

DIPLOMA THESIS

Scenario-based Architectural Decision

Support within Enterprise Architectures

- Concept and Implementation of a Prototype -

Markus Buschle
Matr.Nr: 300940

Contessaweg 4A

14089 Berlin

Torsten Derlat
Matr.Nr: 301759

Alte Flatower Straße 21

OT Tietzow

14641 Nauen

Daniel Feller
Matr.Nr: 300695

Schönburgstr. 22

12103 Berlin

March 2009

Institute for Business Informatics,

Faculty of Electrical Engineering and Computer Sciences,

Berlin Institute of Technology (BIT), Germany

In collaboration with

Department of Industrial Information and Control System,

Kungliga Tekniska Högskolan, Stockholm, Sweden

And

Deutsche Telekom Laboratories, Berlin, Germany.

Eidesstattliche Erklärung

Ich, Markus Buschle, erkläre hiermit an Eides statt, dass ich die vorliegende Diplom-

arbeit selbstständig und ohne unerlaubte Hilfe angefertigt, andere als die angegebenen

Quellen und Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich oder

inhaltlich entnommen Stellen als solche kenntlich gemacht habe.

Berlin, den

Eidesstattliche Erklärung

Ich, Torsten Derlat, erkläre hiermit an Eides statt, dass ich die vorliegende Diplomar-

beit selbstständig und ohne unerlaubte Hilfe angefertigt, andere als die angegebenen

Quellen und Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich oder

inhaltlich entnommen Stellen als solche kenntlich gemacht habe.

Berlin, den

Eidesstattliche Erklärung

Ich, Daniel Feller, erkläre hiermit an Eides statt, dass ich die vorliegende Diplomar-

beit selbstständig und ohne unerlaubte Hilfe angefertigt, andere als die angegebenen

Quellen und Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich oder

inhaltlich entnommen Stellen als solche kenntlich gemacht habe.

Berlin, den

i

Zusammenfassung

Auf dem Gebiet der Unternehmensarchitektur ist es häufig notwendig, Entscheidun-

gen zur Auswahl zwischen verschiedenen alternativen Datenverarbeitungssystemen

zu treffen. Oftmals sind die Abhängigkeiten zwischen den Systemen und Einflüsse

der verschiedenen Systeme untereinander nicht offensichtlich. Um die Entscheidungs-

findung in einer solch komplexen Umgebung zu unterstützen, wird in dieser Arbeit

ein Konzept der Unternehmensarchitekturanalyse vorgestellt. Die Methode ermög-

licht die Analyse von verschiedenen Aspekten der Unternehmensarchitektur, wie zum

Beispiel Verfügbarkeit oder Sicherheit.

Die Methode basiert auf verschiedenen Modellen, deren Aufbau erläutert wird. Im

ersten Schritt wird ein Meta Modell, ein sogenanntes abstraktes Modell, erzeugt.

Dieses stellt die unterschiedlichen Einflüsse zwischen den verschiedenen Systemen

und ihren unterschiedlichen Eigenschaften dar. Im zweiten Schritt wird ein sogenann-

tes konkretes Modell des abstrakten Modells instanziiert. Dies geschieht durch das

Sammeln von unterschiedlichen Belegen über die Existenz der Systeme und die Aus-

prägung ihrer Merkmale. Im dritten und letzten Schritt wird ein Bayessches Netzwerk

aus diesem konkreten Modell einer Entscheidungsalternative generiert. Wenn mehrere

verschiedene Szenarien durch jeweils ein konkretes Modell dargestellt werden, kann

die Auswahl einer Alternative durch die quantitative Auswertung dieser Szenarien

unterstützt werden.

Um die vorgestellte Methode der Analyse von Unternehmensarchitekturen ver-

wendbarer zu machen, wird im Rahmen dieser Arbeit das Konzept und die Implemen-

tierung einer Software, genannt Enterprise Architecture Tool (EAT), vorgestellt. Zu-

erst werden vorab getroffene Entscheidungen und Überlegungen über den Aufbau des

Programms und die verwendeten Komponenten beschrieben. Der Aufbau des Prog-

ramms wurde so gewählt, dass eine möglichst gute Unterstützung für verteilte Ent-

wicklung gegeben ist.

Die Implementierung fand unter Berücksichtigung eines Vier-Phasen-Konzeptes

statt. Dabei wurden die folgenden Aufgaben „Planung der nächsten Phase‖, ―Bestim-

mung von Vorgaben, Alternativen und Einschränkungen durch eine Prioritätenliste―,

„Entwicklung und Test― und „Feedback in täglichen und wöchentlichen Meetings―

jeweils wiederholt durchgeführt.

Der letzte Teil der Arbeit beschreibt die Implementierung der Software, und es

werden weitere Ideen und Ansätze zur möglichen Erweiterung des Programms aufge-

zeigt.

ii

iii

Acknowledgements

Many people in many places contributed to this diploma thesis. Especially as this

thesis is the outcome of a cooperation between the Berlin Institute of Technology, the

Royal Institute of Technology Stockholm (KTH), and the Deutsche Telekom Labora-

tories, several supporters aided us to fulfill this project successfully. We, Markus

Buschle, Torsten Derlat, and Daniel Feller, have to thank everyone who was involved

in the development of this diploma thesis. Following we want to mention all the hel-

pers that accompanied us, while we worked on this thesis.

Special thanks to Elke Lorenz, who helped us with all organizational matters that

we came across from the first day to the final colloquium. She always had time and

lots of cookies for us.

We are also very grateful to Daniel's dad, Mr. Feller, who helped us to revise this

thesis. Our document would not look like this without your assistance.

We want to thank Marten Schoenherr, who supported us during the whole time,

while we wrote this thesis. Together with Per Närman and Johan Ullberg, he offered

us the chance to get part of the cooperation mentioned at the beginning.

We are also thankful to Ulrik Franke, who visited us in Berlin and prepared our

Stockholm stay with weekly Skype meetings. We want to thank Robert Lagerström,

for representing our reception committee in Stockholm. We are also very grateful to

Pontus Johnson, who was an important support and motivation to make this diploma

thesis possible. Moreover, he provided us with valuable ideas to explore ―Greater

Stockholm‖ and the beautiful city itself. We also have to thank Teodor Sommestad

for his creative suggestions and helping us booking a ferry to Helsinki. We would

also like to thank all the other people who are working at the ICS department of the

KTH and supported us before, during or after our stay in Stockholm.

In addition, we have to thank Oliver Holschke, who provided us with helpful ideas

and sources.

We are very grateful to Prof. Dr. rer. nat. Peter Pepper and Prof. Dr. rer. nat. Klaus

Obermayer, who agreed spontaneously to attend our final colloquium. Finally yet

importantly, we thank our two supervising tutors Prof. Dr. rer. pol. Hermann Krall-

mann and Dr.-Ing. Matthias Trier.

iv

Every one of us additionally has some people, he wants to say thank you to:

Markus: First of all I want to thank Daniel and Torsten: I won't have come so far,

within the last years, without you. My French friends you avoided me from buying a

carpet in Sweden and taught me how to eat canned salad. Many (hug)s go out to my

sister, who is always just one text massage away. Thank you for all the favors, and

please never forget the superman thing. I am also very grateful to my parents, who

always believed in me, no matter what idea I was following. As well, many thanks to

the Schmelzel family, who kept me practicing English during the last years. Finally, I

want to say thank you to my friends. Together we brunched, danced, and talked away

along the bumpy road leading to this diploma thesis. The Baltic Sea won't separate us.

Torsten: I want to thank Daniel and Markus for their reliability and friendship since

2004. They are the guarantors for our successful study and for the survival of the

coffee industry in the current financial crisis. Then thanks go to my sister, Dana, for

her eager reviewing-eye. Without her, many snippy faults would still be hidden in the

document. I also thank Steve Ackerman for his reviewing efforts despite his full

schedule. Thanks to the System Analysis department for introducing the excitement

of research to me. Special thanks to my parents for their support throughout the whole

studies. And last but not least, I want to express my gratitude to Ulrike for her uncon-

ditional love and motivation (no matter how far away I was).

Daniel: I want to thank my parents for making my academic studies possible and for

supporting me in every possible aspect. In addition, I want to thank my grandmother

for supporting me mentally during rainy days. Especially, I want to thank Andrea for

her love, her support, her motivation and every thing else.

