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Abstract

A supernova explosion of a massive star at the end of its life leaves behind a compact
object, either a black hole or a neutron star. We study a particular aspect of neutron stars
in this project. A neutron star is a fast spinning, extremely dense object with a strong
magnetic field. Neutron stars can emit light beams from their magnetic poles. For an
observer on Earth these beams appear as pulses of light since the neutron stars rotation
axis is not aligned with the magnetic axis. These pulses of light are practically the only
way to gather information about neutron stars which are otherwise difficult to observe.
We study the binary system Centaurus X−3 (Cen X−3) with an accretion powered x-ray
emitting pulsar. We use a model of a neutron star showing how the pulses of radiation
appear from Earth, based on a set of chosen parameter values. These parameters gather
information regarding the geometry of the neutron star, its mass and radius, as well as
some properties related to the way the radiation is emitted. We use a particle swarm
optimization method to fit the observed light pulse of the Cen X−3 system. Our resulting
fits do not converge to a single solution, rather it shows that there are many possible
configurations reproducing the observed light pulses. This shows that while our model
can be used to simulate the behavior of neutron stars it requires further development if
one wishes to obtain reliable estimates for the neutron stars paremeters.
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Sammanfattning

En supernovaexplosion av en massiv stjärna i slutet av dess liv lämnar efter sig ett
kompakt objekt, antingen ett svart hål eller en neutronstjärna. Vi studerar en viss aspekt
av neutronstjärnor i detta projekt. En neutronstjärna är ett snabbt roterande objekt med
extremt hög densitet och starkt magnetiskt fält. Neutronstjärnor kan avge strålning från
sina magnetiska poler. Som följd av att den magnetiska axeln och rotations axeln inte är i
linje med varandra framstår strålningen för en observatör på jorden som korta ljuspulser.
Dessa ljuspulser är närapå det enda sättet att samla information om neutronstjärnor
som annars är svåra att observera. Vi använder en modell av en neutronstjärna som
visar hur strålningspulserna framstår från jorden baserat på ett set av valda parameter
värden. Dessa parametrar innehåller information om neutronstjärnans geometri, dess
massa och radie, samt några egenskaper relaterade till hur strålningen emitteras. Vi
använder också en partikelsvärm optimering för att passa den simulerade pulsen till den
observerade pulsen från Cen X−3. Våra resulterande passningar konvergerar inte till
en specifik lösning, utan visar snarare att det finns många möjliga konfigurationer som
reproducerar de observerade ljuspulserna. Detta visar att medan vår modell kan användas
för att simulera beteendet hos neutronstjärnor så krävs det ytterligare utveckling av
modellen för tillförlitliga parameteruppskattningar.
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Chapter 1

Introduction and astrophysical
background

The aim of this project is to investigate how different properties of a neutron star affect
its light emissions and to determine possible configurations of these properties for the
Centaurus X−3 neutron star pulsar. In order to do this, we modified a toy model of a
pulsar written in python and developed by I. Saathoff which for a given set of parameter
values simulates the emitted radiation. A particle swarm optimization method is em-
ployed to fit the simulated radiation to observed radiation. In Chapter 1 we provide an
introduction to neutron star pulsars, especially how they form, and provide the relevant
astrophysical context necessary to understand this thesis. In Chapter 2 we describe how
the emissions are modeled and introduce the optimization methods. In Chapter 3 we
present the resulting fits for different study cases and discuss them in regard of the lim-
itations of our model. In Chapter 4 we provide our conclusions and discuss suggestions
toward the improvement of our method as well as further research in this field.

1.1 How a neutron star is formed
Neutron stars make up one of a few possible endpoints in a star’s lifecycle. We here
provide a brief description of the evolution of a star leading up to a neutron star. Star
formation starts when a gas cloud with a mass exceeding the Jeans mass [1] collapses
under its own gravity and accretes mass from its surroundings, forming proto-stars. Due
to turbulent flows within the gas cloud, the newly formed stars will typically have an
initial rotation speed around their rotation axis. The conservation of angular momentum
causes this rotation to persist throughout the entire lifecycle of the stars [2]. The tur-
bulent flows in the gas cloud cause movement of charged particles which in combination
with the magnetic fields already belonging to the cloud gives stars their magnetic fields
[3]. The formation of a main-sequence star means that the newly formed proto-star has
become dense enough to create the necessary conditions for hydrogen fusion to start in-
side its core. A star remains in the main-sequence as long as it has sufficient hydrogen
to fuse in its core. The duration of this period is inversely proportional to the mass of
the star raised to the power 2.5, which means that higher mass stars have significantly
reduced lifespans [4, 5]. Stars of mass larger than 0.4M⊙ see their core beginning to
collapse by the end of the main-sequence phase since no fusion is balancing their own
gravity; however as it shrinks the pressure builds up. Simultaneously hydrogen in a layer
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Progenitor star mass (M⊙) Progenitor star metallicity Compact Object
9-10 any Neutron star
10-25 any Neutron star
25-40 lower than or solar Black hole after fallback
25-40 higher than solar Neutron star
≥ 40 lower than solar Black hole
≥ 40 solar Black hole after fallback
≥ 40 higher than solar Neutron star

Table 1.1: Compact object (neutron star or black hole) left after a supernova explosion
depending on the progenitor star’s mass and metallicity. Black hole after fallback refers
to the edge case scenario where the compact object initially is a neutron star but it pulls
in material that was ejected during the supernova turning it into a black hole. The table
was made using data from [7]

.

just outside the core of the star begins to fuse, causing the star to swell and the core to
further contract. When the pressure is high enough in the core, helium fusion starts in
the core. The star now enters a giant or supergiant phase. The next phases of evolution
depend on the mass of the star [6].

Intermediate mass stars (0.4M⊙ ≲ M ≲ 8M⊙): Right before the end of the final
giant phase these stars form an inert core of carbon thus fusion of H and He only occurs
in the shells. Strong stellar winds disgorge the outer layers,: while the core collapses
into a degenerate matter star called a white dwarf. This process is known as a planetary
nebula [6]. Degenerate matter can only support a star of mass up to the Chandrasekhar
limit of ∼1.4M⊙ [2].

Massive stars (M ≳ 8M⊙) : Massive stars possess the capacity to generate sufficient
pressure and temperature to initiate fusion within a carbon core, which remains dormant
in smaller stars. This creates an inner core of neon which in turn fuses its innermost
parts into oxygen and so on and so forth until iron fusion. The result of the repeated
fusion is a core consisting of concentric layers of increasingly heavier elements as seen in
Figure 1.1. As fusion of iron is an endothermic process fusion drops when iron is formed.
With no further fusion pressure to support the mass of the star, the core collapses and
turns into degenerate matter, forming a neutron star or black hole while the outer layers
are vehemently expelled into the interstellar medium. This sequence of events is called
a supernova explosion [2]. Several factors determine if the end product is a neutron star
or a black hole: the main two are the progenitor mass and its metallicity. A high mass
increases the probability of forming a black hole, while a high metallicity favors neutron
star formation, see Table 1.1 for details.
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Figure 1.1: Schematic picture of the core of a massive star right before a supernova
explosion. Scales are only approximately true and may vary between stars. ©University
of Alberta

.

1.2 Properties of neutron stars

1.2.1 Neutron star structure

A neutron star is typically divided into five concentric regions of increasing density from
the exterior to the interior: atmosphere, outer crust, inner crust, outer core, and inner
core (see Figure 1.2).

