimizing
algorithm as implemented in PyTorch [49] with an exponentially decaying
learning rate starting at 3 ⋅ 10−4 and decay rate 0.9. Gradients are computed
on batches of 20 examples for 30 epochs.

To monitor the training dynamics, models are evaluated on an unseen set of
1000 data points every 100:th iteration. Loss logs from training the model
associated with the Improved Orion are presented in Figure 5.3. We also
introduce a more informative metric when evaluating the trained models on
a test data set. For a given tolerance 𝜏, we say that a prediction is correct if the
Euclidian distance between the original and surrogatemodel output, denoted
by 𝑦 and 𝑦̂, respectively, is beneath the tolerance: ‖𝑦̂ − 𝑦‖ < 𝜏. Accuracy is
defined as the fraction of correct predictions on the test set.
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Figure 5.3: Training loss logs for the Improved Orion surrogate model.

5.2.3 Performance
Finally, we convince ourselves that the use of surrogate models is not com-
promising the end results by not being accurate enough. The trained models
are evaluated on test sets of 1000 launches with resulting mean displace-
ments of 1.1 km and 0.54 km for VSB-30 and Improved Orion respectively.
Note that the average range of VSB-30 trajectories is considerably larger than
for Improved Orion. Thus, we do expect absolute errors to be larger in gen-
eral for the former; the relative error is comparable. The prediction accuracy
for different tolerances is presented in Table 5.2.

𝜏 [km] VSB-30 Improved Orion

2 0.98 0.99
1 0.8 0.98
0.5 0.36 0.80

Table 5.2: Obtained accuracywith neural network surrogatemodels of rocket
simulation software.

We look closer at how the models perform on examples corresponding to
actual launches at Esrange. This is the region in the input variable space
that the models will operate within the larger algorithmic framework. A
visual comparison between the surrogate models and the original model is
presented in Figure 5.4 and shows good resemblance. Quantitatively, all dis-
placements are below 0.95 km and 0.49 km, with a mean of 0.49 km and
0.2 km for VSB-30 and Improved Orion respectively. In all, the accuracy of
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the trained models are deemed satisfactory for the purpose of emulating the
original simulation model.
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Figure 5.4: Surrogate model predictions with input variables from actual
launches. Left: Improved Orion. Right: VSB-30.

As a final note, we highlight the huge gain in computation time. With the
surrogate models, a million input examples can be evaluated in 0.01 seconds,
whereas for the original simulation tool a single VSB-30 launch run takes
about 1 second. Especially in parallelizable algorithms, we can truly enjoy
this improvement.



Chapter 6

Methods and Model Selection

The models of sounding rocket dispersion proposed in Chapter 3 are formu-
lated to be generally applicable to any rocket configuration and launch site.
We proceed by narrowing the focus of the thesis by studying the specific case
of sounding rockets launched from Esrange. In this chapter, we specify the
selection of models and the methods we will employ to obtain the numerical
results presented in Chapter 7. This includes specifying hyperparameters
and considered variables in the probabilistic model derived in Section 3.3.2,
as well as outlining implemented algorithms.

6.1 Choosing Hyperparameters
In this section, we discuss the process and impact of choosing prior hyper-
parameters. We will treat hyperparameters as deterministic; an alternative
option would be to include them in the probabilistic model by prescribing
priors over these parameters as well.

6.1.1 Informative Priors on QoIs
In this work, we have chosen the route of informative priors. Thus, the dis-
tribution 𝜋Θ ∈ {𝜋Θ(⋅ ; 𝛼, 𝛽) ∶ Θ ∼ 𝐼𝐺(𝛼, 𝛽), 𝛼, 𝛽 > 0} should reflect current
beliefs about the level of model input uncertainty. We achieve this by choos-
ing 𝛼 and 𝛽 accordingly.

In the succeeding numerical experiments, the choice of the hyperparameter
𝛽 will be based on the currently used individual 𝜎-values in the dispersion
estimates. Considering wind as a specific example, the value used at Esrange
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is 𝜎2
𝑤𝑖𝑛𝑑 = 1 m/s. We proceed by constructing the prior 𝜋Θ to have its mean

at 𝜎2
𝑤𝑖𝑛𝑑 = 1. The expected value of an inverse-gamma is given by 𝛽

𝛼−1 . Thus,
the scale parameter 𝛽 is chosen such that 𝛽 = 𝜎2

𝑤𝑖𝑛𝑑(𝛼 − 1). We are left with
the task of determining the shape parameter 𝛼.

The effect of the shape parameter 𝛼 on the prior distribution is illustrated in
Fig. 6.1. A larger 𝛼 acts to narrow the density around the mean, effectively
implying greater confidence in prior beliefs, i.e. current 𝜎-values. Thus, in-
creasing 𝛼 is a more conservative modeling choice in the sense that it implies
a stronger preference toward staying with current 𝜎-values. Conversely, re-
ducing 𝛼 both shifts the peak of the prior towards smaller values and flattens
the density. Essentially, we are reducing the confidence in the current beliefs
and putting more probability mass on smaller (and larger) values.
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Figure 6.1: Effect of shape parameter 𝛼 on prior probability density function
𝜋Θ(𝜃).

Ultimately, deciding the final value to use for inference is up to the practi-
tioner. For some of the model inputs, we have a chance of making a more
informed decision based on prior evidence. Specifically, this applies to wind
and launch settings; quantities that allow for empirical data collection to sup-
port modeling choices. Nonetheless, it is not trivial how to relate the shape
parameter to physical quantities, which makes the modeling choice more
intricate. In this study, we map subjective beliefs about current 𝜎-values to
a choice of 𝛼 by estimating a lower bound on probable values of the QoI 𝜃.
We will denote this limit by 𝜎2

𝑚𝑖𝑛, below which there is a negligible probabil-
ity mass. Thus, subjective beliefs about actual model input uncertainty go
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into choosing 𝜎𝑚𝑖𝑛, after which we define the corresponding 𝛼 implicitly as
the solution to Eq. (6.1). We consider machine precision, denoted by 𝜀 , as
tolerance for what is deemed numerically negligible.

∫
𝜎2
𝑚𝑖𝑛

0
𝜋Θ𝑗 (𝜃; 𝛼)𝑑𝜃 = 𝜀𝑚𝑎𝑐ℎ𝑖𝑛𝑒, 𝛼 > 0, 𝜀𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ∼ 10−16 (6.1)

In the next sections, we propose andmotivate lower bounds 𝜎𝑚𝑖𝑛 for the vari-
ables wind and launch settings. Formodel inputs that we have no evidence of
or reason to have strong beliefs about, we will always prefer a conservative
choice and take 𝛼 = 100.

Prior knowledge: Wind

A major contribution to the uncertainty in wind is that final launch settings
are not based on wind measurements at 𝑇 = 0, i.e. the (instantaneous) time
of launch. Instead, data from a few minutes before serve as basis when de-
livering the final launcher elevation and azimuth angles. The resulting dis-
crepancy between accounted for and actual wind is likely to be larger than
the wind measurement error, and assumed comparable to the strength of
wind gusts during flight. Common practice includes logging a wind mea-
surement also at 𝑇 = 0; we begin to investigate the statistical properties of
"at launch" wind discrepancy by looking at this data collection. We make a
note that the atmospheric conditions measured at 𝑇 = 0 are still not exactly
those experienced by the sounding rocket, as wind is not logged continu-
ously throughout all wind layers. For all launches considered in this study,
the largest ever observed discrepancy in ballistic wind pre and at launch is
0.95 m/s, considering both head and cross wind. The absolute arithmetic
mean is 0.24 m/s. This is indeed considerably smaller than the current 3𝜎
value of 3 m/s. Recall that 𝜎 is commonly interpreted as the standard devi-
ation of a normal distribution, and thus supposed to be a 99.7% limit of all
values. Based on this observation, a proposed lower bound on the possible
values for wind is 𝜎𝑚𝑖𝑛 = 0.5 m/s, retaining some conservative margin. The
resulting prior for the corresponding choice of 𝛼 is depicted in Fig. 6.2.
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Figure 6.2: Choosing 𝛼 from a defined lower bound.