Finally, I want to thank Markus and Torsten for the great and most successful last

four and a half years. Meeting you was one of the best events in my life.

v

Table of Contents

Zusammenfassung ... i

Acknowledgements ... iii

Table of Contents .. v

Figures .. vii

Tables .. ix

Abbreviations... xi

PART I – Introduction .. 1

1 Abstract ... 1

2 Motivation ... 2

3 Chapter Overview .. 3

PART II – Theory and Concept .. 5

4 Definitions ... 5

4.1 Enterprise Architecture ... 5

4.2 Models .. 7

4.3 Scenario .. 8

5 Information System Decision Making ... 8

5.1 Decision Making within Enterprise Architectures 9

5.2 Information System Goals .. 10

6 Enterprise Architecture Analysis ... 12

6.1 Method for Enterprise Architecture Analysis 12

6.2 Probabilistic Influences and Uncertainty .. 13

6.3 Mathematical Modeling using Bayesian Networks 14

6.4 Abstract Model ... 25

6.5 Evidence Collection .. 27

6.6 Concrete Model... 29

vi

6.7 Further Considerations .. 30

7 Concept of a Prototype .. 41

7.1 Chosen Platform ... 41

7.2 NetBeans Visual Library... 55

7.3 XSD and Model Structure ... 60

7.4 Architecture .. 65

PART III – The Enterprise Architecture Tool .. 79

8 Implementation .. 79

8.1 Package and Class Structure ... 79

8.2 Abstract Modeler .. 99

8.3 Concrete Modeler ... 112

8.4 Challenges/Nuts .. 126

9 Usage Example .. 130

9.1 Abstract Modeler .. 131

9.2 Concrete Modeler ... 134

10 Extension Guide .. 136

10.1 Use Cases and Their Used Classes ... 137

10.2 How to extend X ... 147

10.3 Further Ideas ... 149

11 Discussion and Conclusion ... 154

Appendix A: Calculation .. 157

Appendix B: XSD .. 160

Appendix C: Evaluation Table ... 176

References .. 177

vii

Figures

Fig. 1. Components of System Quality [68] ... 11
Fig. 2. Process of enterprise architecture analysis .. 13
Fig. 3. The Bayesian network representing the scenario .. 17
Fig. 4. Scenario in which many variables need to be saved .. 21
Fig. 5. Scenario in which fewer variables need to be saved 22
Fig. 6. An exemplary PRM ... 23
Fig. 7. PRM visualized in an entity-relationship (type) diagram 24
Fig. 8. Example of an abstract model [46] .. 26
Fig. 9. Example of a concrete model [46] ... 29
Fig. 10. The DPN of the example (based on fictitious Asia example in [34]) 32
Fig. 11. Example transformed into naive Bayes structure .. 33
Fig. 12. The MS1 function over two random targets f1 and f2 taken from [34] 36
Fig. 13. Example: abstract model for Service Cluster Interoperability from [67] 37
Fig. 14. Test ranking result in GeNIe‟s MCM user interface taken from [67] 37
Fig. 15. Meta model for architectural decision reuse taken from [114] 39
Fig. 16. Semi-automatic decision identification in requirements model and

 reference architecture taken from [114] ... 39
Fig. 17. Decision models, decision drivers and techniques for decision making

 taken from [114] .. 40
Fig. 18. Decision enforcement via injection into model transformations and code

 generation taken from [114] .. 40
Fig. 19. NetBeans IDE download bundles with according feature packs, taken

 from [70] .. 52
Fig. 20. NetBeans IDE user interface (debug mode), red: version management

 information; green: debug mode information (active local variables);

 blue: main editor; yellow: project explorer ... 54
Fig. 21. NetBeans IDE Designer perspective ... 55
Fig. 22. Class diagram of the NetBeans Visual Library ... 56
Fig. 23. Abstract Model Example ... 64
Fig. 24. Open Decision ... 66
Fig. 25. Design Alternative ... 67
Fig. 26. Final Design .. 68
Fig. 27. Connection between Widgets and data elements (focus on main Widgets) .. 69
Fig. 28. Connection between Widgets and data elements (focus on connection

 Widgets) ... 71
Fig. 29. Hierarchy of Entity and Attribute Widgets .. 73
Fig. 30. Inheritance Hierarchy of Relationship Widgets .. 74
Fig. 31. Construction of an EntityWidget ... 75
Fig. 32. Composition of an EntityRelationshipWidget in the Abstract Modeler 77
Fig. 33. Composition of an AbstractMultiplicityWidget .. 77
Fig. 34. Composition of an AbstractExternalAttributeRelationshipWidget 78
Fig. 35. The package tree of the EAT with brief descriptions 81
Fig. 36. Empty-Model Perspective of the Abstract Modeler 106

../../../../spunto/Desktop/Full.doc#_Toc223154435
../../../../spunto/Desktop/Full.doc#_Toc223154437
../../../../spunto/Desktop/Full.doc#_Toc223154438
../../../../spunto/Desktop/Full.doc#_Toc223154439
../../../../spunto/Desktop/Full.doc#_Toc223154440
../../../../spunto/Desktop/Full.doc#_Toc223154457
../../../../spunto/Desktop/Full.doc#_Toc223154470

viii

Fig. 37. Popup-menu of an Abstract Entity .. 106
Fig. 38. Dialog of an Attribute, with zero multiplicity ... 107
Fig. 39. Edit Dialog of an Attribute, without zero multiplicity 108
Fig. 40. Add Tag Dialog of a scene element ... 109
Fig. 41. Delete Tag Dialog of a Scene„s element.. 109
Fig. 42. Configuration of Multiplicity and Aggregation Function 110
Fig. 43. Configure Filter Dialog ... 110
Fig. 44. Configuration of internal Relationship Dialog .. 111
Fig. 45. Configuration of indirect Attribute Relationship ... 111
Fig. 46. Empty-Model Perspective of the Concrete Modeler 118
Fig. 47. Popup-menu of a Concrete Entity ... 119
Fig. 49. Report of the calculated values .. 120
Fig. 48. Add Evidence Dialog of an Attribute .. 119
Fig. 50. Selection of the Abstract Entity Relationship .. 120
Fig. 51. Step 1: Translation of Attributes to nodes ... 121
Fig. 52. Step 2: Addition of Evidence nodes .. 122
Fig. 53. Step 3: Setting of States ... 123
Fig. 54. Step 4: Connection of Attributes ... 123
Fig. 55. Step 6: Addition of Dependencies between Attributes and Evidences 124
Fig. 56. Step 9: Updated Beliefs ... 125
Fig. 57. The Abstract Modeler UI with three created entities 131
Fig. 58. Entities with entity relationships ... 132
Fig. 59. Abstract model with attributes added .. 132
Fig. 60. Added attribute relationships to the abstract model..................................... 133
Fig. 61. Concrete Modeler GUI with instantiated entities .. 135
Fig. 62. Complete concrete model .. 136
Fig. 63. Underlying Abstract Model ... 157
Fig. 64. Resulting Bayesian network .. 158
Fig. 65. Concrete Model (created using above Abstract Model) 158
Fig. 66. Abstract Model Overview ... 160
Fig. 67. Abstract Model Entity ... 161
Fig. 68. Abstract Model Attribute ... 161
Fig. 69. Abstract Model Entity Relationship .. 162
Fig. 70. Abstract Model External Attribute Relationship ... 163
Fig. 71. Abstract Model Internal Attribute Relationship .. 163
Fig. 72. Concrete Model Overview .. 169
Fig. 73. Concrete Model Entity .. 170
Fig. 74. Concrete Model Attribute .. 170
Fig. 75. Concrete Model Evidence ... 171
Fig. 76. Concrete Model CPM .. 171
Fig. 77. Concrete Mode Entity Relationship .. 172
Fig. 78. Concrete Model Attribute Relationship ... 172

../../../../spunto/Desktop/Full.doc#_Toc223154471
../../../../spunto/Desktop/Full.doc#_Toc223154472
../../../../spunto/Desktop/Full.doc#_Toc223154473
../../../../spunto/Desktop/Full.doc#_Toc223154474
../../../../spunto/Desktop/Full.doc#_Toc223154475
../../../../spunto/Desktop/Full.doc#_Toc223154476
../../../../spunto/Desktop/Full.doc#_Toc223154477
../../../../spunto/Desktop/Full.doc#_Toc223154478
../../../../spunto/Desktop/Full.doc#_Toc223154479
../../../../spunto/Desktop/Full.doc#_Toc223154480
../../../../spunto/Desktop/Full.doc#_Toc223154481
../../../../spunto/Desktop/Full.doc#_Toc223154483
../../../../spunto/Desktop/Full.doc#_Toc223154484
../../../../spunto/Desktop/Full.doc#_Toc223154485
../../../../spunto/Desktop/Full.doc#_Toc223154486
../../../../spunto/Desktop/Full.doc#_Toc223154487
../../../../spunto/Desktop/Full.doc#_Toc223154488
../../../../spunto/Desktop/Full.doc#_Toc223154489
../../../../spunto/Desktop/Full.doc#_Toc223154490
../../../../spunto/Desktop/Full.doc#_Toc223154497
../../../../spunto/Desktop/Full.doc#_Toc223154498
../../../../spunto/Desktop/Full.doc#_Toc223154499
../../../../spunto/Desktop/Full.doc#_Toc223154500
../../../../spunto/Desktop/Full.doc#_Toc223154501
../../../../spunto/Desktop/Full.doc#_Toc223154502
../../../../spunto/Desktop/Full.doc#_Toc223154503
../../../../spunto/Desktop/Full.doc#_Toc223154504
../../../../spunto/Desktop/Full.doc#_Toc223154505
../../../../spunto/Desktop/Full.doc#_Toc223154506
../../../../spunto/Desktop/Full.doc#_Toc223154507
../../../../spunto/Desktop/Full.doc#_Toc223154508
../../../../spunto/Desktop/Full.doc#_Toc223154509
../../../../spunto/Desktop/Full.doc#_Toc223154510
../../../../spunto/Desktop/Full.doc#_Toc223154511
../../../../spunto/Desktop/Full.doc#_Toc223154512

ix

Tables

Table 1. Probabilities for the states of Fault_Management.Availability……………. 17

Table 2. CPT for Juliet‘s responsiveness (JR) conditioned on the availability of

 the Fault_Management (FMA)…………………………………………….. 18

Table 3. Nine possible combinations of states………………………………………. 19

Table 4. Assessed criteria…………………………………………………………… 48

Table 5. Evaluation Result…………………………………………………………... 49

Table 6. Mapping Bayesian network and models………………………………….. 159

x

xi

Abbreviations

AM Abstract Model (used in names of java-packages)