Atmosphere/surface layers: The surface layers are defined as the layers of density
lower than ∼ 109 kg m−3 and consist of tightly packed atomic polymers of iron. This
matter has a uni-dimensional behavior with high conductivity parallel to the magnetic
field but virtually zero in all perpendicular directions.

Outer crust: The outer crust has a density ranging from ∼109 kg m−3 to
∼4.3×1014 kg m−3. It is composed of heavy nuclei (typically iron) that due to Coulomb
forces between protons within the nuclei form a regular repeating pattern, that is to say,
a Coulomb lattice. This lattice structure lies within a gas of electrons moving at rela-
tivistic speeds. Due to the high gravitational pressure in the outer crust these electrons
are packed so densely that they enter a degenerate state.

Inner crust: The density of the inner crust is approximately within the range
4.3 × 1014 kg m−3 ≲ ρ ≲ 2 × 1017 kg m−3. Like the outer crust this area is filled with a
lattice of nuclei in a degenerate electron gas. However, due to neutronization, a process
turning a proton and an electron into a neutron, these nuclei are very rich in neutrons.
The inner crust also contains free degenerate neutrons. In the innermost parts nuclei
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start to break apart thus releasing the neutrons and creating a degenerate neutron gas,
usually called neutron fluid.

Outer core: The outer core of a neutron star is almost entirely made of this neutron
fluid with a small amount of protons and electrons. The density of the outer core is
larger than ∼2×1017 kg m−3. Since neutrons are fermions they obey the Pauli exclusion
principle, that is to say, two neutrons cannot occupy the same quantum state simulta-
neously. When the neutrons become densely packed many neutrons are forced to enter
higher energy states. The higher energy states then create a pressure that is balancing
gravity to keep the neutron star from collapsing onto itself.

Inner core: The inner core is the very innermost part of a neutron star and there is
no consensus regarding its structure or even existence. We here discuss the most popular
theories. The first theory states that there is no real inner core; it is simply made up of
the same neutron liquid as the outer core [4]. There are models/simulations of neutron
stars implementing this type of core without resulting in the star collapsing under its
own gravity [4]. Another theory states that the inner core consists of hyperons, which
are baryons composed of three quarks, one up (u), one down (d), and one strange (s)
[4]. Since s quarks have a larger mass than u and d quarks the resulting hyperons are
more massive than protons and neutrons. A third theory states that the core is made of
Bose-Einstein condensates [4]. Bose-Einstein condensates are made up of either pions,
which are mesons made up of a quark-antiquark pair of either u or d, or of kaons which
are like pions but with a s antiquark instead of u or d antiquarks. If very extreme density
and temperature conditions are present neutrons and protons can dissolve into quarks
and form what we call a plasma of quarks. In a quark plasma the quarks can move freely
and are not confined by the structure of hadrons. This means more quarks can fit in a
smaller area and therefore the latter have very high densities. [4].

1.2.2 Neutron star radiation - pulsars

The existence of neutron stars was first suggested in 1934 by Walter Baade and Fritz
Zwicky. They were however not observed until 1967 during a search for quasars, a type of
galaxy emitting radio waves. During that night in 1967 the Irish astrophysicist Jocelyn
Bell Burnell and the British radio astronomer Anthony Hewish detected 20ms-long radio
pulses appearing regularly every 1.337 seconds. After ruling out human interference, and
interstellar lifeforms, they concluded that it should be a compact faraway object emitting
pulses of radiation. Additional objects similar to these have since been discovered, and
they have been coined ‘pulsars’, for ‘pulsating radio sources’. It is important to note,
however, that not all pulsars emit radio waves [2]. Later these pulsars were found to be
rotating neutron stars emitting radiation from their magnetic poles. The appearance of
short pulses rather than a constant beam of radiation stems from a misalignment between
the magnetic axis and the rotational axis of the neutron star. The angle between these
axes is called the magnetic colatitude (see Figure 1.3). Pulsars are commonly categorized
after their source of power:

• Rotation powered: The magnetic field of a rotating pulsar induces an electric field,
which according to Lenz’s law slows down the rotation speed. The decreasing
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Figure 1.2: Schematic pictureof the different layers of a neutron star (not to scale).
Modified from ©Nasa

.

rotational energy is then released in the form of radiation. The first discovered
pulsar as well as millisecond pulsars are included in this category [8].

• Accretion powered: A pulsar powered by the gravitational potential energy of ac-
creting matter being pulled in to the star. These pulsars are found in binary systems
since they need another star to draw mass from, and most often emit X-ray radia-
tion. The neutron star we study in this project, Centaurus X−3 (Cen X−3) belongs
to this category [9].

• Internal energy powered: A pulsar using the decay of internal energy as its power
source. The internal energy comes from very strong magnetic fields in the case of
a magnetar or in other cases leftover heat energy from the supernova [10].

1.3 Gravitational light bending
The general theory of relativity (GR) describes gravity as the result of spacetime being
warped around massive objects in accordance with Einstein’s field equation [11]. Nearby
objects follow the curvature of spacetime causing masses to accelerate towards each other,
similar to how Newtonian mechanics describe gravitational attraction. A key difference
with the GR framework is that even massless particles such as photons follow spacetime
curvatures, so light will travel along a geodesic instead of a straight line. This phe-
nomenon is called gravitational light bending, an illustration of it is provided in Figure
1.4. A geodesic is the shortest path around the surface of a curved object [11]. The con-
cept of gravitational light bending is quite critical for our purposes, since the radiation
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Figure 1.3: Schematic picture of a neutron star and its rotational and magnetic axes.
The angle between the two axes, the magnetic colatitude, is denoted by θ.

emitted from the neutron star will bend due to the gravity of the neutron star itself.
To calculate how much the light bends there is an exact method although this method
involves solving elliptical integrals [12] which has to be done numerically and demand
somewhat substantial computational costs. Instead we here use an approximate formula
valid for objects with a radius at least twice as large as the Schwarzschild radius that was
derived in [12]. A neutron star’s radius is typically three times the Schwarzschild radius,
hence the formula is valid for our purposes. The formula for this approximation is:

1− cosα = (1− cosϕ)(1− rg/R), (1.1)

where α denotes the emission angle as seen by an observer located at the emission point,
ϕ is the azimuthal angle, rg is the Schwarzschild radius, and R is the radius of the neutron
star.

1.4 Centaurus X−3
Centaurus X−3 is a binary system consisting of the Cen X−3 neutron star and its
companion Krzeminski’s star, an O-type supergiant. The neutron star itself has a spin
period of ∼4.8 seconds and is an accretion powered X-ray emitting pulsar [14]. There have
been large fluctuations in the X-ray radiation from this system with no widely accepted
reason as to what causes this. The dataset we used is based on measurements taken during
a timespan much smaller than the period of each fluctuation, hence the fluctuations
should not affect our results [15]. Krzeminski’s star has a mass of 20.5 ± 0.7M⊙ and a
radius of 12R⊙ whereas the neutron star has a mass of 1.21 ± 0.21M⊙ [16]. There are
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Figure 1.4: Illustration of gravitational light bending, in this case around the sun. The
effect is amplified for illustrative purposes and neither sizes nor lengths are to scale. The
picture is from [13].

currently no reliable ways to accurately measure the radius of a neutron star, mainly
because measuring the distance to the neutron star comes with large uncertainties which
carry over to radii measurements [15]. Nonetheless the current research indicates all
neutron stars should have radii between 9 and 13 km [15].
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Chapter 2

Model and fitting methodology

The problem studied in this thesis involves observational data from two single-pole pulse
profiles, each originating from one of the poles of a neutron star [15]. The goal of this
project is to study which values of the parameters of the X-ray pulsar model could explain
the observations.