Prior knowledge: Launch elevation and azimuth

The launcher is set automatically via commands from the control room, how-
ever, it is possible to measure the rail post launch to ensure consistency with
actual launch elevation and azimuth angles. Launch operators report that
the post-launch measurements of elevation and azimuth have never shown
any discrepancy to the settings in the system. This supports the belief that
current parameters are overshooting, but does not exactly provide a lower
bound estimate. However, the setting resolution for the azimuth angle is
bounded as it is always rounded to the nearest integer. Based on this, a 3𝜎
below 1◦ is implausible; thus, we choose 𝜎𝑚𝑖𝑛 as 1/3◦ for launch azimuth. Al-
though elevation is set with one decimal, which would result in 𝜎𝑚𝑖𝑛 = 1/30◦

with the above reasoning, we choose a slightly more conservative lower
bound on this variable based on recommendations from launch operators.
Instead, the accuracy limit corresponds to one standard deviation; i.e. we set
𝜎𝑚𝑖𝑛 = 1/10◦ for elevation.

6.1.2 Additive Noise
The parameter 𝜀 governing the magnitude of additive noise introduced in
our statistical model Eq. (3.23) has a clearer physical interpretation. For Im-
proved Orion, we choose 𝜎𝜀 = 1 km in the results presented here. This is
enough to include the error introduced by the surrogate model. For VSB-30,
we increase the noise to account for a known modeling error discussed in
Chapter 7 and increased scale in range and use 𝜎𝜀 = 4 km.
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6.2 Variable Selection
In this section, we first conduct a small sensitivity study of the Improved
Orion rocket in Section 6.2.1 to conclude which perturbations are contribut-
ing most to the dispersion estimates. Based on this, we then specify the
models that will be studied in the numerical experiments.

6.2.1 Sensitivity Analysis of Forward Model
We run simulations when perturbing the dispersion factors with their indi-
vidual 3𝜎-values and log the impact displacement in downrange and cross-
range directions. Figure 6.3 shows a comparison of the absolute value of
displacements. It is clear that perturbations to wind is the by far most domi-
nant factor, followed by aerodynamic drag and launch elevation. Thrust mis-
alignment also contributes substantially to the dispersion, and we choose to
include it in the multidimensional model. Finally, we will also include launch
azimuth, as there is reason to believe that the 𝜎-value associated with this
variable is overshooting the actual uncertainty.
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Figure 6.3: Quantifying contributions to dispersion from individual pertur-
bations.
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Rocket type Payload mass Launch settings Nominal IP

Improved Orion 100 kg 𝛾 = 82.5◦, 𝛿 = 0◦ 𝑟 = 58.9 km, 𝛼 = 0.07◦

Table 6.1: Launch configuration for sensitivity study.

Effectively, this results in an input space isomorphic to ℝ6.

6.2.2 Model Specifications
We will study two different models as defined by the following considered
configurations:

M.1 According to the minimal model in Section 3.3.2, we only attribute im-
pact point dispersion to uncertainty in wind conditions. We take an
inverse gamma prior density on the parameter Θ with hyperparame-
ters 𝛼, 𝛽 according to Section 6.1 and a centered Gaussian structural
prior on wind disturbance 𝑊̃ given Θ. Note that formally, the minimal
model is a special case of the general Eq. (3.24), with number of blocks
𝑘 = 1 with dimension 𝑚1 = 𝑚 = 2 and number of launches considered
𝑁 = 𝑁𝑙𝑎𝑢𝑛𝑐ℎ.

M.2 We aim to fit a multidimensional model derived in Section 3.3.2 to
available launch data. Only the subset of perturbation factors dominat-
ing the dispersion defined in Section 6.2.1 will be considered, in order
to reduce the dimensionality of the problem. In Table 6.2, we formalize
the configuration of the multidimensional model in accordance with
the general model formulation in Section 3.3.2. The variables 𝑥𝑗 con-
sidered are described in terms of their current individual 𝜎-values and
their modeled prior distributions. Hyperparameters 𝛼𝑗 , 𝛽𝑗 for 𝜋Θ𝑗 (𝜃𝑗)
are chosen in accordance with the reasoning in Section 6.1.

Variable Description 𝜎-value 𝑓𝑋𝑗 |Θ𝑗 𝛼𝑗 𝜎𝑚𝑖𝑛

𝑥1 ∈ ℝ2 Thrust misalignment 𝜎1 = 1
30

◦  (0, 𝜃1𝐼 ) 100 N/A
𝑥2 ∈ ℝ2 Wind disturbance 𝜎2 = 1 m/s  (0, 𝜃2𝐼 ) 19 1

2 m/s
𝑥3 ∈ ℝ Elevation misalignment 𝜎3 = 1

3
◦  (0, 𝜃3) 5 0.1◦

𝑥4 ∈ ℝ Azimuth misalignment 𝜎4 = 4
3
◦  (0, 𝜃4) 3.7 1

3
◦

Table 6.2: Characterization of considered uncertain model inputs in multidi-
mensional modelM.2.
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6.3 Methods for Posterior Exploration
The constructed algorithms that will be utilized for characterizing the joint
posterior distribution associated with the selected models are presented in
the following subsections. Throughout the numerical experiments conducted
in this thesis, the deterministic forward model is replaced by a surrogate
neural network  .

6.3.1 MCMC Algorithm
We begin by proposing aM-H based sampling algorithm for the target poste-
rior distributions derived in Section 3.3.2, aiming to implement a M-Hwithin
Gibbs algorithm. Recall that there is already a natural block structure in the
probabilisticmodel formulation. We construct a samplerwhere the 𝑗 :th block
is divided into two Gibbs sampling blocks, one for the set of nuisance vari-
ables ⟨𝑥 𝑖

𝑗⟩ and one for the dispersion parameter 𝜃𝑗 , for 𝑗 = 1, … , 𝑘. All condi-
tional posteriors of 𝜃𝑗 can be sampled directly from the derived distribution
in Eq. (3.31) due to conditional conjugacy. For the perturbation variables
⟨𝑥 𝑖

𝑗⟩, candidates are proposed and accepted/rejected in an M-H step by intro-
ducing a symmetric proposal with tuning parameters 𝜌𝑗 . To denote the 𝑙:th
iterate, introduce an additional second subscript, i.e. the 𝑙:th iterate in the
sampling procedure of the 𝑗 :th component is denoted by 𝜃𝑗 ,𝑙. We will imple-
ment a Random Walk Metropolis Hastings (RWMH) algorithm by drawing
candidates according to

⟨𝑥 𝑖
𝑗⟩

∗ = ⟨𝑥 𝑖
𝑗⟩𝑘 + 𝜌𝑍𝑗 , 𝑍𝑗 ∼  (0, 𝐼 ), (6.2)

This yields a symmetric proposal distribution. The sampling routine is sum-
marized in pseudo-code in Algorithm 4.
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Algorithm 4M-H within Gibbs sampler for multidimensional model
draw ⟨𝑥 𝑖