API Application Programming Interface

AWT Abstract Window Toolkit

BN Bayesian Network

CDDL Common Development and Distribution License

CIO Chief Information Officer

CM Concrete Model (used in names of java-packages)

COBIT Control Objectives for Information and elated Technology

CPM Conditional Probability Matrix (synonym of CPT)

CPT Conditional Probability Tables

CRD Conditional Probability Distribution

CRM Customer Relationship Management

CRUD Create, Read, Update and Delete

CVS Concurrent Versions System

DAG Directed Acyclic Graph

DPN Diagnostic Probability Networks

DSS Decision Support Systems

DTD Document Type Definition

EA Enterprise Architecture

EAT Enterprise Architecture Tool

EB Expected Benefit

EPL Eclipse Public License

xii

ERD Entity-Relationship Diagram

EV Expected Value

GeNIe Graphical Network Interface

GM Graphical Models

GPL GNU General Public License

GUI Graphical User Interface

HTML HyperText Markup Language

IDE Integrated Development Environment

IT Information Technology

JDK Java Development Kit

JPA Joint Probability Approach

JPD Joint Probability Distribution

MCM Multiple Cause Module

MPA Marginal Probability Approach

MVC Model–View–Controller

OMG Object Management Group

PNG Portable Network Graphics

PRM Probabilistic Relational Models

QOC Questions, Options and Criteria

SCM Single Cause Module

SMILE Structural Modeling, Inference, and Learning Engine

SOA Service-Oriented Architecture

SQL Structured Query Language

SVN Subversion (version control system)

SWT Standard Widget Toolkit

xiii

TS Test Strength

UI User Interface

UML Unified Modeling Language

XML Extensible Markup Language

XSD XML Schema

XUL XML User Interface Language

W3C World Wide Web Consortium

WFMS Workflow Management System

xiv

1

PART I – Introduction

1 Abstract

In the field of Enterprise Architecture, it is necessary to make decisions about differ-

ent alternatives on information systems. Often dependencies and influences between

different systems are not obvious. For the support of decision making in such com-

plex environments, the concept of a model-based enterprise architecture analysis is

presented. This method enables the analysis of various system goals like availability,

responsibility or security. In a first step a Meta model, called abstract model, is

created to describe influence paths between different system attributes. In a second

step, evidence about the existence and the various entities and the state of their

attributes is collected and compiled into a concrete model. In the last step, this con-

crete model is transformed into a Bayesian network and the state of non-observable

attributes is calculated. When different scenarios are evaluated, the decision is sup-

ported by the quantitative measure of the attributes of the different scenarios. To sup-

port this method of enterprise architecture analysis, the conceptual work for a soft-

ware tool, called Enterprise Architecture Tool (EAT), is presented. The architecture is

laid out to support distributed development. Finally, the implemented software tool is

documented along with ideas and possibilities for further extensions.

2

2 Motivation

With increasing spreading of information systems in enterprises, the complexity and

heterogeneity of a business‘ IT landscape grew, too. By comparison the time available

for adapting to market changes, i.e. the adjustment of business processes, decreased.

However, the monolithic and disintegrated systems constrain a firm‘s ability to react

to changes. Thus, there was a rising amount of IT consolidation and extension

projects, as well as more research activities in the field of enterprise architecture.

Obviously, the rising amount of projects necessitated research efforts in this area as

well as research results within business informatics and system analysis, e.g. EAI,

WFMS, SOA, boosted the number of projects. However, this resulted into an increas-

ing demand of decisions within the field of enterprise information systems, e.g. the

decision for a project or decisions within a project. Unfortunately, in practice the

decisions made were subjective, hardly traceable, and poorly documented [114]-

despite their mostly huge financial and pervasive impact. Neither supporting enter-

prise architecture tools, like Qualiware [86] or System Architect [102], nor frame-

works from the software architecture field (e.g. ATAM [9], C2SADEL [62]) provided

sufficient capabilities for measuring an information system‘s quality within the enter-

prise architecture domain [46].

The method presented in this work, a model-based approach for enterprise archi-

tecture analysis, supports decision-making in the context of enterprise information

systems. It addresses the problem of handling uncertainty. Therefore, it considers

probabilistic influences between system elements. To provide ―good‖ models for

analysis the method distinguishes between the modeling of generic and recurring

information system architecture situations (in abstract models) and precise, situational

modeling in concrete models. Therefore, the concentration on a particular system

property in a concrete model ensures that it is most applicable for the analysis it is

subjected. A tool that supports decision-making by implementing this method is de-

scribed in this work. It is called the Enterprise Architecture Tool (EAT) and is based

on a previous proof of concept. The usage of several technologies, which were al-

ready utilized in the proof of concept and in other evaluations of the method, is con-

tinued in the presented implementation. To realize uncertainty handling, the tool

makes use of a library for building and calculating Bayesian networks.

3

3 Chapter Overview

This thesis is structured as follows:

Chapter 1: Abstract
This chapter introduces this diploma thesis.

Chapter 2: Motivation
The situation, which led to the necessity of conducting a tool-supported analysis with-

in enterprise architecture, is introduced. Further, the need for the development of a

new software tool is pointed out. The problem-solving characteristics of the underly-

ing method are mentioned.

Chapter 3: Chapter Overview
Here, an overview of the chapters of this thesis is given.

Chapter 4: Definitions
Chapter 4 denotes relevant technical terms, which are essential for this document. By

giving the definitions for terms, which are fuzzily defined usually, ambiguousnesses

are prevented and a common understanding of the used expressions is attained.

Chapter 5: Information System Decision Making
This chapter explains the reasons for decision-making within enterprise architectures.

Several aspects that are relevant for decision-making are discussed here. The informa-

tion system goals, which decision makers in an enterprise architecture context strive

for, are also illustrated in this section.

Chapter 6: Enterprise Architecture Analysis
The method of enterprise architecture analysis is described in this chapter. Its underly-

ing models and their mathematical background are presented as well. Finally, an eten-

sion of the analysis method and an alternative approach for decision support is pre-

sented.

Chapter 7: Concept of a Prototype
In the ―Concept of a Prototype‖ section, the architecture of the presented implementa-

tion is described. Therefore, the components used, and how they interact with each

other, are illustrated. Furthermore, the internal structure of the tool and the composi-

tion of the model elements‘ visualization are illustrated and explained.

4

Chapter 8: Implementation
The structure of the implementation is considered in this chapter. Here, class- and

package-structure is explained in detail. In addition, the user interface and the calcula-

tion, which is performed by the concrete modeler, are described. This chapter ends by

pointing out individual solutions used during the implementation process.

Chapter 9: Usage Example
The application of the presented implementation is demonstrated in the ―Usage Ex-

ample‖ part. For this purpose, a simple enterprise architecture analysis scenario is

considered. The modeling process, using the abstract modeler and the concrete mod-

eler, is illustrated stepwise.

Chapter 10: Extension Guide
The extension guide offers information about the addition of features to the presented

tool. Detailed information about the data flow of the implementation is given, too.

Exemplary two possible extension scenarios are discussed. Finally, further ideas are

presented and recommendations are made.

Chapter 11: Discussion and Conclusion
This chapter gives a summary and discusses the result of this diploma thesis. Fur-

thermore, it gives an overview what kind of future research is still necessary in the

context of probabilistic decision-support.

Appendix A: Calculation
―Appendix A‖ provides additional information about the calculation process, illu-

strated in chapter 8.3.4.

Appendix B: XSD
In this appendix, the underlying XSD documents of the abstract model and the con-

crete model are visualized. A tree-like representation allows a brief overview of the

models‘ structure.