To do this, we simulated a beampattern. A pulsar’s beampattern is the X-ray emission
intensity from the pulsar. It is a function of the position on the star’s surface. We assumed
a basic model where the beampattern plot is a simple 2D cosine plot projected on the
spherical plane. More specifically, the beampattern is defined by the following equation:

f(α, ϕ, δα, δϕ, γ) = [(cosα + δα)(cosϕ+ δϕ)]
γ, (2.1)

In equation (2.1), where α and ϕ represent coordinates on the angle plane going from
−π/2 to π/2, δα and δϕ represent shifts from a particular position on the plane going
from −π to π, and γ represents the sharpness of the beampattern’s peak.

We also assume that the properties of the neutron star are determined by the following
parameters: the orientation of the neutron star’s rotational axis, the magnetic colatitude,
the beampattern’s power and location on the surface of the neutron star, the relative
phase shift of the neutron star’s rotation, and the neutron star’s mass and radius. The
latter two variables also allowed for the effects of gravitational light bending to be studied
(see Sections 3.2 and 3.3.2). In particular, we studied the importance of this phenomenon
as a function of the mass-radius ratio of the star. Equation (1.1) was taken into account
while doing this. The exact parameters we used other than the neutron star’s mass and
radius will be presented in Section 2.1. The effect of the parameters can be seen in the
example images presented in Section 2.2.

When examining the behavior of a pulsar the most important tool is arguably the
pulse profile. A pulse profile is the measured intensity of radiation from the pulsar over
the course of two periods of revolution (see Figure 2.1). For our simulations we however
used a modified pulse profile showing only one period since it provides better readability
and contains all necessary information. We used the pulse profile obtained by [15]. We
simulated pulse profiles for Cen X−3 for a given set of parameter values and tweaked
those values in order to match the measurements, the process is described more in depth
in following sections.
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Figure 2.1: Pulse profiles of an accreting millisecond pulsar showing the relative intensity
as a function of the phase. [17]

2.1 Simulation
We derived the properties of Cen X−3 with the help of optimization (see Section 2.3).
The results obtained were then visualized with the help of three plots. These plots sim-
ulated various characteristics of the neutron star, with example images shown in Section
2.2. The left plot in Figure 2.2 is used in order to simulate the motion of the neutron
star with respect to an observer located on Earth. The middle plot in Figure 2.2 is used
with the intent to simulate the beampattern, its intensity and its location relative to the
observer. The right plot in Figure 2.2 serves to compare a simulated pulse profile with
a profile obtained from the X-ray pulsar. The combined information about the star’s
rotation and the beampattern from the previous two plots serve to visualize the profile
being simulated in this plot. As such, the simulated profile is based on how the neutron
star’s parameters were set for the previous two plots.

Specifically, the first plot shows the orientation of the rotational axis with the help of
two variables: the rotation inclination, which is the rotation axis’ angle to the horizontal
equator (see Figure 2.3), and the rotation azimuth, which is the angle from the vertical
equator (see Figure 2.3). It also includes yellow and pink dots, which represent emission
regions on the surface of the neutron star. This is where the beampattern is being ob-
served, for a certain phase in the star’s rotation. As such, the yellow and pink dots will
henceforth collectively be referred to as observation points. The magnetic colatitude is
the angle between the rotation and magnetic axes, as introduced in Section 1.2.2. In the
context of neutron star rotation, we define a reference point on the celestial sphere that
corresponds to the zero phase of the star’s rotation. This point is represented by a pink
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dot and is located along a specific meridian line determined by the azimuth angle of the
star’s rotational axis. This azimuth angle, measured in the plane perpendicular to the
line of sight, serves as the initial reference for the phase of the neutron star’s rotation. In
other words, the relative phase shift of the star’s rotation is set to 0 at that meridian line.

The second plot shows a spherical angle plane as the base of the plot which repre-
sents points on the surface of the star. The axis perpendicular to the plane shows the
radiation intensity as a function of the position on the surface of the star. The plot in-
cludes a simulated beampattern with varying intensity, in other words the beampattern
power. The location of the beampattern is fixed by the azimuth and inclination. Also
included are the observation points from the previous plot. These are now projected
onto the base plane where they simulate a pulse profile based on their proximity to the
simulated beampattern. The red dots represent the actually observed, post-gravitational
light bending, beam intensity as a function of position on the surface of the star. They
are henceforth referred to as the measured data. The green dots represent the calculated,
pre-gravitational light bending beam intensity as a function of position, henceforth re-
ferred to as the intrinsic data. The calculations are based on the measured data. For an
illustration of the above parameters, see Figure 2.3.

Figure 2.2: Example of plots used to study X-ray pulses and the neutron star emitting
them. Left panel: Geometry of the system. The green line shows the position of the spin
axis, while the pink/yellow points show the position of the emission region during the
rotation of the star. Middle panel: Beampattern of the system. The actual beampattern
is represented with a 3D curve, and the plane at the base of the plot is a projection
of points on the surface of the star. Also shown are the emission regions from the
left plot, measured beampattern data (red dots) and the same data when gravitational
light bending is not taken into account (green dots). The emission regions being close
to the beampattern in this plot corresponds to the emission regions being close to the
beampattern on the first plot. Right panel: Pulse profiles. The measured pulse profiles
from each pole are shown with green curves. The red curve (shown as purple in later
plots) represents a simulated pulse profile that is based on how the two previous plots
were configured. In general, the closer the emission regions are to the beampattern in
the middle plot, the higher the overall intensity of the simulated pulse profile is in this
plot.

We note that the intensity shown in the intrinsic data does not follow the intensity
of the simulated beampattern unlike the observation points. This is because these data
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Figure 2.3: Illustration of the angular parameters defined for the neutron star. Left
panel: The vector Ω represents the rotational axis, i represents the rotation inclination,
the position angle (PA) represents the rotation azimuth, the N-E plane is the plane
of the vertical equator, and the plane perpendicular to the N-E plane is the plane of
the horizontal equator. Middle panel: The angle θ between the rotational axis and the
emission region, called ’hotspot’ in the figure, is the magnetic colatitude. The circular
vector Φ that goes around the rotational axis represents the relative phase of the star’s
rotation. Right panel: α is the rotational inclination and φ is the rotation azimuth.
Figure taken from [15].

represent the true location and intensity of the beampattern as a result of being based
on real data. The observation points also do not take gravitational light bending into
account since they represent points on the surface of the neutron star, where the light has
not traveled far enough away from the star for such a gravitational effect to be significant.
So if the intrinsic data and observation points were to be aligned close to each other, hy-
pothetically, it would lead to a simulated curve that would fit one of the measured pulse
profiles in the third plot.

The third plot shows the beampattern intensity as a function of the phase, where
each measured phase point is matched with an emission region from the previous plots.
In other words, this plot is a pulse profile plot. The green curves are the actual pulse
profiles measured for each pole. The purple curve is the simulated one.

We find it important to mention that, for simplicity’s sake, we have ignored any po-
tential asymmetry in the beampattern other than the shift in its azimuth and inclination.
That, however, does not necessarily mean that the beampattern will only have one source
of asymmetry. This is if one follows the assumption that the magnetic poles of a star
are not always antipodal to each other [15], which is the assumption under which we are
working here.

2.2 Particular cases
In this section, we present five particular cases to illustrate how the pulse profiles in-
troduced in Figure 2.2 are affected by a change in the various parameters introduced in
Section 2.1. The parameters of the different cases are summarized in Table 2.1.