𝑗⟩0 ∼ 𝑁(0, 𝜎𝑗 𝐼 ) for 𝑗 = 1, … , 𝑘
draw 𝜃𝑗 ,0 ∼ 𝜋Θ𝑗 (𝜃) for 𝑗 = 1, … , 𝑘
for 𝑙 = 0, … , 𝐿 − 1 do

for 𝑗 = 1, … , 𝑘 do
draw ⟨𝑥 𝑖

𝑗⟩∗ ∼ 𝑝(⟨𝑥 𝑖
𝑗⟩∗|⟨𝑥 𝑖

𝑗⟩𝑙) ⊳ Draw from proposal distribution
𝑃𝑎𝑐𝑐𝑒𝑝𝑡 ← 𝛼𝑗(⟨𝑥 𝑖

𝑗⟩∗, ⟨𝑥 𝑖
𝑗⟩𝑙) ⊳ Compute acceptance probability

draw 𝑈 ∼ 𝑈(0, 1)
if 𝑈 ≤ 𝑃𝑎𝑐𝑐𝑒𝑝𝑡 then

⟨𝑥 𝑖
𝑗⟩𝑙+1 ← ⟨𝑥 𝑖

𝑗⟩∗ ⊳ Accept candidate with probability 𝑃𝑎𝑐𝑐𝑒𝑝𝑡
else

⟨𝑥 𝑖
𝑗⟩𝑙+1 ← ⟨𝑥 𝑖

𝑗⟩𝑙 ⊳ Otherwise remain in current state
end if
draw 𝜃𝑗 ,𝑙+1 ∼ 𝜋(𝜃𝑗 |⟨y𝑖⟩, ⟨𝑥 𝑖

𝑗⟩𝑙+1) ⊳ Sample directly
end for

end for

To derive explicit acceptance probabilities, wewill introduce some additional
notation. In the 𝑙:th iteration and 𝑗 :th variable block, denote the derived
conditional posterior of ⟨𝑥 𝑖

𝑗⟩ by

𝑓𝑗(⟨𝑥 𝑖
𝑗⟩) ∶= 𝜋(⟨𝑥 𝑖

𝑗⟩|⟨y
𝑖⟩, ⟨𝑥 𝑖

1⟩𝑙+1, … , ⟨𝑥 𝑖
𝑗−1⟩𝑙+1, ⟨𝑥

𝑖
𝑗+1⟩𝑙, … , ⟨𝑥 𝑖

𝑘⟩𝑙, 𝜽𝑙) (6.3)

The model outputs with the proposed candidate and previous candidate, re-
spectively will be denoted by

𝑖,∗
𝑗 ∶= ([𝑥 𝑖

1,𝑙+1, … , 𝑥 𝑖
𝑗−1,𝑙+1, 𝑥

𝑖,∗
𝑗 , 𝑥 𝑖

𝑗+1,𝑙 … , 𝑥 𝑖
𝑘,𝑙]

𝑇 ,d𝑖) (6.4)
𝑖

𝑗 ,𝑙 ∶= ([𝑥 𝑖
1,𝑙+1, … , 𝑥 𝑖

𝑗−1,𝑙+1, 𝑥
𝑖
𝑗 ,𝑙, 𝑥

𝑖
𝑗+1,𝑙 … , 𝑥 𝑖

𝑘,𝑙]
𝑇 ,d𝑖) (6.5)

With this notation in place and using the symmetry of the proposal, we ex-
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pand the acceptance probability to obtain

𝛼𝑗(⟨𝑥 𝑖
𝑗⟩

∗, ⟨𝑥 𝑖
𝑗⟩𝑙) ∶=1 ∧

𝑓𝑗(⟨𝑥 𝑖
𝑗⟩)𝑝(⟨𝑥 𝑖

𝑗⟩𝑙|⟨𝑥 𝑖
𝑗⟩∗)

𝑓𝑗(⟨𝑥⟩𝑖𝑗)𝑝(⟨𝑥 𝑖
𝑗⟩∗|⟨𝑥 𝑖

𝑗⟩𝑙)

=1 ∧
𝑓𝑗(⟨𝑥 𝑖

𝑗⟩∗)
𝑓𝑗(⟨𝑥 𝑖

𝑗⟩𝑙)

=1 ∧
∏𝑁

𝑖=1 𝑓𝜀(y𝑖 −𝑖,∗
𝑗 ; Σ𝜀)𝑓𝑋𝑗 |Θ𝑗 (𝑥

𝑖,∗
𝑗 |𝜃𝑗 ,𝑙)

∏𝑁
𝑖=1 𝑓𝜀(y𝑖 −𝑖

𝑗 ,𝑙; Σ𝜀)𝑓𝑋𝑗 |Θ𝑗 (𝑥 𝑖
𝑗 ,𝑙|𝜃𝑗 ,𝑙)

=1 ∧ exp
[
−
1
2(

1
𝜎2
𝜀 (

𝑁

∑
𝑖=1

‖‖y
𝑖 −𝑖,∗

𝑗
‖‖
2 − ‖‖y

𝑖 −𝑖
𝑗 ,𝑙
‖‖
2

)

+
1
𝜃𝑗 ,𝑙 (

𝑁

∑
𝑖=1

‖‖𝑥
𝑖,∗
𝑗
‖‖
2 − ‖‖𝑥

𝑖
𝑗
‖‖
2

))]

(6.6)

An estimate of the posterior expectation of 𝚯 by a Monte Carlo estimate
from 𝐿 draws is given by

𝔼[𝚯] = ∫ 𝜽𝜋(⟨x𝑖⟩, 𝜽|⟨y𝑖⟩)𝑑⟨x𝑖⟩𝑑𝜽 ≈ 𝜽̂𝑁 ∶=
1
𝐿

𝐿

∑
𝑙=1

𝜽𝑙 (6.7)

Conditional Maximization for Modal Approximations

To find (local) maxima of the joint posterior density, we turn to Conditional
Maximization as outlined in Section 4.2. Let 𝐿(⟨x𝑖⟩) denote the unnormalized
form of the conditional posterior distribution of the nuisance variables ⟨x𝑖⟩,
i.e. 𝐿(⟨x𝑖⟩) = 𝜋(⟨x𝑖⟩|𝜽, ⟨y𝑖⟩) and 𝑙(⟨x𝑖⟩) ∶= − log 𝐿(⟨x𝑖⟩)). We use a gradient
descent scheme to update the nuisance variables ⟨x𝑖⟩. For 𝜃𝑗 , we simply up-
date each parameter by its conditional mode given all other variables, as it
is known in closed form. An example algorithm for our target posterior is
outlined in Algorithm 5.

Algorithm 5 Conditional maximization
Initiate ⟨x𝑖⟩0, 𝜽0
for 𝑛 = 0,… do

Update ⟨x𝑖⟩𝑛+1 ← ⟨x𝑖⟩𝑛+1 − 𝜂𝑛∇𝑙(⟨x𝑖⟩𝑛
for 𝑗 = 1, … , 𝑘 do

Update 𝜃𝑗 ,𝑛+1 to the conditional mode given ⟨x𝑖⟩𝑛+1
end for

end for
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6.3.2 Method of Modularization
Finally, we propose a modular Bayesian approach to IUQ for the specific
problem of rocket dispersion as accounted for in Section 4.3. By the con-
struction of this method, we aim tomitigate the extreme computational com-
plexity of sampling from the full posterior, while retaining more informa-
tion compared to doing mere point estimates. The workflow is illustrated in
Fig. 6.4.

Module 1
Forward model (x, 𝐝)

Train (x, 𝐝)

Statistical model
y𝑖 = (x𝑖, 𝐝𝑖) + 𝜺𝑖

Module 2
Conditional poste-
rior 𝜋(⟨x𝑖⟩|𝜽0, ⟨y𝑖⟩)

Data ⟨y𝑖⟩

𝜽0

Estimate ⟨x̂𝑖⟩

Module 3
Marginal posterior 𝜋(𝜽|⟨y𝑖⟩)

Figure 6.4: Workflow for the modular Bayesian approach. Module 1 replaces
the forward model with a neural network. Module 2 approximates the con-
ditional posterior of nuisance variables by a point mass. In Module 3 we
sample from the resulting (approximate) marginal posterior of 𝜽.

The first module consists of the deterministic forward model  that we
replace by a surrogate neural network  . The conditional posterior of ⟨x𝑖⟩
constitutes the second module; we proceed by approximating it with a point
mass at ⟨x̂𝑖⟩, i.e. 𝛿(⟨x𝑖⟩ − ⟨x̂𝑖⟩). Here, we suggest taking a conditional mode
as a point estimate. Specifically, for a fixed 𝜽0,

⟨x̂𝑖⟩ = argmax
⟨x𝑖⟩

𝜋(⟨x𝑖⟩|𝜽0, ⟨y𝑖⟩) (6.8)
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The fixed 𝜽0 is taken as the mean of the prior distribution 𝜋𝚯. Consequently,
by the construction of the prior we can let 𝜃𝑗 ,0 = 𝜎2

𝑗 , where 𝜎𝑗 corresponds
to the currently use dispersion parameters for the 𝑗 :th block as specified in
Table 6.2.