Appendix C: Evaluation Table
The table used for the evaluation of graph libraries and frameworks is illustrated in

this part of the thesis. The table contains the four candidates, the evaluation criteria,

the assessment scale, the results, and according statements. The evaluation itself is

explained in chapter 7.1.4.

5

PART II – Theory and Concept

This part deals with an approach for scenario based decision support within enterprise

architecture. To achieve a common understanding of the terms used in this thesis,

definitions of scenario and enterprise architecture are given. The scope of operations

is set out by providing an introduction into information system decision making. The

method for enterprise architecture analysis, its models and its mathematical founda-

tion, are introduced and described in detail.

Finally, a concept of a prototype for supporting the analysis method is depicted.

The description of the concept consists of a presentation of the used technologies,

libraries and software. In preparation of the prototype‘s implementation, several arc-

hitectural decisions, that enable an interaction of the different components, are docu-

mented.

4 Definitions

As this thesis has been written within the field of Enterprise Architecture (EA), this

chapter takes a closer look at EA. Thereby section 4.1 examines EA‘s current situa-

tion of an extensively used, but still unsatisfactorily defined buzzword. Moreover, it

tries to define the understanding of EA in this thesis. Chapter 4.2 then explains the

origin, the necessity, and usage of models for visualizing EA‘s necessary constitutive

elements. These models are the basis of the scenario-based architectural decision-

support – Enterprise Architecture Analysis.

4.1 Enterprise Architecture

As mentioned before, the term Enterprise Architecture is not used uniformly in the

literature – thus there is no common terminology today. [56, 82]

One reason is that technology professionals have a wide-ranging view of Enter-

prise Architecture –

“[…] starting from a structured family of technical guidelines including concepts,

principles, rules, patterns and interfaces, and the relationships among them, to use

when building a new IT capability. In contrast, business professionals tend to ignore

the term as an IT-only issue. Rather, they talk in terms of business models, business

processes and, sometimes, the business architecture”. [13]

Moreover, Marten Schoenherr discovered in his literature analysis [88] that only 6%

of 126 considered EA publications give its own definition and differentiate it to others

by referring to their definitions. He also noticed that other authors ―[…] are extending

6

their architectural understanding from a Software Systems Architecture view towards

a wider perspective considering organizational and/or social aspects in an enterprise.‖

He found out that almost 10% explicitly state that there is no common EA-

Terminology. The lack of a common understanding is indicated by the fact that the

focus of existing (proprietary) definitions either is technology-driven, systematic,

method-driven, or a mixture of them [88]. Furthermore, the vagueness of EA‘s focus

is underlined by the fact that different phrases with the same connotation as Enterprise

Architecture are being used in literature, such as Enterprise IT Architecture, Enter-

prise Information System Architecture, Information System Architecture, Enterprise

Software System Architecture, and Enterprise System Architecture [16].

The evolvement of the Enterprise Architecture discipline started in 1987. At that

time Zachman introduced his Framework for Information Systems Architecture [112],

which he extended in collaboration with Sowa in 1992. It was the first approach in

Enterprise Architecture as his framework supports analyzing the enterprise‘s business

and IT structure. The term Enterprise Architecture was not introduced in that period.

Instead, according to [60] the term was created in 1996 after the Clinger-Cohen Act

[10] had been passed. This act directed the US public sector to take an integrated

approach for aligning business with IT. Then the interest in Enterprise Architecture

rose dramatically as the number of publications show [88].

The problems in defining the term Enterprise Architecture become obvious when

trying to explain the term ―architecture‖. Etymologically the word architecture is

composed of the Greek word αρχη [arché], meaning ―origin‖, ―beginning‖, ―founda-

tion‖, or ―first‖, and the word τεχνη [techné], meaning ―art‖ or ―handcraft‖. However,

it also can be derived from the Latin word tectum (―building‖). Combined, architec-

ture can be translated as ―original art‖ or ―first handcraft‖. Nevertheless, the second

part of the word was further related to techné, which could also mean ―technology‖ or

―tectonics‖. This would not relate the term to an activity or person, but to the struc-

tured and organized relationship of elements [1]. From the etymological origin of the

word ―enterprise‖ follows that it means nothing more than ―an undertaking‖ [78].

Today‘s understanding is about the entirety of material, personal and idealistic ele-

ments that make up a business. Considering this, the term Enterprise Architecture

could describe the structured and organized relationship of material, personal and

imaginary elements within the system1 of an institutional organization. As discovered

in [88] EA literature definitions vary in the issue of the contribution, the level of ma-

turity of a contribution‘s focused issue, constituting elements, drivers, and the ad-

dressed (and number of) architectural layers. Classifying the usage of the term Enter-

prise Architecture within this work into these ―categories‖, the main issue of this

contribution is to support Enterprise Modeling (precisely: Enterprise Information

System Scenario Modeling) with a tool. The level of maturity of this issue can be

stated as a conceptual implementation. The use of the term Enterprise Architecture in

this thesis comprises the architectural layers information architecture, information

systems and –infrastructure and its organizational context. Constituting elements of

the Enterprise Architecture term in this document are the relationship between EA

1 The term ―system‖ in this context means a set of elements, which have attributes and func-

tions. These elements are connected through a set of relationships. A system has a border that

divides it from its environment, cf. [51]

7

elements, AS IS and TO BE models, organizational, as well as technical aspects of an

organization. EA drivers are internal, as the main goal of the tool is to support man-

agement and cost-reduction. As this work is based on [46], its aim, the application of

property assessment criteria on enterprise information system scenarios modeled as

enterprise architecture models (see chapter 6), denotes a technical and systemic un-

derstanding of the EA term.

4.2 Models

Enterprises grow as time goes by, technology advances and managements take new

strategic approaches. Because of this, the architecture of an enterprise evolves as new

systems are added to an existing environment but old ones are often kept for compati-

bility reasons. Growing environments get more and more complex and it gets more

challenging to maintain an overview.

As described in the previous chapter enterprise architecture is the discipline to

monitor, analyze, and plan the IT environment of a business. Many of the enterprise

architecture frameworks that were already described consist of modeling techniques.

This is also shown in [40]. The reason for the need of models can be seen while hav-

ing a look at the definition of a model as given by [94]. Three characteristics of a

model are defined. First, a model is a mapping of a real object. This means that cha-

racteristics of the original should be visible and preserved in their core character in

the model. Second, a model should be a shortening of an original. This is necessary

because models are used to simplify the original and keep it to a manageable size.

This is especially true in the environment of enterprise architecture as the IT land-

scape evolved and grew over time. The third character of a model is the character of

pragmatism. This means that a model is always created to serve a certain aim. As

there are multiple properties of an enterprise architecture that can be investigated this

is one of the most important characteristics of models.

Traditionally models play an important role in architecture. For many years, archi-

tects created construction drawings and plans for building workers to erect a building.

In addition, small-scale models of buildings, which are made of wood or paper, are a

commonly used method to show the architects‘ vision to his investor. This shows how

different models of the same original, the building, are created for different aims of

the architect.

In the field of computer science there are also a multitude of models in existence.

Especially in software engineering, the UML specified by the OMG [77] is a wide-

spread approach of modeling different perspectives of a software system. In software

engineering models create a specification for the developer and serve as common

understanding between engineer and customer. Secondly, models also serve as docu-

mentation of the development process [58].

Enterprise architecture can be seen in direct relation to the architecture of buildings

described in the previous paragraph. So the need for models in enterprise architecture

is evident and it is ―an important mission of enterprise architecture to provide useful

models for the various decision-making activities […]‖ [40].

8

Since models are a fundamental part of enterprise architecture, it is necessary to

maintain a very high quality of the models. Models that look good do not guarantee

high quality of the content, as the modeled situation could be observed wrong. There-

fore, it is possible to make a good model of a bad situation. On the other hand, it is

possible to create a model of a very good observed actual situation, which is not un-

derstandable by others than the modeler himself. Standards and modeling conventions

help to maintain the quality and readability of models. They make sure that different

modelers share a common understanding of the model and help prevent the creation

of defective models [53]. Naturally, the experience of the modeler also has high influ-

ence on the quality of a model, as his power of observation is superior. Both features

of high quality models can be accomplished in part by using specialized modeling

software. This software makes it possible to stick to modeling conventions by assist-

ing the user. In addition, knowledge of experienced modelers can be integrated as

guidelines into the software.

4.3 Scenario

A scenario is an

“Internally consistent verbal picture of a phenomenon, sequence of events, or situa-

tion, based on certain assumptions and factors (variables) chosen by its creator. Sce-

narios are used in estimating the probable effects of one or more variables, and are

an integral part of situation analysis and long-range planning. The name comes from

a script used in film/television industry that contains all the details on the appearance

of characters, scenes, and the sequence of episodes.” [6]

 In this thesis and in the context of enterprise architecture analysis the word scenario,

often used in conjunction with information system (scenario), means a possible in-

formation system architecture state (in the future). Information system scenarios,

modeled as architecture models, are usually variations of the as-is model of an enter-

prise‘s information system landscape. The model representations of these scenarios

(based on a meta-model) contain all relevant elements, attributes, and relationships to

visualize and assess it.