Case 1 (see Figure 2.4): In this case, the magnetic colatitude and the pink dot
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Figure 2.4: Pulse profile plots, as in Figure 2.2, but for Case 1. The parameters are listed
in Table 2.1.

are at the tip of the beampattern in plot 2. It corresponds to a pulse profile in plot 3
that peaks for phases near phase 0, in other words for observation points near in phase
to the pink dot in plot 2. The beampattern has its azimuth and inclination values set
to approximately 0 in plot 2; that corresponds to a beampattern pointing roughly to the
observer’s direction in plot 1.

Case 2 (see Figure 2.5): In this case, as in the previous case, the beampattern
is pointing toward the observer. But due to the rotation axis also pointing in that
direction and the 90◦ magnetic colatitude, none of the observation points pass through
the beampattern, resulting in no recorded intensity in plot 3.

Case 3 (see Figure 2.6): In this case, the magnetic colatitude is 0◦, and the
beampattern location is where the rotational axis points to in plot 1. As a result, the
beampattern does not rotate around the star and it is always observed at maximum
intensity, resulting in a pulse profile whose intensity is constantly 1.

Case 4 (see Figure 2.7): This case is similar to Case 1, with the difference being
that the pink dot is fully behind the star from our point of view instead of in front of the
star. As a result, the pulse profile records a peak for a phase near 0.5.

Case 5 (see Figure 2.8): This case is also similar to Case 1, with the difference
being that the beampattern power has been reduced. As a result, the pulse profile peak
is less sharp in the third plot in comparison to Case 1.

Parameter Case 1 Case 2 Case 3 Case 4 Case 5
Rotational inclination (◦) 90 0 90 90 90
Rotational azimuth (◦) 0 0 0 0 0
Magnetic colatitude (◦) 90 90 0 90 90

Azimuth shift (rad) 0 0 0 0 0
Inclination shift (rad) 0 0 -1.214 0 0

Power (-) 15 15 15 15 1
Relative phase shift (rad) 0 0 0 π 0

Table 2.1: Values of the neutron star parameters for cases 1 to 5 discussed in Section
2.2. The neutron star mass and radius were fixed to the values of 1.4 M⊙ and 12.4 km,
respectively, in all cases.
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Figure 2.5: Pulse profile plots, as in Figure 2.2, but for Case 2. The parameters are listed
in Table 2.1.

Figure 2.6: Pulse profile plots, as in Figure 2.2, but for Case 3. The parameters are listed
in Table 2.1.

Figure 2.7: Pulse profile plots, as in Figure 2.2, but for Case 4. The parameters are listed
in Table 2.1.
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Figure 2.8: Pulse profile plots, as in Figure 2.2, but for Case 5. The parameters are listed
in Table 2.1.

2.3 Numerical analysis
To find the most likely properties of the neutron star, that is to say, the parameters that
would simulate a pulse profile that would best fit the given data, the particle swarm
optimization method was used. The particle swarm method involves having a number
of different candidate solutions, called particles, to a particular problem. The problem
concerns some measure of quality. Each particle then travels in a search-space of solutions
to find the best solution to that problem. In our case, the measure of quality is the
minimization of the least square error between the curve we are fitting to the data and
each of the pulse profiles. Each particle is in our case one set of values for the neutron
star’s parameters.

The particle swarm method was applied in two different ways:

1. The simultaneous fitting method: Fit one curve to both given profiles simultane-
ously;

2. The pole-by-pole fitting method: Fit one curve to each profile with some appropri-
ate conditions. These conditions were that the orientation of the star’s rotational
axis has to be the same for both poles since they have to be part of the same neu-
tron star. The neutron star’s mass and radius are also identical for both poles for
the same reason. We applied this method in four different cases where each case
had its own additional conditions. These conditions had to do with whether the
magnetic colatitude and relative phase shift parameters differ between the poles or
not.

In this report, we only focus on the second method. We refer to Appendix A for
detailed information about the first method. The second method of optimization was
implemented in Python (see Appendix A).
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Chapter 3

Properties of Cen X−3

In this Chapter we provide the results of our fit to the pulse profiles adopting the pole-
by-pole fitting method presented in Section 2.3. We discuss our results and highlight
future avenues.

3.1 Optimization results
For the four cases that depended on the magnetic colatitude and relative phase shift
varying between the poles, example results are shown in Figures 3.1, 3.2, and B.1 to B.6.
Each figure is a variant of Figure 2.2. The latter six figures are listed in Appendix B due
to their overall similarity to the first two plots and for brevity’s sake. The parameters
and conditions for each case are provided in Tables 3.1 to 3.4. In each table, a green
(respectively red) background indicates that the corresponding parameter is allowed (re-
spectively not allowed) to vary between the poles. The cases are as follows:

1. Fit 1: None of the two parameters is allowed to vary between the two poles.

2. Fit 2: Only the relative phase shift is allowed to vary between the two poles.

3. Fit 3: Both parameters are allowed to vary between the two poles.

4. Fit 4: Only the magnetic colatitude is allowed to vary between the two poles.

We here note that the derived parameters are not necessarily the only good parame-
ters. Running the program twice for the same case can give a good fit in both runs albeit
with vastly different parameters, see Appendix B.2.
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Figure 3.1: Pulse profile plots for Fit 1 (fixed magnetic colatitude and fixed relative phase
shift between the two poles). The purple curve on the right plot shows the fit of the right
pole. That curve is generated from the parameters visualized in the left and middle plots.

Figure 3.2: Same as Figure 3.1 but for the left pole.

Right pole Left pole
Rotational inclination (deg) -1.44 1.44
Rotational azimuth (deg) 59.28 -120.72
Magnetic colatitude (deg) 46.56 46.56

Azimuth shift (rad) 0.08 0.61
Inclination shift (rad) -0.38 0.48

Power (-) 7.0 19.87
Neutron star mass (M⊙) 2.56 2.56
Neutron star radius (km) 10.04 10.04
Relative phase shift (rad) -0.31 3.46

Table 3.1: Values of the neutron star’s parameters for Fit 1 (see Figures 3.1 and 3.2).
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Right pole Left pole
Rotational inclination (deg) 76.32 -76.32
Rotational azimuth (deg) -135.37 44.63
Magnetic colatitude (deg) 44.48 44.48

Azimuth shift (rad) 2.58 0.05
Inclination shift (rad) 2.16 0.66

Power (-) 4.8 12.88
Neutron star mass (M⊙) 2.36 2.36
Neutron star radius (km) 11.83 11.83
Relative phase shift (rad) -1.14 0.91

Table 3.2: Values of the neutron star’s parameters for Fit 2 (see Figures B.1 and B.2).

Right pole Left pole
Rotational Inclination (deg) 38.13 -38.13
Rotational azimuth (deg) -35.11 144.89
Magnetic colatitude (deg) 55.39 63.43

Azimuth shift (rad) 0.6 -0.47
Inclination shift (rad) -0.68 3.02

Power (-) 6.0 10.03
Neutron star mass (M⊙) 2.71 2.71
Neutron star radius (km) 11.25 11.25
Relative phase shift (rad) -0.4 1.13

Table 3.3: Values of the neutron star’s parameters for Fit 3 (see Figures B.3 and B.4).