A salient feature of neural networks is gradient preservation. This makes
gradient based optimization algorithms a natural choice and particularly
easy to carry out. We use gradient descent (GD), running the algorithmmul-
tiple times while sampling initial points from the structural priors 𝑓𝑋𝑗 |Θ𝑗 . Gra-
dients are computed via automatic differentiation using PyTorch. We choose
the final point estimate with the smallest negative log loss. This serves as the
"output" from the second module. Once a point estimate ⟨x̂𝑖⟩ has been estab-
lished, we proceed to the third and last module, which is the marginal poste-
rior of 𝜽. We target sampling from Eq. (4.14). Now, the approximate marginal
posterior 𝜋(⟨x̂𝑖⟩|𝜽, ⟨y𝑖⟩)𝜋𝚯(𝜽) is very easy to sample from. As a consequence
of choosing a conditional conjugate and modeling 𝜃𝑗 as independent from
each other, the components can be sampled from their individual posterior
inverse gamma distributions by built-in sampling using e.g. SciPy.



Chapter 7

Numerical Results

In this chapter, we present the numerical results obtained with the models
and methods specified in Chapter 6 when conditioning on data from actual
rocket launches at Esrange. Throughout all experiments, we consider data
sets of size 𝑁𝑙𝑎𝑢𝑛𝑐ℎ = 24 and 𝑁𝑙𝑎𝑢𝑛𝑐ℎ = 22 for VSB-30 and Improved Orion,
respectively.

DISCLAIMER FOR VSB-30 ROCKET SIMULATION MODEL
The torque roll boosters mounted on VSB-30 rockets are unfortunately not
implemented in the simulation model that we base our numerical experi-
ments on. This effectively implies that the simulated rocket will be less
aerodynamically stable and more sensitive to perturbations, and thus ex-
hibit more dispersion, than a more correct model of the actual launch vehicle
would. In the following, we will focus on the smaller rocket Improved Orion
for inferences about absolute numerical results. However, theoretically and
conceptually, the VSB-30 is still an interesting example to study, and rela-
tive results can carry important findings and support conclusions about the
developed method as a whole.

7.1 Minimal Model
We solve the minimal model M.1 introduced in Section 6.2 with the main
objective of validating the developed method; the resulting estimates are not
of primary interest as the model is expected to yield overly conservative
results in terms of the posterior of 𝜃. We sample by means of Algorithm 4.
The tuning parameters 𝜌𝑗 in the M-H random walk proposals are chosen to
have average acceptance rates in the range 20 − 40%.

64
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7.1.1 Convergence Diagnostics
We rely on Gelman Rubin diagnostics to monitor convergence and assure
that simulated Markov chains behave as expected. In this section, we restrict
ourselves to only consider the rocket type Improved Orion. Four parallel
chains of length 104 are simulated to asses mixing and stationarity. Result-
ing trajectories of 𝜃 and the north component of wind perturbations for the
𝑖:th launch denoted by 𝑛̃𝑖 for two of the chains are presented in Fig. 7.1. The
wind perturbations ⟨𝑤̃𝑖⟩ are initialized by draws from centered Gaussian dis-
tributions with twice the variance as the structural prior distributions over
⟨𝑤̃𝑖⟩, i.e. we sample ⟨𝑤̃𝑖⟩0 from (0, 2𝜎2

𝑤𝑖𝑛𝑑). The wind variance parameter 𝜃
is initialized by draws from its corresponding prior; specifically we sample 𝜃0
from 𝐼𝐺(𝛼, 𝛽). Visually inspecting the trace plots in Fig. 7.1, we see no signs
of anomaly. The dispersively initialized chains seem to have mixed well after
a few hundreds of iterations and reached the same stationary distribution,
implying convergence.
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Figure 7.1: Trace plots of two parallel Markov chains. Left: Wind variance
parameter, 𝜃. Right: North component of wind perturbation, 𝑛̃1.

To compute the scale reduction factor 𝑅̂, each chain is split in half as sug-
gested in [23], resulting in a total of 8 á 5000 samples. The between and
within sequence variances 𝐵 and 𝑊 are estimated every 100 iteration. We
plot the evolution of 𝑅̂ and the sample mean of 𝜃 for increasing number of
iterations in Fig. 7.2. We see that the scale reduction factor drops quickly
beneath the proposed convergence limit 1.1, implying satisfactory mixing.
The posterior mean converges as the number of samples increase and stay
virtually constant after approximately 8000 draws.
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Figure 7.2: Convergence checks. Left: Scale reduction factor 𝑅̂ for 𝜃 se-
quences. Right: Convergence of posterior mean 𝜇𝜃.

The autocorrelation functions associated with 𝜃 and 𝑛̃1 chains are presented
in Fig. 7.3. For both samples, the autocorrelation has dropped to be practi-
cally zero by 30 lags. In this context, it is assessed as an acceptable level of
mixing speed not impairing the sample quality.
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Figure 7.3: Sample Auto Correlation Function. Left: 𝜃. Right: 𝑛̃1.

7.1.2 Resulting Posteriors
Finally, we present posterior results produced by the conservative model.
The one stage rocket Improved Orion is at the focal point for most presented
results, however, to ensure robustness of the sampler identical simulations
are run for the VSB-30 rocket type. Posterior statistical summaries for are
presented in Table 7.1.

As a general rule, we disregard the initial 10% of all simulated chains as
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warm-up period. With 4 chains, the total number of draws is 36000. In
Fig. 7.4, we present marginal posterior samples for our ultimate QoI, the
wind variance parameter 𝜃 and hyperparameters as specified in Section 6.1.
Learning from data has narrowed the prior distribution, implying a decrease
in uncertainty in our QoI 𝜃, but also shifted more probability mass towards
smaller values.
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Figure 7.4: Posterior marginal samples of wind perturbation variance 𝜃.

Recalling the discussion on hyperparameters in Section 6.1, for instructive
reasons we illustrate the effect on the posterior by presenting results for two
additional choices of the prior shape parameter 𝛼. Indeed, a larger 𝛼 yields
more conservative results in the sense that the posterior distribution does
not alter from the prior in shape or location to the same extent as for smaller
𝛼.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Prior
Posterior sample

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

1

2

3

4

5

Prior
Posterior sample

Figure 7.5: Posterior marginal samples for different values of prior hyperpa-
rameter 𝛼. Left: 𝛼 = 5. Right: 𝛼 = 100.

Statistical summaries, i.e. sample mean 𝜃̄ and standard deviation SD, of the
marginal posterior of 𝜃 are presented in Table 7.1 for a selection of 𝛼-values.
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The final point estimate of the updated wind dispersion parameter, denoted
by 𝜎̂𝑤𝑖𝑛𝑑 , is taken as the posterior mean. We also present the probability that
the posterior 𝜃 is below the current 𝜎2

𝑤𝑖𝑛𝑑 . Recall that the prior mean is equal
to 𝜎2

𝑤𝑖𝑛𝑑 = 1.

For all results studying the Improved Orion, we observe a decrease in the
dispersion parameter, i.e. 𝜎̂𝑤𝑖𝑛𝑑 < 𝜎𝑤𝑖𝑛𝑑 . The probability of being below the
current 𝜎𝑤𝑖𝑛𝑑 ranges from 0.83 to 0.99 for increasing 𝛼, the former corre-
sponding to the most conservative choice of hyperparameters in this experi-
ment. These results are particularly remarkable in light of the fact that we are
ascribing all impact displacement to wind only. In reality, several additional
sources of uncertainty contributes to dispersion, implying that the current
estimate of 𝜎𝑤𝑖𝑛𝑑 is indeed likely to be overshooting the actual uncertainty.