5 Information System Decision Making

This chapter justifies the need of decision making within IT governance. The process

of decision-making is explained. Hereby the focus is set on information system goals.

These goals are differentiated from business goals and IT organization goals. After

the process description, several information system goals are presented. A classifica-

tion of these objectives is presented. Besides this categorization, each goal is analyzed

and characterized in detail.

9

5.1 Decision Making within Enterprise Architectures

The making of rational decisions concerning information systems in an organization

should be supported by enterprise architecture models and by conducting analyses on

these models [41].

With this approach, the enterprise architecture models build the foundation of the

decisions made afterwards. The quality of the models determines the quality of the

choices; therefore, they have to be as good as possible. This is somehow unsatisfying,

as thus far it has not been clearly defined what constitutes a ―good‖ enterprise archi-

tecture model [46].

As IT decision making is an important aspect of IT governance, the stakeholders

have to be considered [91]. One of the most common governance frameworks COBIT

(Control Objectives for Information and related Technology) presents 19 different

stakeholders [29]. These different parties are likely to have distinct requirements for

an enterprise architecture model. Thus, the quality of a model depends on the model‘s

ability to fulfill its intended use. In case the analyses are doable, the model serves its

purpose. The more the evaluation criterion matches to the model the better the quality

of the model is in this certain inquiry [45].

Decision-making can be considered as a process consisting of several activities

[65]. At first, the goal needs to be set. There are three goals that can be considered in

the context of enterprise information systems management [42] - business goals, in-

formation system goals, and IT organization goals.

Business goals are improved business process efficiency, improved product quality,

improved internal communication, as well as a range of other goals. These goals can

be found on a very high level or even on the highest level as they address the organi-

zation as a whole.

On a lower level, the information system goals can be found. These goals abstract

away from the enterprise and focus on the information system. An overview of sever-

al information system goals is presented in the following paragraph (5.2). A compari-

son between several systems takes place based on examination of a certain system

property, such as availability, security, or usability.

Lastly, IT organization goals are set, in case the operational measurements inside

an enterprise could be improved. For example, this could be an optimization of fields

of responsibilities with the objective to be able to react quicker in case of a system

failure.

In the following, the focus is set on information system goals regarding the prob-

lem definition of this thesis. The typical questions, which have to be answered by a

decision maker, are ―What is feasible?‖, ―What is desirable?‖ and ―What is the best

alternative according to the notion of desirability, given the feasibility constraint?‖

[87, 32, 47]. Within enterprise architecture analysis, these three questions can be

responded to in three corresponding ways. ―What is feasible‖ can be answered by

different scenarios.

“Answers to the second question regarding desirables, are often expressed in terms of

the change of various information system properties such as increased information

security, increased interoperability, increased availability, etc.” [47]

10

Enterprise architecture analysis itself answers the third question as it acts as a me-

diator by consideration of different scenarios under a certain system property aspect.

Having specified a goal (in this case an information system goal), different scena-

rios have to be drafted, as they represent the different options that can be selected, to

fulfill the desired goal. This sometimes turns out to be more difficult than expected, as

distinctions between two scenarios might not be obvious [42].

Unfortunately, enterprise architectures are often very complex systems. They are

not easy to understand and some internal dependencies are not obvious or require

expertise to be detectable by a decision maker. Therefore, it is not easy to identify the

connection between a certain decision and its influence on the goal, especially as the

fulfilling of a goal requires more than one decision. It is essential for the decision

maker to identify chains of interdependencies inside the enterprise architecture. A

goal needs to be broken down into several measurable objects for a detailed under-

standing of its properties and structure [55]. With this knowledge, he is able to identi-

fy the effects clearly that are related to his decisions.

Before decisions can be made in the last step, information on the considered sys-

tem needs to be gathered. This has to be done to see how chains of interdependencies,

which were found before, were reflected in practice. It sometimes happens that the

information found is not completely compatible to the breakdown of the goal per-

formed earlier. No one-to-one mapping can be done. In this case the decisions are

based on incomplete information [42]. Data collection, especially if humans are in-

volved, is a complicated process. It has to be clarified, in which way the gathered

information is credible. Therefore, the collected information is associated with a de-

gree of uncertainty.

Finally, a decision maker is able to make good decisions when he is supported by a

credible analysis of the effects of the decisions on his goals. Simplystated, the option

that has the best effect on the goals can be chosen [42]. Here it should be stressed that

the different stakeholders, which were mentioned above, influence the decision. As a

diversity of interests has to be considered, lobbying and negotiation become a large

part in decision-making.

“[...], such lobbying and negotiation oftentimes concerns whether the correct goal

has been selected, whether the identified decision alternatives are reasonable, wheth-

er the causal theory linking the decisions to the goals are really correct, and whether

the collected information is credible or not.” [42]

5.2 Information System Goals

In the following, an overview of several system qualities is presented. In a scientific

context, system qualities can also be defined by the term system properties. These

properties are examples of information system goals. Often interdependencies be-

tween several systems exist, which are sometimes not obvious. The system qualities

presented here, are very important for enterprise architecture analysis as their decom-

position provides the decision maker with several measurable objects that have to be

11

considered during scenario creation. The following system qualities are taken from

[105] and [43].

Their structure can be identified in the following figure:

Availability: “The availability of a system is the probability that it will be up and

running and able to deliver useful services at any given time.‖ [92]. Availability is

defined as the ratio between the system's time in service and the total time, i.e. uptime

plus downtime. Availability is also reffered to as reliability (see Fig. 1).

 Performance:

“The capability of the software product to provide appropriate response time,

processing time and throughput rates when performing its function under stated con-

ditions. It is an attribute that can be measured for each functionality of the system.”

[57]

Performance defines how much work a system can perform and how fast it does the

work. This system property is also described as efficiency [33].

Interoperability: Interoperability describes the “the ability to interact with one or

more specified systems‖ [57]. Interoperability has to be separated from integrability

and replaceability [43]. Interoperability itself is a subproperty of functionality.

Security: Security can be expressed by the ability ―[...] to prevent unauthorized

access to programs or data.‖ [57] ―Security itself includes integrity and confidentiali-

ty, whereas it is another subproperty of functionality.‖ [92].

Usability: “This property reflects how easy it is to use the system. It depends on the

technical system components, its operators and its operating system.‖ [92]. Usability

subsumes the characteristics understandability, learnability and operability [57] as

well as attractiveness [43].

Accuracy: Accuracy is defined as the ability “to provide the right or agreed results

or effects with the needed degree of precision.” [57]. In case the real output of a sys-

tem is consistent to the expected output, the accuracy of the system is high. Accuracy

is also a part of the functional abilities of a system.

Fig. 1. Components of System Quality [68]

12

Maintainability: Maintainability means the capability of a system to be changed

and adopted Modifications may include corrections, improvements or adaptations of

the system based on changes in the environment and in the requirements and func-

tional specifications [57]. As enterprise architectures get more complex, there main-

tainability gets more important. Therefore maintainability has been subdivided into

flexibility, reusability, extensibility, portability, and integrability, to be more precise

[43].

Functional Suitability: Functional Suitability is the ability to meet the user‟s expec-

tations about functionality. This is very specific for the domain the system is intended

to support [43].

6 Enterprise Architecture Analysis

“Enterprise architecture analysis is the application of property assessment criteria on

enterprise architecture models.” [46] In this work, enterprise architecture analysis is

seen as the analysis of architectural models of the enterprise information system. EAT

is a tool for the creation and assessment of enterprise information system scenarios (in

the form of enterprise architecture models, see 4.3), which are descriptions of the

systems and their environments. According to [45], architecture analysis supports

(information system) decision making (see 5.1) which usually runs through the phas-

es: “formulate scenarios”, “decide upon evaluation criteria”, “analyze scenarios”, and

“select scenarios”. Scenario formulation can be done with EAT. These scenarios are

mostly modifications of the as-is model and include a new or changed system pro-

posed to be integrated in the future. Then evaluation criteria are necessary to provide

relevant answers to the CIO‟s questions and to choose appropriate scenarios. For

example, these criteria can be availability, security, or performance. In the analysis

phase, appropriate scenarios are assessed against the chosen evaluation criteria. This

phase is supported by EAT. Having done a quantitative assessment, the CIO has the

option to realize the scenario that was evaluated best.

The overall process of enterprise architecture analysis, referring to [46] can be

found in the following subsection.

6.1 Method for Enterprise Architecture Analysis

As mentioned before, enterprise architecture analysis is to support decision making in

the field of enterprise information systems. The method to apply enterprise architec-

ture analysis on enterprise architecture models with EAT is illustrated in Fig. 2.