Right pole Left pole
Rotational inclination (deg) -16.13 16.13
Rotational azimuth (deg) 41.61 -138.39
Magnetic colatitude (deg) 53.13 73.41

Azimuth shift (rad) -0.27 1.97
Inclination shift (rad) 0.83 -0.08

Power (-) 5.21 16.07
Neutron star mass (M⊙) 2.95 2.95
Neutron star radius (km) 11.27 11.27
Relative phase shift (rad) 1.8 1.34

Table 3.4: Values of the neutron star’s parameters for Fit 4 (see Figures B.5 and B.6).

Note the relatively high mass values shown in each table.
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Finding the most accurate case

After optimizing, we now attempt to find which case is the most accurate to represent
reality. To do this, we introduce a metric analogous to the reduced-chi-square method.
In this case, we divide the average cost from each case by the corresponding number of
degrees of freedom. To get the average cost, we ran five simulations for each case to
get five cost values, whereupon we calculated the mean of those values. The cost values
are from the fitting of the second pole. The cost value for the fitting of the first pole is
ignored due to there being no variation in how the pole is fit. As such, the average cost
for this pole will be the same for all four fits and, as a result, it can not be used to find
the most accurate fit. This is in contrast to the fitting of the second pole, where different
conditions can be imposed upon the fitting, which may allow for differing average costs.
The degrees of freedom are obtained by subtracting the number of free parameters from
the number of data points. We call the final result the ’cost per parameter’. The lower
this value for a given case, the greater the case’s potential accuracy. The results are shown
in Table 3.5. For the exact fit results obtained for each run of each fit, see Appendix B.2.

Fits 1 Fits 2 Fits 3 Fits 4
Average cost (-) 0.26 0.12 0.11 0.15

Cost margin of error (-) ±0.21 ±0.01 ±0.01 ±0.02
Degrees of freedom (-) 29 28 27 28
Cost per parameter (-) 0.0091 0.0042 0.0040 0.0052

Cost per parameter margin of error (-) ±0.0071 ±0.0002 ±0.0005 ±0.0007

Table 3.5: Average cost, degrees of freedom, and cost per parameter for each of the
cases described in Section 3.1. A confidence level of 95% was used when calculating the
margins of error.

3.2 Gravitational light bending
Our observations of the effects of gravitational light bending are illustrated in Figure 3.3.
We found that the lower the mass-radius ratio of the neutron star, the closer the intrinsic
data and the observational points approach the measured data in the beampattern plot.
The higher the mass-radius ratio, the more the intrinsic data and observational points
approach the center of the plot. If the mass-radius ratio is high enough, these points
disappear and no curve can be generated on the pulse profile plot.

3.3 Discussion

3.3.1 Optimization

From Table 3.5, it appears that allowing both the magnetic colatitude and relative phase
shift to vary leads to the best possible results for the fit. In other words, Fit 3 appears
to be the most accurate case. This indicates that perhaps the magnetic poles of the star
are not necessarily antipodal and may not necessarily have an axis that goes through the
center of the star.
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Figure 3.3: Change in the position of the intrinsic data and observation points as the
mass-radius ratio is increased. Note how the dots disappear on the fourth plot when the
mass-radius ratio is the largest. The approximate mass-radius ratio value in each image
is, from left to right and from top to bottom, 0.050, 0.11, 0.33, and 0.34 M⊙km−1.

However, as stated in Section 3.1, the sets of parameters we got as optimization results
are not necessarily the only good ones (see Appendix B.2 for more results using the same
fit). There is also the fact that the parameter values vary a lot between cases too. If
there was only one good set of parameters, then the parameters would have to converge
to approximately the same values in all cases, yet it apparently does not. As such, we
cannot immediately draw any firm conclusion on the properties of Centaurus X-3. Also,
Fit 3 having the lowest cost per parameter value could just be because the program had
more free parameters. It could also be because we only ran five simulations for each case
when calculating the cost per parameter.

Despite the optimization not converging to a single set of parameters, it is not re-
strictive in the present project. This is because we are looking for possible solutions to
see if our toy model can explain the observations. The fitting of both poles is a much
more complex problem and for the final correct solution we need to take into account
radiative transfer which is beyond the scope of this work.
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Figure 3.4: Same as Figure 2.4, but the mass-radius ratio is significantly increased. The
observation points all approach the center of the middle plot which results in a pulse
profile that is always visible regardless of the phase, implying that the light from the
emitted beam is being bent in the direction of the Earth.

3.3.2 Gravitational light bending

As was shown in Section 3.2, the measured data are being approached by the other points
when the mass-radius ratio is decreased (so that it is lower than around 0.050 M⊙km−1).
A low mass-radius ratio means that the neutron star has a relatively low density (which
in this case is around2.38×1019 kg m−3 at most). So the lower the star density is, the less
discrepancy there is between the measured and intrinsic data points. This suggests that
gravitational light bending becomes weaker for decreasing density which is consistent
with what we expect.

The intrinsic data and observation points all approaching the center of the plot and
each other as the mass-radius ratio or density is increased is expected since the light
bending becomes so strong that if the beampattern happens to be on one of those obser-
vation points, it will always be observable from the Earth regardless of the neutron star’s
orientation. This implies that a large portion of the light emitted from the neutron star
is bent by gravity in the direction of the Earth. For an illustrative example, see Figure
3.4.

Those points disappearing when the mass-radius ratio or density is higher (when
the mass-radius ratio is around 0.34 M⊙km−1, corresponding to a density of around
1.61×1020 kg m−3) implies that the density has reached a point where Equation (1.1) no
longer applies. If the term rg/R, which is proportional to the mass-radius ratio, becomes
too large, cos(α) goes outside the range of [-1, 1] and Equation (1.1) becomes invalid.
As such, the points disappearing on the plot is a reflection of Equation (1.1) becoming
invalid. However, we have already found good fits using Equation (1.1) and we have to
consider that the average neutron star density is far lower than the calculated density
required for gravitational light bending to have a major effect. For these two reasons,
this limitation does not seem to pose any problem in the present context.

3.3.3 Ethical and societal implications

Ethical and societal implications of our project are inexistent.
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3.3.4 Future prospects

There are many ways in which this research can be extended and improved.
First, regarding optimization and the pole-by-pole fitting method, more cases of the

beam pattern can be studied. In particular, it would be of great interest to investigate
the case where the beampattern is fixed for both poles but the position of the axis of
symmetry is changing, and see if we can find a more accurate result than those we found.

Second, there is a simpler least-square optimization method that we may want to
consider. It involves only one set of values for the neutron star’s parameters which would
serve as the initial values before optimization. This set of values would then be slightly
shifted to higher or lower values, after which the least square error between the curves
would be calculated. This method is perhaps easier to understand conceptually than the
particle swarm method, but the latter proved to be computationally superior on top of
having a wider reach when searching for solutions, so we chose to work with that one in
the present project.

Third, it is relevant to mention that we did not use the standard spherical coordinates
in our research, but a variation of it instead. If we want to perform analytical calculations,
it would be better to convert the coordinates to the standard spherical coordinate system.

Fourth, the beampattern plot can be simplified visually by converting it into a contour
line plot without loss of information.

Aside from Equation (1.1), we used a few other assumptions and simplifications.
Notably, we assumed that the beampatterns azimuth and inclination shift are the only
sources of asymmetry and that the beam intensity is distributed like a 2D-cosine plot. It
would be of great interest to investigate cases where these assumptions are removed.
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Chapter 4

Summary and conclusions

We analyzed the pulse profiles of Centaurus X−3 using a toy model to derive potential
parameters for the neutron star. We varied several parameters in the toy model to achieve
this goal. These include the rotation axis orientation, the magnetic axis orientation, the
beampattern location and power, the neutron star mass and radius, and the rotational
relative phase shift. Our method involved fitting the two pulse profiles one after the
other.