𝛼 𝜃̄ SD 𝜎̂𝑤𝑖𝑛𝑑 =
√
𝜃̄ 𝑃(

√
𝜃 ≤ 𝜎𝑤𝑖𝑛𝑑)

Improved Orion

5 0.619 0.132 0.787 0.990
10 0.680 0.130 0.824 0.981
50 0.866 0.105 0.930 0.892
100 0.922 0.085 0.960 0.828

VSB-30

5 1.13 0.23 1.063 0.308
10 1.10 0.207 1.053 0.314
50 1.05 0.128 1.024 0.368
100 1.03 0.0948 1.015 0.386

Table 7.1: Statistical summaries of posterior distribution of wind variance 𝜃
with minimal modelM.1.

Regarding the results for the VSB-30 rocket in Table 7.1 we see a small in-
crease in the posterior mean. However, in this case we must consider the
disclaimer. We are using a flawed computational model, as it is known not
tu capture the dynamics of the spin-up motors that are acting to reduce the
dispersion. Thus, the absolute numbers for this rocket type are not directly
comparable or necessarily representative due to the modeling discrepancy.
Nevertheless, the output results seem reasonable given the circumstances,
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and do not decrease our confidence in the validity of our approach to uncer-
tainty modeling.

The principal finding from this section is twofold. First and perhaps fore-
most, the converged results validate the formulated framework and imple-
mented methods, implying both mathematical sanity and algorithmic cor-
rectness. Second, the resulting posteriors support the hypothesis that cur-
rently estimated model uncertainties, i.e. 𝜎-values, are overly conservative
and thus not consistent with reality. Ultimately, this fact further justifies the
objectives of this study as a whole. Moving to the next section, we expand
the model to include more sources of uncertainty.

7.2 Multidimensional Model
In this section we go beyond the conservative assumption of attributing all
uncertainty to wind perturbations. We fit the model M.2 considering the
four most prominent factors in impact dispersion selected in Section 6.2.1.
We begin in Section 7.2.1 by attempting to do full Bayesian analysis by sam-
pling from the joint posterior Eq. (3.24). As we will see, the multidimensional
model poses challenges for standard MCMC, with bad mixing severely ham-
pering convergence. In Sections 7.2.2 and 7.2.3, we turn to alternative meth-
ods to characterize the posterior distribution of 𝜽.

7.2.1 Full Bayesian MCMC sampling
By implementing an MCMC algorithm as outlined in Algorithm 4, we aim
to sample from the full posterior in Eq. (3.24). However, the limitations of
such an approach becomes evident and illustrates the typical shortcomings
of standard MCMC simulations. Specifically the nuisance variable chains
⟨x𝑖⟩ suffer from severely bad mixing, illustrated in Fig. 7.6 by a trace plot
showingMarkov Chains that traverse the parameter space extremely slowly.
Judging from the auto-correlation function (ACF), we also have strong corre-
lations between samples, as the autocorrelation decreases very slowly with
the number of lags.
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Figure 7.6: Illustrating convergence issues with simple MCMC sampling.
Left: Autocorrelation function of 𝜃1 showing highly correlated samples.
Right: Bad mixing of nuisance variable 𝑥1.

Even with parallel tempering, details about which can be found in e.g. [37],
the implemented sampler fails to exhibit satisfying convergence within a
feasible number of iterations. Whether this should be mainly attributed to
poor mixing due to correlated samples from the hierarchical model, strong
non-linear interactions within the model inputs, multimodality of the full
posterior, high dimensionality, or fundamentally too complex a problem for
the proposed method remains inconclusive at this point. Most likely, it is a
combination of all of the above. The somewhat disappointing results with
the naive sampling algorithm are not unexpected however. Developing ef-
ficient computational approaches to high dimensional, strongly correlated
advanced Bayesian models in real world applications is an active field of re-
search. Thus, it is considered out of the scope of this project to develop a
tailored, specialized method to resolve the issues encountered above. How-
ever, options to remedy shortcomings of standardMCMC algorithms are def-
initely part of future improvements of the work herein, and further discussed
in Chapter 8. In the subsequent sections, we turn to alternative ways to char-
acterize the posterior distributions of the QoIs that do not involve iterative
sampling of the full joint posterior distribution.

7.2.2 Posterior Modes
Abandoning probabilistic sampling from the full posterior, we summarize the
target distribution by finding modes. The optimization algorithm in Algo-
rithm 5 is run with starting points from different regions in the input space,
sampling initial values from the prior distributions of ⟨x𝑖⟩ and 𝜽. We use a
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constant step size 𝜂 = 5 ⋅ 10−5 and monitor the decrease of the negative log
posterior density function to assure convergence. In Fig. 7.7, we see how
the loss decreases and eventually converges within approximately 3 ⋅ 104 it-
erations. A general comment on the results concerns the accuracy of the
optimization algorithm. Gradient Descent is a first order approach, in the
sense that it only uses information based on the first derivative. Future im-
provements includes employing e.g. higher order approaches to have faster
convergence, such as a Newton-Raphson procedure enjoying quadratic con-
vergence.
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Figure 7.7: Convergence of Conditional Maximization iterations for MAP
estimates.

The found mode with the smallest negative log posterior value serves as an
approximate MAP estimate; in particular we are interested in the variance
parameters 𝜽𝑀𝐴𝑃 . Regardless of the moderately scattered starting points, the
algorithm always converges to the same mode; whether or not it is a global
minimum is not of utmost importance, rather that it is deemed a sufficiently
robust estimate and contained within a relevant region of the input param-
eter space. The resulting estimates are summarized in Table 7.2, showing
good but not complete correspondence between the estimates based on data
from the two different rocket types. A note of caution is due for the VSB-30
because of the model disclaimer, to which this discrepancy could partly be
attributed. However, even with perfect forward models we could not hope
for complete agreement due to the relative scarcity of data. Although the
Bayesian approach counteracts over-fitting to available launch data, a larger
amount of processed experiments will, in principle, always yield results truer
to the underlying system in general. Assuming correctness of the overall
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modeling and acceptable quality of data, the estimates are expected to con-
verge to a common limit as the number of data points, i.e. launches, grows.

Rocket type 𝜽𝑀𝐴𝑃

Improved Orion [0.0009, 0.567, 0.0272, 0.314]
VSB-30 [0.0010, 0.409, 0.0247, 0.287]

Table 7.2: Resulting MAP estimates.

The dispersion parameters associated with 𝜽𝑀𝐴𝑃 , denoted by 𝝈̂ and defined
such that

𝝈̂ ∶= [𝜎̂1, 𝜎̂2, 𝜎̂3, 𝜎̂4]𝑇 , 𝜎̂𝑗 =
√
𝜃𝑗 ,𝑀𝐴𝑃 , (7.1)

are compared to their prior values in Fig. 7.8. We emphasize that all posterior
estimates of 𝜎𝑗 have decreased relative to the priors. The most significant de-
crease is for azimuth misalignment. The more conservative prior modeling
of thrust misalignment uncertainty leads to a less pronounced decrease com-
pared to the others. The largest difference found when comparing the two
rocket types is in posterior wind uncertainty; the reason for which is diffi-
cult to infer at this stage, as the VSB-30 model flaw cannot be ruled out as a
partial explanation.
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Figure 7.8: The posterior 𝜎-values based on approximate MAP estimates,
compared to the prior values. Left: Improved Orion. Right: VSB-30.

In summary, the results in this section indicate validity of the formulated
full probabilistic model, having yielded seemingly reasonable outputs. They
also confirm prior beliefs of overly-conservative dispersion parameters. The
MAP estimates can serve as first point summaries of the posterior distri-
butions and guidelines if SSC were to update the dispersion parameters for
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future purposes. However, exclusively considering point estimates means
stepping away from the pure Bayesian way of inference; one of the major
draw-backs is that we do not obtain a distribution over the posterior param-
eters and thus cannot make any probability statements about them. In the
next section, we aim to remedy the dissatisfaction of having only point sum-
maries of the posterior distribution associated with the multidimensional
model.

