A microscopic model for simulating free riding speed dynamics in bicycle traffic

Pérez Castro, G., Belikhov, D., Titgemeyer, M., Johansson, F., Kaths, H., and Olstam, J.

A microscopic bicycle traffic model

BERGISCHE UNIVERSITÄT WUPPERTAL

Purpose

 5^{+} + 5^{+}

- 1. To characterize how elements of the infrastructure impact free riding,
 - Infrastructure/environment: gradients, curves, intersections, wind.
 - Behavior: speed, power output~effort.
- 2. and how free riding vary within and among bicyclists.
- 3. To simulate free riding speed dynamics.

A semi-controlled experiment

Using instrumented bikes (IBs)

People who commute regularly by bike.

E.g., total weight, bike characteristics. *possible to

> use own bike *no e-bikes

*fast and easy

Post-ride survey ίΟľ

To ride (once) on a route. *bike as usual when commuting *report interactions

Problems, insights, and perceived exertion.

vFi

No restrictions on behavior, but control for the route to follow.

Two case studies

Linköping: 33 participants

- 5-km semi-circuit.
- Off-street bicycle path.
- Hills up to +/- 5%.

Wuppertal: 29 participants

3.2-km circuit.

I.U

- On-street (no bicycle lane).
- Hills up to +/-13%.

Key findings from the experiment

- Significant variability in speed/power throughout the trip:
 - 70%-85% explained by trip features (topography, curvature, intersections and wind) and differences among bicyclists.
 - 30%-60% explained by differences among bicyclists.
- Bicyclists adapt power output in relation to gradient, and wind.
 - Trade-off between minimizing travel time and managing physical exertion.
- Discrete tactical choices in downhill-to-uphill transitions (boosting vs coasting)

Simulation (3) approaches

1. Dynamic speed distributions (gradient-based)

- Based on empirical speed distributions
- Adjust speeds for gradients by maintaining cyclist's relative percentile rank.
- Interpolation for smoothed transitions.

- 2. Speed model
- A mixed-effects model for speed as a function of:
 - baseline (desired) speed
 - gradient
 - curvature
 - intersections
 - elevation gain
 - wind speed
- Predict speed every time step.

- 3. Physics model (power-based)
- A mixed-effects model for power as a function of:
 - baseline (desired) power
 - gradient
 - curvature
 - intersections
 - elevation gain
 - boosting tactic
 - wind speed
- Predict power every time step.
- Compute changes in kinetic energy.
 - A bicycle dynamics model (Martin et al., 1998).
- Compute speed.

*All implemented in SUMO *Comparison with Krauss (default)

Mean over the population, along the route [Linköping]

Mean over the population, along the route [Wuppertal]

lı.u

Error in speed (RMSE)

Linköping Wuppertal ٠

Uphills

Downhills

Ŧ

•

Speed Model

т

Speed Model

ŦŦ

Physics Model

Ŧ

Physics Model

Ŧ

Dist.

Dist.

Error in speed (RMSE)

Error in delay (RMSE)

Conclusions

- Speed choice of bicyclists is highly trip context-dependent:
 - Gradients, curves, intersections, and wind.
 - Large variation due to heterogeneity in bicycle traffic.
- Simulation approaches are suitable. Accurate simulation of free riding allows for:
 - Analysis of infrastructure standards (e.g., acceptable gradients, curve radii).
 - Analysis of speed/acceleration at uphill/downhill approaches.
 - [physics model] Analysis of energy expenditure.
- Future research:
 - Validation [applicability to other locations].
 - Effects of infrastructure/wind on interactions with other road users.

Thank you!

guillermo.perez.castro@vti.se guillermo.perez.castro@liu.se