We established a few conditions on the parameters to ensure the final fit is in line
with reality. We fitted for four different cases, each with their own additional conditions,
using the particle swarm method to find the best-fitting parameters. These cases depend
on whether the magnetic colatitude and relative phase shift were allowed to vary between
the two poles. We obtained good fits in each case, so we went on to try and find the
one that was probably the most accurate. It appeared that the best case is obtained if
both the magnetic colatitude and relative phase shift are allowed to vary, though that is
not necessarily a good conclusion since one can get several different good parameter fits
for each simulation and also because this case had more free parameters than the other
cases. Future investigations involving the inclusion of radiative transfer in the code are
required to be able to isolate the most likely set of parameters from the others.

Another aspect we studied was the effect of gravitational light bending on the pulse
profiles. In order to do this, we had the neutron star’s mass and radius as values we could
vary. We used Equation (1.1) which holds for stars with relatively low densities (densities
up to around 2.4× 1019 kg m−3). Our conclusion was that the higher the density of the
star, the more important the impact of gravity on light. This causes us to be able to
observe the beampattern from Earth even if it is not directly facing us. On the one hand,
if the density was high enough (around1.6×1020 kg m−3), the approximation we used no
longer applied. This is supported by the relevant data points in our program vanishing.
On the other hand, if the density was really low, gravity seemed to have a reduced effect
on light, as expected.

The assumptions and simplifications we used can be potential limitations, and future
investigations may look into alleviating these restrictions. These include the exclusion of
beampattern asymmetry and the assumption that the beampattern is a simple 2D cosine.

There are ways in which our research can be extended. This includes optimization
when assuming the poles are antipodal, converting the modified spherical coordinates we
used to the standard spherical coordinates, and replacing the 3D beampattern plot by a
2D contour line plot for visualization’s sake.
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Overall, we have established a good basis on which further research can be built to
achieve more conclusive results.
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Appendix A: Optimization codes

A.1. Pole-by-pole fitting method

For the second method described in Section 2.3, the following code was implemented
when fitting for the first pole:

1 def optimization1(x, y_true):
2

3 """
4 Optimization function that fits a curve onto the two profiles by

minimizing the least square difference between the curve and each
profile.

5

6 Parameters:
7 - Particles (Nested list): A nested list where each element is a

particle in the swarm , and where each particle has their own
parameters to update the fitting curve with

8 - Pulse profiles (Nested list): A nested list containing two
elements where each element is the data for one pulse profile.

9

10 Returns:
11 - An array containing the calculated least square error for each

particle in the swarm.
12 """
13

14 msev = []
15 for i in range(len(x)):
16 y_pred = update_least_square(x[i][0], x[i][1], x[i][2],

x[i][3], x[i][4], x[i][5],
x[i][6], x[i][7], x[i][8])

17

18 # Calculate the squared differences and sum them up
19 squared_diff_sum0 = sum(( y_true [0][i] - y_pred[i]) ** 2 for i

in range(len(y_true [0])))
20 #squared_diff_sum1 = sum(( y_true [1][i] - y_pred[i]) ** 2 for i

in range(len(y_true [1])))
21

22 # Calculate the mean squared error
23 mse0 = squared_diff_sum0 / len(y_true)
24 #mse1 = squared_diff_sum1 / len(y_true)
25

26

27 msev.append(mse0)
28

29 return msev
30

31 optimiser = ps.single.GlobalBestPSO(n_particles =100,
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32 dimensions =9,
33 options ={’c1’: 0.2, ’c2’: 0.2,

’w’: 0.8},
34 bounds =(
35 np.array ([-90, -180, 0, -np.pi , -np.pi, 1, 0.8, 8, -np.pi]),
36 np.array ([90, 180, 90, np.pi, np.pi , 20, 3, 13, np.pi])))
37

38 k0 , k1 = optimiser.optimize(optimization1 , 50,
39 y_true =[ decompositions ()[0], decompositions ()[1]])
40

41 update_least_square(
42 k1[0], k1[1], k1[2], k1[3], k1[4], k1[5], k1[6], k1[7], k1[8])
43 update_geometry_least_square
44 k1[0], k1[1], k1[2], k1[3], k1[4], k1[5], k1[6], k1[7], k1[8])
45 update_beampattern_least_square(
46 k1[0], k1[1], k1[2], k1[3], k1[4], k1[5], k1[6], k1[7], k1[8])

Listing 1: One-by-one profile optimization for the first pole.

The three update functions at the bottom serve to update each plot after the best
possible fitting parameters have been found.

For the second pole, a modified version of the code above was used. A second function,
called optimization2 was created. It is similar in structure to the first one with the main
difference being the conditions described previously. Hereafter is the code that describes
optimization2 in the example case where the magnetic colatitude and relative phase
shift are the same for both poles:

1 def change_ra(a):
2 """
3 Function that flips rotation azimuth 180 degrees to ensure this

pole’s end of the rotational axis is on the opposite side of the
other axis end.

4

5 Parameters:
6 - Rotational azimuth for the first pole in degrees (variable)
7

8 Returns:
9 - Rotational azimuth for the other pole in degrees(variable)

10 """
11 a += 180
12 if a > 180:
13 a -= 360
14 return a
15

16

17 def change_rps(r):
18 """
19 Function that calculates relative phase shift for second pole to

ensure that there is no phase difference between the poles.
20

21 Parameters:
22 - Relative phase shift for first pole in radians (variable)
23

24 Returns:
25 - Relative phase shift for second pole in radians (variable)
26 """
27 r += np.pi -2*r
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28 return r
29

30 def optimization2(x, y_true):
31

32 msev = []
33 for i in range(len(x)):
34 y_pred = update_least_square2(-k1[0], change_ra(k1[1]), k1[2],

x[i][0], x[i][1], x[i][2], k1[6],
k1[7], change_rps(k1[8]))

35

36 # Calculate the squared differences and sum them up
37 #squared_diff_sum0 = sum(( y_true [0][i] - y_pred[i]) ** 2 for i

in range(len(y_true [0])))
38 squared_diff_sum1 = sum(( y_true [1][i] - y_pred[i]) ** 2 for i

in range(len(y_true [1])))
39

40 # Calculate the mean squared error
41 #mse0 = squared_diff_sum0 / len(y_true)
42 mse1 = squared_diff_sum1 / len(y_true)
43

44

45 msev.append(mse1)
46

47 return msev
48

49 optimiser = ps.single.GlobalBestPSO(n_particles =100,
50 dimensions =3,
51 options ={’c1’: 0.2, ’c2’: 0.2,
52 ’w’: 0.8},
53 bounds =(
54 np.array([-np.pi , -np.pi, 1]),

np.array ([np.pi , np.pi, 20])))
55 l0 , l1 = optimiser.optimize(optimization2 , 50,
56 y_true =[ decompositions ()[0], decompositions ()[1]])
57

58 update_least_square2(
59 -k1[0], chage_ra(k1[1]), k1[2], l1[0], l1[1], l1[2], k1[6], k1[7],

change_rps(k1[8])
60 update_geometry_least_square(
61 -k1[0], change_ra(k1[1]), k1[2], l1[0], l1[1], l1[2], k1[6], k1[7],

change_rps(k1[8])
62 update_beampattern_least_square(
63 -k1[0], change_ra(k1[1]), k1[2], l1[0], l1[1], l1[2], k1[6], k1[7],

change_rps(k1[8])

Listing 2: One-by-one profile optimization for the second pole.