7.2.3 Modular Analysis
In here, we present results from taking a modular Bayesian approach as ac-
counted for in Section 6.3.2. With a constant learning rate, convergence dy-
namics of the Gradient Descent algorithm to find an esitimator ⟨x̂𝑖⟩ is assured
in Fig. 7.9. We also plot the model outputs with x̂𝑖, 𝑖 = 1, … , 𝑁𝑙𝑎𝑢𝑛𝑐ℎ.
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Figure 7.9: Solution to module 1: Conditional MAP estimate of ⟨x𝑖⟩. Left:
Forward model outputs (x̂𝑖,d𝑖) and data y𝑖. Right: Convergence of GD
iterations.

Posterior samples of 105 draws for the two studied rocket types are presented
in Fig. 7.10. Learning from data has decreased the variance and shifted the
location towards smaller values in the prior distributions, for all considered
model inputs 𝑗 = 1, 2, 3, 4. The impact of the more cautious prior modeling
of thrust misalignment uncertainty is clearly illustrated by a smaller shift in
associated marginal posterior, compared to parameters modeled with a less
distinguished peak around the prior 𝜎-values. The latter exhibits a more pro-
nounced effect of conditioning on observed launches, as the location of the
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posterior distributions have translated further away from the priors. These
qualitative trends apply to both rocket types; again we see some expected
quantitative differences.
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Figure 7.10: Marginal posterior samples of 𝜽 with modular approach. All
distributions have shifted toward smaller values of 𝜃𝑗 . Top: Improved Orion.
Bottom: VSB-30.
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With the modular approach, we have gained more information of the pos-
terior QoIs. In addition to point estimates, probability statements about the
updated 𝜎-values are readily available. A brief statistical summary of the
resulting distributions is provided in Table 7.3, where the marginal posterior
mean and probability that 𝜃𝑗 is below the current 𝜎2

𝑗 are itemized for all 𝑗 .
The latter quantifies the degree of confidence with which we could decrease
the currently used dispersion parameters after conditioning on launch data.
The only posterior parameter for which a decrease is not implied with almost
100 % certainty is thrust misalignment based on VSB-30 launches. However,
bare inmind that this parameter is highly correlated with the effect of having
spin-up motors, and we again refer to the aforementioned simulation model
disclaimer to explain this particular deviant result.

Rocket type 𝜽̄ ℙ(𝜃𝑗 ≤ 𝜎2
𝑗 )

Improved Orion [0.0009, 0.60, 0.035, 0.36] [0.98, 0.99, 1.0, 1.0]

VSB-30 [0.0011, 0.43, 0.028, 0.33] [0.67, 1.0, 1.0, 1.0]

Table 7.3: Resulting posterior summaries with modular approach.

As previously, we take the square root of the posteriormeans as point estima-
tors, 𝝈̂, of the dispersion parameters. Resulting 𝝈̂ are presented in Fig. 7.11
and contrasted to their prior values. We observe a decrease in the posterior
𝜎𝑗 for all model inputs, for both rocket types. Compared to the previous re-
sults based on MAP estimates, we observe minor discrepancies. The overall
trend is that MAP estimates result in somewhat smaller posterior estimates.
A probable explanation as to why is that we have imposed priors on 𝜽 with
modes slightly shifted toward smaller values compared to theirmeans. Given
that we would only aim to do modal estimates, we might reconsider the way
of choosing hyperparameters for the priors on 𝜃. For example, one could
choose the prior mode as the current 𝜎-values instead of the expected value
as done here. In all, the small differences between modal estimates and the
modular approach are encouraging; the consistency supports the validity of
the modularization.
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Figure 7.11: Resulting 𝝈̂ with modular approach. Left: Improved Orion.
Right: VSB-30.

7.3 Posterior Rocket Dispersion Estimates
Once the uncertainty in model inputs has been quantified, i.e. the individual
𝜎-values, we can propagate them forward through the simulation model to
obtain an estimate of the output uncertainty, here the theoretical dispersion
area. In this section, we present and compare the resulting dispersion areas
using the estimated posterior 𝜎-values from three different procedures. First,
via MCMC sampling from the minimal model M.1 via Algorithm 4. For the
multidimensional model M.2, we compare the methods of MAP estimation
in Section 6.3.1 and a modularization as in Section 6.3.2.

The theoretical dispersion is computed by an RSS procedure as outlined in
Section 2.3.2. First, we determine benchmark dispersion areas, in terms of
the total 𝜎 radii, with the currently used dispersion parameters. The launch
configurations and results are presented in Table 7.4. Note that these are
not consistent with the established theoretical dispersion areas for the two
considered rockets at SSC. Small differences are foreseen, as the dispersion
depends on the launch settings for the simulations. In addition, a larger
difference is expected for the VSB-30, as the simulation model used here is
incomplete. In this context, however, the absolute values are not of imme-
diate interest, rather the relative differences when altering the underlying
dispersion parameters.
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Rocket type Payload mass Launch settings Total 𝜎

Improved Orion 100 kg 𝛾 = 82.5◦, 𝛿 = 0◦ 5.86 km
VSB-30 396.3 kg 𝛾 = 87.7◦, 𝛿 = 0◦ 22.1 km

Table 7.4: Launch configuration for benchmark dispersion estimates.

Based on the hyperparameters in Table 6.2, the resulting posterior dispersion
parameters are estimated and used to compute the total 𝜎-radius defining the
dispersion area for Improved Orion and VSB-30, illustrated in Fig. 7.12. The
resulting radii are itemized in Table 7.5
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Figure 7.12: Resulting RSS dispersion estimates. Left: Improved Orion.
Right: VSB-30.

Posterior total 𝜎 in [km]
Rocket type Minimal MAP Modular

Improved Orion 5.36 4.65 4.76
VSB-30 22.39 17.66 17.94

Table 7.5: Resulting total 𝜎 after updating individual 𝜎-values.

We relate the computed dispersion areas to the benchmark in Table 7.6. A
decrease in 𝜎 is observed in all cases based on Improved Orion data, even for
the case of the ignorant modeling choice inM.1 of assuming that only wind
causes dispersion, denoted byMinimal in the table. The only estimate with
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a new dispersion area larger than the benchmark is for the mininimal model
based on VSB-30 data, although the increase is only with 2%. These results
should also be viewed in the light of having a faulty rocket model and that we
have increased the noise in the statistical model. Using the MAP estimates
yields the largest decrease in dispersion with 21.6% and 19.8% for Improved
Orion and VSB-30 data, respectively. This is a direct consequence of the fact
that the MAPs resulted in the smallest estimated dispersion parameters as
discussed in Section 7.2.3.

Percentage of prior total 𝜎
Rocket type Minimal MAP Modular

Improved Orion 91.5 % 79.4 % 81.2 %
VSB-30 102 % 80.2 % 81.5%

Table 7.6: Resulting relative changes in dispersion after updating individual
𝜎-values.

As a concluding remark, we can also relate the results in Table 7.5 to the
empirical dispersion associated with the considered data points. These are
∼ 15 km and ∼ 3.2 km for VSB-30 and Improved Orion, respectively. Note
that the latter is smaller thanwhatwas presented in Table 2.4. This is because
the earliest launches of the Improved Orion were not deemed relevant data
points for this study, and thus not used in fitting the model. All posterior
estimated areas are larger than the empirical one; we interpret this as a sign
of not having over-fitted the parameters to data.