13

Fig. 2. Process of enterprise architecture analysis

As one can see, the process is divided into three steps. In the first step, called ―As-

sessment Scoping‖, the problem for the decision maker needs to be formalized with

different scenarios (4.3 Scenario), representing potential different future states of the

enterprise‘s information system. The scenarios focus on assessment criteria (cf. 5.2),

where they will be evaluated against (qualitative attributes). These scenarios are mod-

eled as abstract models, which are ―…enterprise architecture Metamodel[s] aug-

mented with the causal links …‖ [46] between qualities.

The second step, ―Evidence Collection‖, is to instantiate appropriate abstract mod-

els (scenarios) with concrete information. The relevant evidence has to be collected

manually. The generic elements of the abstract model are then instantiated into con-

crete models representing a specific (future) enterprise information system environ-

ment. The instantiation of a concrete model out of an abstract model can be seen in

the same way that an object is an instantiation of a class in object-oriented program-

ming languages.

The last step, the ―Analysis‖, is to calculate quantitative values of the model‘s as-

sessment criteria (qualitative attributes). Further information about the functionality

of a Bayesian network can be found in chapters 6.3 and 6.6. The creation of a Baye-

sian network from a concrete model is described in detail in chapter 8.3.4. The result

of the analysis, quantitative assessments of the concrete models, supports the decision

maker in selecting and realizing the appropriate scenario.

6.2 Probabilistic Influences and Uncertainty

In 5.1 it was explained that a decision maker has to answer three different questions

(―What is feasible?‖, ―What is desirable?‖ and ―What is the best alternative according

to the notion of desirability, given the feasibility constraint?‖). Thereby, ―What is

feasible?‖ the question which compares different scenarios, can be replied by a Baye-

sian network [47]. Bayesian networks, which are explained in chapter 6.3.2 have

abilities to model the real world. A feasible scenario can be translated into a network,

which can be calculated. The dependencies inside a scenario are represented as rela-

14

tionships in its corresponding network. During enterprise architecture analysis, it has

to be considered that most of these relations are probabilistic rather than deterministic

in nature.

Even though a certain behavior or reaction is likely, the expected outcome might

not happen in each possible situation. Especially when it comes to decisions, this not-

determinism has to be considered. A decision maker would like to compare systems

based on deterministic dependencies, as their behavior can be predicted exactly. In

[47] it was discovered that ―Decision making, whether the decisions apply to IT or

not, is rarely performed under conditions of complete certainty‖. Therefore, probabili-

ty has to be considered to compensate for uncertainty and missing information, when

analyses are performed.

The authors of ―Enterprise Architecture Analysis with Extended Influence Dia-

grams‖ describe several types of uncertainty. Especially in an enterprise architecture

analysis context, causal uncertainty is a wide spread phenomena. This term describes

that it is normally not possible to describe how the world actually behaves. The de-

pendencies between several phenomena are oftentimes not obvious and exact predic-

tions are seldom. An example of this type of uncertainty given by the authors is: ―un-

certainty with respect to the causal effect the percentage of systems with updated

virus protection may have on the level of information security‖. Another example is,

the uncertainty how much the reliability is improved, when a second backup-server is

installed.

The other considerable type of uncertainty is called empirical uncertainty. The

phenomenon described with this concept is that all the gathered information has to be

scrutinized. ―The information was collected a while ago and has now become obso-

lete, or perhaps the information was gathered from a source that might have been

incorrect‖ [47]. In cases where the system administrator describes his abilities as

good, they are probably good indeed. Eventually the administrator did not tell the

truth or good in his eyes does not have the same meaning than the term good has for

the enterprise he is working at. This situation has to be considered in an analysis.

When information is gathered, contextual information about the evidence should also

be gathered [46]. Knowledge about the age, the source and the reason why this infor-

mation was given helps to estimate the evidence‟s credibility. Thereby the credibility

of the assessment as a whole can be defragmented from the credibility of its parts.

Besides the possibility of getting knowledge about the credibility from a bottom-up

approach deriving credibility is also practical - in some situations it's not feasible to

directly collect evidences about properties such as availability and maintainability

whereas it is possible to collect evidence pointing in a certain direction (e.g. whether

the system administrator is experienced or not).

6.3 Mathematical Modeling using Bayesian Networks

This chapter provides information about the mathematical background of this thesis.

First an introduction into Bayesian networks is given. This introduction ends by men-

15

tioning the main advantages of these networks. How they are relevant and can be used

within an enterprise architecture analysis context is presented next. This part is fol-

lowed by a detailed explanation of the underlying mathematical principles, which are

used during the calculation of Bayesian networks. For this introduction, an example

of the enterprise architecture domain is considered. Afterwards a mechanism to re-

duce the complexity within mathematical networks is presented. It necessity is moti-

vated with use of a small enterprise architecture analysis scenario. Finally, this chap-

ter introduces Probabilistic Relational Models, which are an extension of Bayesian

networks, to increase their abilities.

6.3.1 Introduction into Bayesian Networks

Bayesian networks (BNs) belong to the family of probabilistic graphical models

(GMs). In a BN, knowledge about an uncertain domain is represented in a graphical

structure. A scenario is translated into a graph; thereby each node (consisting of sev-

eral states) represents a random variable, whereas the edges represent probabilistic

dependencies of corresponding random variables. This way ―webs‖ of causes and

effects are created [18]. Static computational methods help to estimate the conditional

dependencies inside the graph structure. Bayesian networks combine principles of

graph theory, probability theory, computer science, and statistics [2].

The networks correspond to directed acyclic graphs (DAGs), which is another GM

structure. DAGs are very popular in machine learning, artificial intelligence, and

statistics. A Bayesian network enables ―an effective representation and computation

of the joint probability distribution (JPD) over a set of random variables‖ [80]. The

character of the BNs ensures that no node can be its own ancestor or its own descen-

dant. Even though a directed graph is considered reasoning of the BN can be per-

formed in any direction by propagating in all directions [2, 79].

Usually the DAG structure is considered as the “qualitative” part of the reflected

model. The “quantitative” characteristics are described in a manner which is consis-

tent with a Markovian property. In this case, the conditional probability distribution

(CPD) at each node depends only on its parents in the graph structure.

If discrete random (as in the tool, presented in this thesis) variables are considered,

the conditional probability is often represented by a table, listing

“[…] the local probability that a child node takes on each of the feasible values – for

each combination of values of its parents. The joint distribution of a collection of

variables can be determined uniquely by these local conditional probability tables

(CPTs).” [2]

The resulting network has good capabilities for the rigorous quantification of risks

and the clear communication of results [18]. BNs can combine historical information

that can be processed by iterative calculation of the network, as well as data with

expert judgment. Another important aspect of Bayesian networks is the fact that new

information about a certain state of a variable influences the states of all other va-

riables. This is the so-called propagation of BNs, which is for instance used in artifi-

cial intelligence.

16

Several advantages of Bayesian networks were discovered by the authors of [18].

In a case study of Norman Fenton and Martin Neil, these advantages were verified in

practice [17]. In the following part of this section, these advantages should be consi-

dered, with focus on their relation to enterprise architecture analysis:

 Explicitly model causal factors: During the decision-making within

enterprise architecture analysis, dependency chains have to be found and

modeled. These chains represent the causal structure of a scenario and

therefore the graph of the network, as a mapping is performed during the

analysis (cf. 6.2).

 Reason from effect to cause and vice versa: In an enterprise architecture

analysis, the reasoning from effect to cause is obvious. This is done by

following the architectures dependency chains during the calculation. The

other way is taken when uncertainty is considered.

 Overturn previous beliefs in the light of new evidence: As the authors of this

collection of advantages describe ―The notion of explaining away evidence

is one example of this.‖ This example fits perfectly into enterprise

architecture analysis, as it might happen that evidence gets obsolete because

of the gathering of newer information.

 Make predictions with incomplete data: Often during analysis, not all

information can be gathered. This might happen because of several reasons

(e.g., collection of evidences is too time consuming, too expensive, not

possible because no expert is available). Therefore, it is very important for

the decision maker that reasoning can be performed, even though there

remaines uncertainty during the information gathering process. Even if no

knowledge about the inputs of a node in a BN is available, this can be

compensated, as the considered node acts as a prior.

 Combine diverse types of evidence including both subjective beliefs and

objective data: In enterprise architecture, both subjective beliefs and

objective data occur. Human influences are especially difficult to measure,

as humans tend to behave in ways other than expected. Therefore, they are

assessed very subjectively, depending on the interviewer, the interview

situation and the person who is interviewed.

 Arrive at decisions based on visible auditable reasoning: In the context of

enterprise architecture analysis, this advantage means that no hidden

variables are left. In case the dependency chains have been collected, they

were translated in a BN. This network is a 1:1 mapping of the real world

dependency chains. All nodes in the net have a foundation in the enterprise

architecture. Bayesian networks are a long-established theory of science;

therefore, their computation is very approved and reliable.

17

6.3.2 Explanation of Bayesian Networks

Having presented a general introduction on Bayesian Networks in the previous para-

graph, this section explores the mathematical background of a BN. Therefore a small

example (an extract of the scenario presented in [46] is considered).