A.2. Simultaneous fitting method

As stated in Section 2.3, another avenue for finding a good fit to the observations is to
fit one curve simultaneously to both pulse profiles. The fit is simultaneous in the sense
that the curve is being fit to minimize the sum of the least square errors between the
curve and each profile. While we chose to focus on the pole-by-pole fitting method, this
other method should not be overlooked, since a good fit would imply that the poles have
similar parameter values and would support the idea that the neutron star has uniform
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properties.
For this method, the following code was used:

1 def optimization(x, y_true):
2

3 """
4 Optimization function that fits a curve onto the two profiles by

minimizing the least square difference between the curve and each
profile.

5

6 Parameters:
7 - Particles (Nested list): A nested list where each element is a

particle in the swarm , and where each particle has their own
parameters to update the fitting curve with

8 - Pulse profiles (Nested list): A nested list containing two
elements where each element is the data for one pulse profile.

9

10 Returns:
11 - An array containing the calculated least square error for each

particle in the swarm.
12 """
13

14 msev = []
15 for i in range(len(x)):
16 y_pred = update_least_square(x[i][0], x[i][1], x[i][2],

x[i][3], x[i][4], x[i][5],
x[i][6], x[i][7], x[i][8])

17

18 # Calculate the squared differences and sum them up
19 squared_diff_sum0 = sum(( y_true [0][i] - y_pred[i]) ** 2 for i

in range(len(y_true [0])))
20 squared_diff_sum1 = sum(( y_true [1][i] - y_pred[i]) ** 2 for i

in range(len(y_true [1])))
21

22 # Calculate the mean squared error
23 mse0 = squared_diff_sum0 / len(y_true)
24 mse1 = squared_diff_sum1 / len(y_true)
25

26

27 msev.append(mse0+mse1)
28

29 return msev
30

31 optimiser = ps.single.GlobalBestPSO(n_particles =100,
32 dimensions =9,
33 options ={’c1’: 0.2, ’c2’: 0.2,

’w’: 0.8},
34 bounds =(
35 np.array ([-90, -180, 0, -np.pi , -np.pi, 1, 0.8, 8, -np.pi]),
36 np.array ([90, 180, 90, np.pi, np.pi , 20, 3, 13, np.pi])))
37

38 k0 , k1 = optimiser.optimize(optimization1 , 50,
39 y_true =[ decompositions ()[0], decompositions ()[1]])
40

41 update_least_square(
42 k1[0], k1[1], k1[2], k1[3], k1[4], k1[5], k1[6], k1[7], k1[8])
43 update_geometry_least_square
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44 k1[0], k1[1], k1[2], k1[3], k1[4], k1[5], k1[6], k1[7], k1[8])
45 update_beampattern_least_square(
46 k1[0], k1[1], k1[2], k1[3], k1[4], k1[5], k1[6], k1[7], k1[8])

Listing 3: Simultaneous profile optimization.
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Appendix B: Additional figures and
tables

B.1. Additional figures for the original optimization
This section contains the results obtained for fits 2, 3, and 4 during the original attempt
to optimize curves for the pulse profiles (see Section 3.1).

Figure B.1: Same as Figure 3.1 but for fit 2 and right pole.

Figure B.2: Same as Figure 3.1 but for fit 2 and left pole.
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Figure B.3: Same as Figure 3.1 but for fit 3 and right pole.

Figure B.4: Same as Figure 3.1 but for fit 3 and left pole.

Figure B.5: Same as Figure 3.1 but for fit 4 and right pole.
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Figure B.6: Same as Figure 3.1 but for fit 4 and left pole.

34



B.2. Additional figures and tables for the calculation of
the cost per parameter
This section contains the results obtained for all fits when calculating the cost per pa-
rameter for each fit. Note the on average high mass values shown in each table.

B.2.1. Fit 1

Figure B.7: Same as Figure 3.1 but for the first result for Fit 1, right pole (upper panels)
and left pole (lower panels). The parameters are listed in Table B.1.
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Figure B.8: Same as Figure 3.1 but for the second result for Fit 1, right pole (upper
panels) and left pole (lower panels). The parameters are listed in Table B.1.

Figure B.9: Same as Figure 3.1 but for the third result for Fit 1, right pole (upper panels)
and left pole (lower panels). The parameters are listed in Table B.1.
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Figure B.10: Same as Figure 3.1 but for the fourth result for Fit 1, right pole (upper
panels) and left pole (lower panels). The parameters are listed in Table B.1.

Figure B.11: Same as Figure 3.1 but for the fifth result for Fit 1, right pole (upper panels)
and left pole (lower panels). The parameters are listed in Table B.1.
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Result 1 Result 2 Result 3 Result 4 Result 5
Right pole Right pole Right pole Right pole Right pole

Rotational inclination (deg) 13.15 48.84 -82.49 79.5 -60.78
Rotational azimuth (deg) -0.5 -44.78 63.3 -84.42 138.66
Magnetic colatitude (deg) 49.84 81.3 70.79 45.2 79.89

Azimuth shift (rad) 0.27 -1.7 0.47 1.67 0.55
Inclination shift (rad) -0.45 3.0 -0.01 2.37 0.13

Power (-) 6.02 8.9 12.19 15.14 14.98
Neutron star mass (M⊙) 1.67 2.41 2.44 2.35 2.9
Neutron star radius (km) 11.93 10.73 9.45 12.79 11.38
Relative phase shift (rad) -0.57 -0.13 0.86 -0.39 2.41

Left pole Left pole Left pole Left pole Left pole
Rotational inclination (deg) -13.15 -48.84 82.49 -79.5 60.78
Rotational azimuth (deg) 179.5 135.22 -116.7 95.58 -41.34
Magnetic colatitude (deg) 49.84 81.3 70.79 45.2 79.89

Azimuth shift (rad) 1.16 0.95 -1.71 1.25 1.44
Inclination shift (rad) 0.6 -1.63 -0.11 0.88 -0.44

Power (-) 10.11 1.51 6.4 12.31 5.15
Neutron star mass (M⊙) 1.67 2.41 2.44 2.35 2.9
Neutron star radius (km) 11.93 10.73 9.45 12.79 11.38
Relative phase shift (rad) 3.71 3.27 2.28 3.54 0.73

Table B.1: Table showing all the results obtained when calculating the cost per parameter
for Fit 1.

Result 1 Result 2 Result 3 Result 4 Result 5
Cost 0.68 0.14 0.18 0.15 0.16

Table B.2: The cost obtained for each result when calculating the cost per parameter for
Fit 1.
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B.2.2. Fit 2

Figure B.12: Same as Figure 3.1 but for the first result for Fit 2, right pole (upper panels)
and left pole (lower panels). The parameters are listed in Table B.3.

Figure B.13: Same as Figure 3.1 but for the second result for Fit 2, right pole (upper
panels) and left pole (lower panels). The parameters are listed in Table B.3.
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Figure B.14: Same as Figure 3.1 but for the third result for Fit 2, right pole (upper
panels) and left pole (lower panels). The parameters are listed in Table B.3.

Figure B.15: Same as Figure 3.1 but for the fourth result for Fit 2, right pole (upper
panels) and left pole (lower panels). The parameters are listed in Table B.3.