7.3.1 Sensitivity to Hyperparameters
In all the above presented results, we used a fixed set of hyperparameters
chosen based on lower bounds on probable values for the dispersion param-
eters 𝜎𝑗 . In this final section we perform a short sensitivity study to the
shape hyperparameter 𝛼. Specifically, we conduct experiments scaling the
𝛼𝑗s with up to ±50% of its original value and compute the resulting relative
change in 𝜎𝑗 using the modular approach as in Section 7.2.3. From Fig. 7.13,
a first observation is that the dependence on 𝛼 is non-linear. Furthermore,
we infer that the launch setting uncertainties exhibit a larger sensitivity to
its associated prior shape parameter, azimuth angle showing the most pro-
nounced relative change in resulting 𝜎̂𝑗 . The explanation for this is likely to
be that both elevation and azimuth priors are modeled more aggressively, in
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the sense that their absolute 𝛼 is smaller compared to the other considered
perturbation variables.
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Figure 7.13: Dispersion parameter estimates sensitivity to the choice of prior
shape parameter 𝛼.



Chapter 8

Conclusions and Outlook

8.1 Conclusions
A statistical method to quantify uncertainty in sounding rocket simulation
models based on acquired launch data has been developed. One of the most
significant findings to emerge from this study is the reformulation of the
problem into the framework of Bayesian analysis. To simultaneously deal
with epistemic and aleatory uncertainty in the computational model, we
have proposed a hierarchical Bayesian approach. It is a versatile and robust
way of addressing target model uncertainties on multiple levels, naturally
letting practitioners induce regularizing structure to the inverse problem by
incorporating prior knowledge about the considered system. We demon-
strated the method and presented numerical results based on the operations
at SSC; the method however can be readily adapted and specifically tailored
to other rocket configurations and launch sites. In addition, we have shown
how the use of surrogate models, specifically deep neural networks, in in-
verse uncertainty quantification circumvents issues with computationally
prohibitive simulation codes and facilitates gradient based optimization al-
gorithms. We successfully employed Markov Chain Monte Carlo techniques
to sample from the derived posterior distributions associated with a low-
dimensional model that attributed all rocket impact point dispersion to a
single source of uncertainty. The resulting estimates supported the belief
that the currently used dispersion parameters are overly conservative, and
served as a first method validation. In the expansion to a more realistic mul-
tidimensional model we found the simple MCMC sampler to be inadequate
and turned to alternative approaches. In addition to maximum a posteriori
estimations, this study also shed light on modular Bayesian approaches and

80
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how such can be utilized in cases were full Bayesian analysis is infeasible.
The numerical study implied an up to a 20% possible decrease in impact point
dispersion, after updating the dispersion parameters according to the results
using the developed method. After conditioning on data, the resulting poste-
rior distributions over dispersion parameters imply that decreasing current
values is supported by observations, for all considered input variables.

8.2 Future Work
The process of constructing a mathematical model should always be iter-
ative. Identifying and resolving model inadequacies is therefore a natural
topic for future improvements. A particularly relevant matter is that of ob-
served non-mixing in MCMC-sampling of the multidimensional probabilis-
tic model in Section 7.2.1. The limitations of standard MCMC-sampling in
high dimensions with correlated variables were discussed in Section 4.1.4,
but we should not rule out that the poor performance could also partly be
due to some model inadequacy. Although the proposed modular approach
seemingly resolves this issue, this hypothesis deserves further investigation,
parallel to researching more advanced techniques for posterior distribution
exploration. To facilitate full Bayesian analysis, which should be consid-
ered the ultimate goal, it is of great interest to implement e.g. a Hamiltonian
Monte Carlo scheme to perform probabilistic sampling. This could hopefully
also allow for even more complex problem formulations, e.g. increasing di-
mension to include all dispersion factors. On a related note, the incomplete
model for the VSB-30 rocket sparks the discussion of having a more elabo-
rate representation of model discrepancy, as accounted for in Section 3.3.2.
Amore thorough investigation on this topic is of interest for future purposes.

Further improvements also include examining alternative choices of prior
distributions, e.g. the effect of choosing non-informative priors, other para-
metric families of distributions or even a probabilistic treatment of hyperpa-
rameters. Another future topic of research concerns improving performance
of surrogates, as well as alternative approaches to meta modeling. The rel-
ative scarcity of data does not violate the validity of the presented method,
however it can limit the robustness of numerical results. It is therefor de-
sirable to incorporate more data in the pipeline as it becomes available, as
well as corroborate results for different rocket types to rule out strong de-
pendencies on the data the model is fit to. Finally, we hope that this study
can incite continued research within the formulated Bayesian framework, to
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enable reliable and efficient sounding rocket dispersion analysis by abandon-
ing ad-hoc uncertainty estimation in favor of a data driven approach. In the
bigger picture, this work adds to the list of fruitful use of multilevel Bayesian
inference for uncertainty quantification in engineering applications.



Bibliography

[1] Timothy John Sullivan. Introduction to uncertainty quantification. Vol. 63.
Springer, 2015.

[2] Dave Higdon et al. “A Bayesian approach for parameter estimation
and prediction using a computationally intensive model”. In: Journal
of Physics G: Nuclear and Particle Physics 42.3 (2015), p. 034009.

[3] Rijan Shrestha and Tomasz Kozlowski. “Inverse uncertainty quantifi-
cation of input model parameters for thermal-hydraulics simulations
using expectation–maximization under Bayesian framework”. In: Jour-
nal of Applied Statistics 43.6 (2016), pp. 1011–1026.

[4] AlbertoMalinverno andVictoria ABriggs. “Expanded uncertainty quan-
tification in inverse problems: Hierarchical Bayes and empirical Bayes”.
In: Geophysics 69.4 (2004), pp. 1005–1016.

[5] Andrew Gelman and Donald B Rubin. “Inference from iterative simu-
lation using multiple sequences”. In: Statistical science (1992), pp. 457–
472.

[6] James L Beck, Lambros S Katafygiotis, et al. “Updating models and
their uncertainties. I: Bayesian statistical framework”. In: Journal of
Engineering Mechanics-Proceedings of the ASCE 124.4 (1998), pp. 455–
462.

[7] Tomasz Noga and Rachita Puri. “Microgravity, atmosphere sounding,
astronomy, technology validation-an overview of suborbital rockets’
missions and payloads”. In: International Journal of Space Science and
Engineering 6.2 (2020), pp. 179–208.

[8] Günther Seibert and Bruce T Battrick. The history of sounding rock-
ets and their contribution to European space research. ESA Publications
division Noordwijk, 2006.

83



84 BIBLIOGRAPHY

[9] Alexandre Garcia et al. “VSB-30 sounding rocket: history of flight per-
formance”. In: Journal of Aerospace Technology andManagement 3 (2011),
pp. 325–330.

[10] Paul D Wilde. “Range safety requirements and methods for sound-
ing rocket launches”. In: Journal of space safety engineering 5.1 (2018),
pp. 14–21.

[11] Robert L James and Ronald J Harris. Calculation ofWind Compensation
for Launching of Unguided Rockets. National Aeronautics and Space
Administration, 1961.

[12] Commercial Space Transportation. Supplemental Application Guidance
for Unguided Suborbital Launch Vehicles (USLVs). Tech. rep. Tech. rep.
Federal AviationAdministration (FAA), 2007. url: https://www . . ., 2007.

[13] Esrange SafetyManual, SCIENCE-60-4208. SSC, url: https://sscspace.com/wp-
content/uploads/Esrange-Safety-Manual.pdf. 2020.

[14] Tomasz Noga,MaciejMichałów, andGrzegorz Ptasiński. “Comparison
of dispersion calculation methods for sounding rockets”. In: Journal of
Space Safety Engineering 8.4 (2021), pp. 288–296.

[15] Alan Julian Izenman. “Modern multivariate statistical techniques”. In:
Regression, classification and manifold learning 10 (2008), pp. 978–.

[16] RonaldA Fisher. “On themathematical foundations of theoretical statis-
tics”. In: Philosophical transactions of the Royal Society of London. Series
A, containing papers of a mathematical or physical character 222.594-
604 (1922), pp. 309–368.

[17] F. Pedregosa et al. “Scikit-learn:Machine Learning in Python”. In: Jour-
nal of Machine Learning Research 12 (2011), pp. 2825–2830.