The following situation is to be analyzed: An administrator is occupied in a certain

enterprise. Her name is Juliet and her talents of experience and responsiveness (de-

pending on the availability of the fault management system, which she uses) are im-

portant for this scenario. She is in charge of a CRM (Customer Relationship Man-

agement) system. Juliet's abilities have influence on the availability of the system.

This availability is necessary to have the customer support of the enterprise available.

The customer support also depends on the reliability of the CRM system. In Fig. 3,

the described scenario is modeled in a DAG.

In this scenario six variables are considered, namely Fault_Management.Availability

(FMA), Juliet.Responsiveness (JR), Juliet.Experience (JE), CRM_System.Availability

(CSA), CRM_System.Reliability (CSR), and Customer_Support.Availability (CuSA).

Here they may assume values from the finite domain {High, Medium, Low}.

Table 1. Probabilities for the states of Fault_Management.Availability

Fig. 3. The Bayesian network representing the scenario

High 0.9

FMA Medium 0.1

Low 0

18

Table 1 shows the probabilities for the different possible states of the Fault_Manage-

ment.Availability.

Since the Fault_Management.Availability influences Juliet.Responsiveness (as it is

its parent), Fault_Management.Availability has a conditional probability distribution

of Juliet.Responsiveness. This is visualized in Table 2. Conditional probability table

of the variable Juliet.Responsiveness conditioned on the variable Fault_Manage-

ment.Availability.

Table 2. CPT for Juliet‘s responsiveness (JR) conditioned on the availability of the

Fault_Management (FMA)

Before the consideration of the scenario is continued, it is necessary to have a closer

look at the mathematical theory of a BN. Especially the naming has to be explained.

In a finite set of discrete random variables V, where each variable X Є V is denoted

as a capital letter, e.g., X, Y, Z. Each state of a variable is denoted as a corresponding

lowercase letter, e.g., x, y, z. The set of all states, the so-called domain, within a varia-

ble X, is denoted as DX. The probability distribution over a random variable X is de-

noted as P(X) and the probability of a state x Є DX as P(X = x) or in shorter form P(x).

The negation of a state x is denoted as x̄ and represents all the states apart from the

state x in the variable. The probability of the negation, P(x̄) is always equal to 1 −

P(x).

In EAT the probabilities for a certain variable, which has no parents are collected

within interviews or other ways of information gathering. This variable A is called

prior variable, with its belonging prior probability P(A). Whereas the information

about the probabilities of a node inside the network (a child node, also called post-

erior) are calculated. If B is a parent of variable A this is described as P(A|B). Hereby

it has to considered, that all parents influence their common child. ―If variables are

independent of each other, the posterior probability and the prior probability are

equal, P(A|B) = P(A).‖ [34]

Also all permutations of states of the involved variables may occur (except the sit-

uation that the probability of a certain state is exactly zero). This is visualized for the

CRM_System.Availability in Table 3:

FMA High Medium Low

High 1 0 0

JR Medium 0 1 0

Low 0 0 1

19

Table 3. Nine possible combinations of states

The probability of a child is defined by the joint probability over the parental states in

the scenario. The set of parents of a variable X is denoted as πX. The calculation of a

BN is founded on Bayes' rule:

CSA_high &

JR_high &

JE_high

CSA_high &

JR_medium &

JE_high

CSA_high &

JR_low &

JE_high

CSA_high &

JR_high &

JE_medium

CSA_high &

JR_medium &

JE_medium

CSA_high &

JR_low &

JE_medium

CSA_high &

JR_high &

JE_low

CSA_high &

JR_medium &

JE_low

CSA_high &

JR_low &

JE_low

CSA_medium

& JR_high &

JE_high

CSA_medium

& JR_medium

& JE_high

CSA_medium

& JR_low &

JE_high

CSA_medium

& JR_high &

JE_medium

CSA_medium

& JR_medium

& JE_medium

CSA_medium

& JR_low &

JE_medium

CSA_medium

& JR_high &

JE_low

CSA_medium

& JR_medium

& JE_low

CSA_medium

& JR_low &

JE_low

CSA_low &

JR_high &

JE_high

CSA_low &

JR_medium &

JE_high

CSA_low &

JR_low &

JE_high

CSA_low &

JR_high &

JE_medium

CSA_low &

JR_medium &

JE_medium

CSA_low &

JR_low &

JE_medium

CSA_low &

JR_high &

JE_low

CSA_low &

JR_medium &

JE_low

CSA_low &

JR_low &

JE_low

20

Applied to the scenario described earlier the following instantiation can be made:

After a short transformation, the probability of Juliet.Responsiveness can be calcu-

lated:

Bayes' rule, as it was described above, is only applicably for simple network struc-

tures, where a parent node has one or more children. For the calculation of more com-

plex BNs, it is necessary to introduce the chain rule.

Chain rule: Let BN be a Bayesian network over a finite set of discrete random va-

riables V = {V1, ..., Vn}. The joint probability distribution P(V) is then:

In the considered scenario, an application enables the calculation of all state-

probabilities of all nodes, no matter where they are located. Consider the following

exemplary application, corresponding to the network described in advance:

This way, the Bayesian network can be calculated and the scenario can be evaluated.

Especially the comparison of the probabilities of the states of the Custom-

er_Support.Availability, which is the drain node, put the decision maker into a posi-

tion to decide which scenario should be implemented. As its goal is typically to en-

sure the highest possible availability, he is likely to select the scenario whose Cus-

tomer_Support.Availability_high state is the highest in his evaluation.

This example showed how Bayesian networks could be calculated. The proceeding of

those networks does not require a special structure. Therefore, the inference on Bay-

sian networks presents itself to be used whenever a fast transformation from a model

to a network is possible, as it is the case in the approach described in this thesis.

21

6.3.3 Complexity Reduction in Bayesian Networks

In 6.3.2 the use of Bayesian networks to support decision-making was explained. For

simple scenarios, such as the scenario presented, the described proceeding ensures a

fast and simple computation of the considered networks.

Unfortunately in the case of more complex structures, which means that the num-

ber of parent nodes and relationships between nodes increases, the time to perform

inference and the number of variables that have to be saved rises in an unpropitious

way. ―It is well known that the problem of computing a conditional probability in a

probabilistic network is NP-hard‖ was noticed by Michael P. Wellman and Chao-Lin

Liu in [107].

During the enterprise architectures analysis, a solution has to be found to increase

the inference performance by decreasing the needed computations. If the number of

variables that are saved is reduced, fewer computations have to be made, as the num-

ber of dependencies between the variables is reduced indirectly. This is necessary as

enterprise architecture scenarios can typically get very complex consisting of many

nodes and links between them. The following example illustrates in a simple scenario

the number of calculations that need to be done. Here three CRM systems influence

the availability of the customer support (Fig. 4).

In 6.3.2 it was explained that each variable holds three different states {High, Me-

dium, Low}. This means that for the computation of Customer_Support_Availability

3
7
= 2187 variables are stored and considered.

Even though the network consists of only seven nodes this number is very high.

The theoretically extension of the scenario with a fourth CRM system exposes how

the number of considered variables increases tremendously. Now 3
9
= 19683 variables

have to be inferred.

The solution to this vast amount of calculations is called model structure abstrac-

tion [107, 63]. This means that the BN is approximated by another network, which

can be inferred with a reduced number of calculations.

In this thesis, the approximation is done by introduction of additional nodes, to re-

duce the absolute number of parents, each node has. This means that nodes, which

Fig. 4. Scenario in which many variables need to be saved

22

have a common structure, are collected and processed, by an intermediate node. The

outcome of the intermediate node is connected to the original child node of the collec-

tion. The intermediate nodes have no correspondent in the real word and are added for

mathematical reasons. This is demonstrated in the following scenario (Fig. 5).

The introduction of intermediate nodes reduces the number of needed calculations.

For each new node 3
4

= 81 variables are saved, whereas at the Customer_Sup-

port_Availability node only 3
3

= 27 variables are considered. All in all 3
4

+ 3
4

+ 3
3

=

189 computations need to be done.

This example illustrates that a small adoption of the network leads to remarkable

improvements. Especially when this transformation is used frequently, speed increas-

es can be expected.

6.3.4 Probabilistic Relational Models

Probabilistic Relational Models (PRMs) are an extension of Bayesian networks but

incorporate a much richer relational structure [84].

“In a way, PRMs are to BNs as a set of rules in firstorder logic is to a set of rules in

propositional logic: A rule such as ∀ x,y,z. Parent (x,y)˄ Parent (y,z) => Grandpa-

rent (x,z) induces a potentially infinite set of ground (propositional) instantiations.”