40



Figure B.16: Same as Figure 3.1 but for the fifth result for Fit 2, right pole (upper panels)
and left pole (lower panels). The parameters are listed in Table B.3.
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Result 1 Result 2 Result 3 Result 4 Result 5
Right pole Right pole Right pole Right pole Right pole

Rotational inclination (deg) 42.72 27.06 -54.82 -76.35 30.47
Rotational azimuth (deg) -91.06 -82.68 60.15 -57.58 -9.84
Magnetic colatitude (deg) 47.44 52.46 18.21 36.53 47.52

Azimuth shift (rad) 1.12 -2.21 -0.99 1.08 -2.27
Inclination shift (rad) -0.61 0.41 1.15 0.73 -1.0

Power (-) 8.51 10.97 10.01 13.6 2.66
Neutron star mass (M⊙) 2.22 2.69 1.22 1.81 2.74
Neutron star radius (km) 11.78 10.73 9.57 10.5 10.93
Relative phase shift (rad) -0.19 1.44 2.27 -0.27 -0.55

Left pole Left pole Left pole Left pole Left pole
Rotational inclination (deg) -42.72 -27.06 54.82 76.35 -30.47
Rotational azimuth (deg) 88.94 97.32 -119.85 122.42 170.16
Magnetic colatitude (deg) 47.44 52.46 18.21 36.53 47.52

Azimuth shift (rad) 2.75 -0.03 -2.14 2.45 2.54
Inclination shift (rad) -0.14 0.41 -1.16 -0.33 0.59

Power (-) 9.11 11.15 9.38 11.07 10.33
Neutron star mass (M⊙) 2.22 2.69 1.22 1.81 2.74
Neutron star radius (km) 11.78 10.73 9.57 10.5 10.93
Relative phase shift (rad) 0.77 2.01 -0.96 1.7 2.25

Table B.3: Table showing all the results obtained when calculating the cost per parameter
for Fit 2.

Result 1 Result 2 Result 3 Result 4 Result 5
Cost 0.12 0.11 0.12 0.13 0.11

Table B.4: The cost obtained for each result when calculating the cost per parameter for
Fit 2.
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B.2.3. Fit 3

Figure B.17: Same as Figure 3.1 but for the first result for Fit 3, right pole (upper panels)
and left pole (lower panels). The parameters are listed in Table B.5.

Figure B.18: Same as Figure 3.1 but for the second result for Fit 3, right pole (upper
panels) and left pole (lower panels). The parameters are listed in Table B.5.
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Figure B.19: Same as Figure 3.1 but for the third result for Fit 3, right pole (upper
panels) and left pole (lower panels). The parameters are listed in Table B.5.

Figure B.20: Same as Figure 3.1 but for the fourth result for Fit 3, right pole (upper
panels) and left pole (lower panels). The parameters are listed in Table B.5.
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Figure B.21: Same as Figure 3.1 but for the fifth result for Fit 3, right pole (upper panels)
and left pole (lower panels). The parameters are listed in Table B.5.
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Result 1 Result 2 Result 3 Result 4 Result 5
Right pole Right pole Right pole Right pole Right pole

Rotational inclination (deg) -19.08 -89.58 4.21 38.32 21.64
Rotational azimuth (deg) 55.88 -106.86 -39.32 85.67 -125.77
Magnetic colatitude (deg) 55.18 19.83 44.16 75.11 60.09

Azimuth shift (rad) 2.08 -1.67 0.59 -0.28 -1.73
Inclination shift (rad) 0.79 0.64 0.55 -0.42 -0.17

Power (-) 3.06 12.16 8.8 5.33 9.46
Neutron star mass (M⊙) 2.97 2.53 2.46 2.54 1.63
Neutron star radius (km) 11.03 11.95 9.38 10.59 9.62
Relative phase shift (rad) 2.54 -0.39 1.41 0.12 0.25

Left pole Left pole Left pole Left pole Left pole
Rotational inclination (deg) 19.08 89.58 -4.21 -38.32 -21.64
Rotational azimuth (deg) -124.12 73.14 140.68 -94.33 54.23
Magnetic colatitude (deg) 52.86 71.6 69.59 30.86 59.96

Azimuth shift (rad) 0.89 0.54 1.2 1.13 -0.41
Inclination shift (rad) -0.84 2.67 -0.14 0.76 -0.76

Power (-) 8.08 10.54 15.82 14.13 6.71
Neutron star mass (M⊙) 2.97 2.53 2.46 2.54 1.63
Neutron star radius (km) 11.03 11.95 9.38 10.59 9.62
Relative phase shift (rad) -0.11 0.75 -1.37 2.41 0.06

Table B.5: Table showing all the results obtained when calculating the cost per parameter
for Fit 3.

Result 1 Result 2 Result 3 Result 4 Result 5
Cost 0.10 0.10 0.13 0.088 0.11

Table B.6: The cost obtained for each result when calculating the cost per parameter for
Fit 3.
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B.2.4. Fit 4

Figure B.22: Same as Figure 3.1 but for the first result for Fit 4, right pole (upper panels)
and left pole (lower panels). The parameters are listed in Table B.7.

Figure B.23: Same as Figure 3.1 but for the second result for Fit 4, right pole (upper
panels) and left pole (lower panels). The parameters are listed in Table B.7.

47



Figure B.24: Same as Figure 3.1 but for the third result for Fit 4, right pole (upper
panels) and left pole (lower panels). The parameters are listed in Table B.7.

Figure B.25: Same as Figure 3.1 but for the fourth result for Fit 4, right pole (upper
panels) and left pole (lower panels). The parameters are listed in Table B.7.
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Figure B.26: Same as Figure 3.1 but for the fifth result for Fit 4, right pole (upper panels)
and left pole (lower panels). The parameters are listed in Table B.7.
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Result 1 Result 2 Result 3 Result 4 Result 5
Right pole Right pole Right pole Right pole Right pole

Rotational inclination (deg) 0.16 -46.99 55.01 54.71 -33.03
Rotational azimuth (deg) -53.51 -57.56 -114.87 113.21 -38.29
Magnetic colatitude (deg) 77.05 53.12 71.8 39.11 38.79

Azimuth shift (rad) -2.14 -0.12 -1.72 -0.62 -0.05
Inclination shift (rad) 2.71 1.1 -0.47 2.62 0.58

Power (-) 5.94 2.68 7.76 17.47 12.66
Neutron star mass (M⊙) 2.61 2.46 2.02 2.58 3.0
Neutron star radius (km) 8.88 10.8 11.98 10.47 10.21
Relative phase shift (rad) -0.37 2.7 -0.01 0.21 2.47

Left pole Left pole Left pole Left pole Left pole
Rotational inclination (deg) -0.16 46.99 -55.01 -54.71 33.03
Rotational azimuth (deg) 126.49 122.44 65.13 -66.79 141.71
Magnetic colatitude (deg) 88.67 84.5 89.87 74.73 49.51

Azimuth shift (rad) 0.39 0.18 1.38 2.29 -0.08
Inclination shift (rad) 0.47 -0.21 0.71 0.72 -0.42

Power (-) 9.56 14.0 9.85 11.12 8.95
Neutron star mass (M⊙) 2.61 2.46 2.02 2.58 3.0
Neutron star radius (km) 8.88 10.8 11.98 10.47 10.21
Relative phase shift (rad) 3.51 0.44 3.16 2.94 0.67

Table B.7: Table showing all the results obtained when calculating the cost per parameter
for Fit 4.

Result 1 Result 2 Result 3 Result 4 Result 5
Cost 0.18 0.13 0.13 0.13 0.16

Table B.8: The cost obtained for each result when calculating the cost per parameter for
Fit 4.
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