[18] MMSiddiqui. “Statistical inference for Rayleigh distributions”. In: Jour-
nal of Research of the National Bureau of Standards, Sec. D 68.9 (1964),
p. 1007.

[19] Pauli Virtanen et al. “SciPy 1.0: fundamental algorithms for scientific
computing in Python”. In: Nature methods 17.3 (2020), pp. 261–272.

[20] Xu Wu et al. “Inverse uncertainty quantification using the modular
Bayesian approach based on Gaussian process, Part 1: Theory”. In:
Nuclear Engineering and Design 335 (2018), pp. 339–355.

[21] Andrei Nikolaevich Tikhonov et al. Numerical methods for the solu-
tion of ill-posed problems. Vol. 328. Springer Science & Business Media,
1995.



BIBLIOGRAPHY 85

[22] Armen Der Kiureghian and Ove Ditlevsen. “Aleatory or epistemic?
Does it matter?” In: Structural safety 31.2 (2009), pp. 105–112.

[23] AndrewGelman et al. Bayesian data analysis. Chapman andHall/CRC,
1995.

[24] WKeithHastings. “Monte Carlo samplingmethods usingMarkov chains
and their applications”. In: (1970).

[25] Adrian FM Smith and Gareth O Roberts. “Bayesian computation via
the Gibbs sampler and related Markov chain Monte Carlo methods”.
In: Journal of the Royal Statistical Society: Series B (Methodological) 55.1
(1993), pp. 3–23.

[26] Dani Gamerman and Hedibert F Lopes. Markov chain Monte Carlo:
stochastic simulation for Bayesian inference. CRC press, 2006.

[27] Masoumeh Dashti and Andrew M Stuart. “The Bayesian approach to
inverse problems”. In:Handbook of uncertainty quantification. Springer,
2017, pp. 311–428.

[28] Sai Hung Cheung and James L Beck. “Bayesian model updating using
hybrid Monte Carlo simulation with application to structural dynamic
models with many uncertain parameters”. In: Journal of engineering
mechanics 135.4 (2009), pp. 243–255.

[29] Joseph B Nagel. “Bayesian techniques for inverse uncertainty quan-
tification”. In: IBK Bericht 504 (2019).

[30] Jingbo Wang and Nicholas Zabaras. “A Bayesian inference approach
to the inverse heat conduction problem”. In: International journal of
heat and mass transfer 47.17-18 (2004), pp. 3927–3941.

[31] James L Beck. “Bayesian system identification based on probability
logic”. In: Structural Control andHealthMonitoring 17.7 (2010), pp. 825–
847.

[32] Andrew Gelman. “Prior distributions for variance parameters in hi-
erarchical models (comment on article by Browne and Draper)”. In:
Bayesian analysis 1.3 (2006), pp. 515–534.

[33] Christian P Robert andGeorge Casella.Monte Carlo statistical methods.
Vol. 2. Springer, 2004.

[34] Sean P Meyn and Richard L Tweedie. Markov chains and stochastic
stability. Springer Science & Business Media, 2012.



86 BIBLIOGRAPHY

[35] Richard A Levine and George Casella. “Optimizing random scan Gibbs
samplers”. In: Journal of Multivariate Analysis 97.10 (2006), pp. 2071–
2100.

[36] RadfordMNeal et al. “MCMCusingHamiltonian dynamics”. In:Hand-
book of markov chain monte carlo 2.11 (2011), p. 2.

[37] Malcolm Sambridge. “A parallel tempering algorithm for probabilistic
sampling and multimodal optimization”. In: Geophysical Journal Inter-
national 196.1 (2014), pp. 357–374.

[38] Sebastian Ruder. “An overview of gradient descent optimization algo-
rithms”. In: arXiv preprint arXiv:1609.04747 (2016).

[39] MJ Bayarri, JO Berger, and F Liu. “Modularization in Bayesian analy-
sis, with emphasis on analysis of computer models”. In: Bayesian Anal-
ysis 4.1 (2009), pp. 119–150.

[40] Youssef M Marzouk and Habib N Najm. “Dimensionality reduction
and polynomial chaos acceleration of Bayesian inference in inverse
problems”. In: Journal of Computational Physics 228.6 (2009), pp. 1862–
1902.

[41] Tristan Hauser, Andrew Keats, and Lev Tarasov. “Artificial neural net-
work assisted Bayesian calibration of climate models”. In: Climate dy-
namics 39.1 (2012), pp. 137–154.

[42] C Balaji and Tamanna Padhi. “A new ANN driven MCMC method for
multi-parameter estimation in two-dimensional conduction with heat
generation”. In: International journal of heat andmass transfer 53.23-24
(2010), pp. 5440–5455.

[43] GovindaAnantha Padmanabha andNicholas Zabaras. “Solving inverse
problems using conditional invertible neural networks”. In: Journal of
Computational Physics 433 (2021), p. 110194.

[44] Kailai Xu and Eric Darve. “The neural network approach to inverse
problems in differential equations”. In: arXiv preprint arXiv:1901.07758
(2019).

[45] Kurt Hornik. “Approximation capabilities of multilayer feedforward
networks”. In: Neural networks 4.2 (1991), pp. 251–257.

[46] Yoshua Bengio, Ian Goodfellow, and Aaron Courville. Deep learning.
Vol. 1. MIT press Cambridge, MA, USA, 2017.



BIBLIOGRAPHY 87

[47] Kaiming He et al. “Deep residual learning for image recognition”. In:
Proceedings of the IEEE conference on computer vision and pattern recog-
nition. 2016, pp. 770–778.

[48] David E Rumelhart, Geoffrey EHinton, and Ronald JWilliams. “Learn-
ing representations by back-propagating errors”. In: nature 323.6088
(1986), pp. 533–536.

[49] Adam Paszke et al. “Pytorch: An imperative style, high-performance
deep learning library”. In: Advances in neural information processing
systems 32 (2019).



Appendix A

Supporting Material

A.1 Example Wind Profile

The ballistic wind computed in Eq. (2.2) is based on the wind profile in Ap-
pendix A.1. The north wind 𝑤𝑛 and 𝑤𝑒 components for an altitude ℎ are
calculated as the average speed between the positions of two neighboring
altitude layers. A positive component implies that the wind is heading to
the north or to the east, respectively.

h [m] 𝑤𝑛 [m/s] 𝑤𝑒 [m/s] h [m] 𝑤𝑛 [m/s] 𝑤𝑒 [m/s] h [m] 𝑤𝑛 [m/s] 𝑤𝑒 [m/s]
17.50 0.00 -0.20 2502.00 1.80 4.70 12001.31 -0.84 6.94
35.00 2.70 -0.80 3000.00 1.70 6.20 13001.56 -0.47 6.14
55.00 1.40 -1.40 3503.95 0.57 6.17 14001.69 -0.64 6.51
75.00 1.10 -0.80 4000.02 -1.96 4.77 15001.55 0.75 5.52
92.50 2.10 -2.60 5081.10 -4.87 5.29 16000.69 0.04 3.29
105.00 1.70 -1.60 5500.49 -7.28 4.01 17002.47 -0.35 4.04
141.00 1.00 -1.50 6000.23 -5.94 1.38 18001.75 4.38 4.48
301.00 1.00 2.20 6500.56 -2.17 2.52 19000.23 1.51 5.28
452.00 4.20 9.60 7003.43 -4.39 8.03 20000.10 1.29 8.05
600.00 3.80 8.80 7500.13 -5.87 6.34 21001.39 5.33 5.36
750.00 2.60 7.80 8001.31 -5.34 9.03 22000.30 -0.39 7.95
900.00 2.90 7.90 8500.72 -6.54 9.66 23002.13 -1.47 3.78
1201.00 1.20 5.90 9001.48 -6.56 11.27 24000.10 7.98 4.04
1500.00 -1.70 5.40 10000.18 -4.46 8.31 25002.60 3.80 13.13
2001.00 -1.40 3.80 11000.33 -4.65 8.36 28138.00 3.00 11.20
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