[25]

PRMs specify relational schema for a domain. Attributes with entities exist in each

domain. Between these attributes, probabilistic dependencies can be found. In addi-

tion, a probability distribution over the database is specified. ―These models represent

the uncertainty over the properties of an entity, capturing its probabilistic dependence

both on other properties of that entity and on properties of related entities.‖ [50]

Fig. 5. Scenario in which fewer variables need to be saved

23

In Fig. 6, which can be found at [11], a small PRM is symbolized. Before the ex-

planation of PRMs is continued, this image should be discussed, to establish under-

standing of Probabilistic Relational Models.

 Fig. 6, which was published by some of the most important PRM experts (L. Getoor,

N. Friedman, D. Koller, and A. Pfeffer), considers three domains (colored red, blue,

and green). The red and green domain, as well as the green and blue domains is re-

lated. Three entities with attributes exist for each domain. Encore, between these

attributes, relationships exist. It has to be stressed that not only the attributes of a

certain domain are connected. There exist also relations between attributes of two

independent domains.

Relational schemas are used to describe databases. Often enterprise business in-

formation, CRM related datasets or scientific data is stored in a relational database.

These schemas are modeled in Entity-Relationship Diagrams (ERD) [83]. A relational

modeling of the considered domain helps to understand complex dependencies. Espe-

cially when it comes to enterprise architecture analysis, it is an advantage to have a

widespread and easily understandable notation. Multiplicities, which are heavily used

in relational databases, allow expressing scenarios very detailed. This way, it can be

expressed how many entities of one domain are related to entities of the correspond-

ing one. This makes it easier to visualize and discuss a specific scenario. Fig. 7 below

visualizes a simple PRM in an enterprise architecture analysis specific domain:

Fig. 6. An exemplary PRM

24

Fig. 7. PRM visualized in an entity-relationship (type) diagram

The entities function, system, and system administrator are considered. They are re-

lated in an ERD. Each of these entities has one or more attributes. The attributes are

related no mater to which entity they belong. It is comprehensible that a Bayesian

network can be deduced from their relationships. The calculation of this network

allows a scenario evaluation.

Besides the use of relational Schema, the other important introduction, which is

made with PRMs, is slot chains. This is a special connection mechanism for creating

models that are more complex.

 “Finally, we define the notion of a slot chain, which allows us to compose slots, de-

fining functions from objects to other objects to which they are indirectly related.”

[26]

If there is a relationship from entity A to entity B and from entity B to C than a

connection from A to C exists in an indirect way. In this example, one could say that

there is a slot from A to B; attributes of B (the domain) are mapped to attributes of B

(the range). With the use of slot chains, a function from A to C is indirectly intro-

duced. The attributes of A (which remains the domain) are mapped on attributes of C,

through a use of the slot from B to C, applied on the result of the slot from A to B.

The combination of the slots and the multiplicities from the relational schema al-

lows using aggregation functions between the domains. An attribute of all entities of a

25

domain can be combined with a slot and its result can influence all the range-

attributes.

“More formally our language allows a notion of an aggregate slot. The slot takes a

multiset of values of some ground type and returns a summary of it […]” [25]

Examples for this aggregation functions are median, maximum or minimum func-

tions. They all have in common, that the number of domain attributes is not restricted,

whereas in each case only one output element will result.

There exist several algorithms to infer on PRMs. As PRMs can be broken down in-

to Bayesian networks, which can be done by building a network based on the

attributes that are related, one way to calculate PRMs is to infer on the underlying

BN.

6.4 Abstract Model

Chapter 6.1 describes a method for enterprise architecture analysis. The first step is to

define the domain of the assessment in correspondence to the relevant system goal

(5.2). This is done by creating a so-called abstract model.

An abstract model consists of four different components: entities, attributes, entity

relationships and attribute relationships. These four components can be used to depict

the assessment scope of the current analysis graphically. The graphical appearance is

based on notation of class diagrams of the Unified Modeling Language (UML) [77].

Entities describe the central parts of the model. They can be derived from real ob-

jects, such as ―person‖ or ―system‖. Also a more abstract level of entities is possible,

such as ―function‖ or ―process‖, which have no physical real world counterpart. Enti-

ties are depicted like classes in a class diagram as a rectangle with the name of the

entity at the top of the box and a line separating it from the rest of the box. Entities in

the abstract model can be considered as domains within PRMs (see 6.3.4).

The connection of two entities can be displayed using an entity relationship. An

entity relationship appears as line between two entities. The role names are annotated

in accordance to the UML on both ends of the relationship. In addition, the multiplici-

ties are shown on the ends of the relationship. These multiplicities determine whether

dynamic or static CPTs are used during the creation of the Bayesian network. A de-

tailed description for this influence can be found at 8.3.4.

Attributes are always parts of an entity and are therefore drawn inside the lower

part of entity-rectangle. They may assume values from a finite domain like {True,

False}, {High, Medium, Low}, {0-10}, etc.

The last component of an abstract model is the attribute relationship. Relationships

between attributes show the way of influence between the attributes. A change of the

values of the source attribute implies a change of the values of the target attribute.

Each attribute relation is connected to a particular entity relationship by a line be-

tween the relationships. To accommodate the approach described in 6.3.4, it is also

possible to connect two attributes by using an indirect connection constituted by sev-

eral entity relationships. Translations of the term attribute and attribute relations into

26

the language of Bayesian networks would be node and their connecting relationships.

The indirect connections are realized via the PRM slot chain mechanism (cf. 6.3.4)

The abstract model enables one to model influence dependencies between different

entities, for example, ―the experience of the system administrator may affect the

availability of the system he or she administrates.‖ [46]. These influences are de-

scribed by a conditional probability table as described in 6.2. The CPTs have to be

specified for each attribute that is dependent on other attributes. They represent the

degree of influence of each parent attribute on the current attribute. Attributes that

have no parent attributes have to be provided with priors. Priors represent source

nodes in the resulting Bayesian network. The source nodes are not influenced by other

nodes. Therefore, the probability of each of their states can be stated.

Since these CPTs can grow quite large (6.3.3), it is possible to specify a so-called

aggregation function for an attribute relationship. These aggregation functions result

in the insertion of auxiliary nodes into the resulting Bayesian network. The auxiliary

nodes aggregate the influence of several congeneric attributes. In addition, the intro-

duction of Aggregation functions and later auxiliary nodes enables the realization of

probabilistic relational models (6.3.4). These functions are a representation of the

aggregation functions described in [25].

Information for creating abstract models can be found in specific literature. Anoth-

er source can be the knowledge of experts or empirical data.

In the following, a simplified example of an abstract model is shown and described

to summarize the different model elements (Fig. 8). The example is taken from [46].

Fig. 8. Example of an abstract model [46]

In Fig. 8 above, an example of an abstract model is given. Main goal was to deter-

mine the availability of a certain function of a software system. The model consists of

three entities ―Function‖, ―System‖ and ―System administrator‖. The ―Function‖ is

provided by a ―System‖ as depicted using an entity relationship between them. In

27

addition, the existence of a ―Function‖ that is used by a ―System administrator‖ is

possible. Finally, the ―System administrator‖ administrates a ―System‖.

As the goal was to calculate the ―Availability‖ of a ―Function‖, the ―Availability‖

is modeled as attribute of the entity ―Function‖. This ―Availability‖ is dependent of

the ―Availability‖ of the whole ―System‖. The ―Availability‖ of the ―System‖ itself is

dependent from the ―Reliability‖ of the ―System‖ and in large parts from the ―Expe-

rience‖ and ―Responsiveness‖ of the ―System administrator‖ which are modeled as

attributes of the ―System administrator‖. All these dependencies are attribute relation-

ships and are shown in the figure as gray arcs.

The next step of the enterprise architecture analysis consists of collecting all

needed and possible evidence of the model described above (cf. 6.5 Evidence Collec-

tion). Although it is not possible to observe or to assess values for all attributes, it is

possible to calculate the missing ones by creating a Bayesian network from the evi-

dence and the modeled attribute relationships (cf. 6.2 Probabilistic Influences and

Uncertainty).

6.5 Evidence Collection

In order to instantiate a concrete model based on an abstract model, detailed informa-

tion are necessary. As mentioned in 6.1, the instantiation of a concrete model out of

an abstract model can be seen in the same way that an object is an instantiation of a

class in object-oriented programming languages. Taking for instance a class Admin-

istrator which has attributes name and experience the programmer is better

off knowing these specifications when instantiating an Administrator object, e.g.

crm_admin, whose name is ―Juliet‖ and experience is ―high‖ (assuming that

there are no default values and the constructor needs these attributes as arguments).

Gathering relevant information for the instantiation of a concrete model is called

evidence collection. Evidences are “… used to create one concrete model per scenario

[…] where the generic concepts of the abstract model are instantiated as enterprise-

specific (concrete) entities and attributes” [46]. The word evidence in the term evi-

dence collection is used since instantiated variables in Bayesian networks are usually

referred to as evidences [34]. According to Johnson et al., there are three types of

evidence that can be supplied:

 Evidence on the existence of various entities;

 Evidence on the relationships between entities;

 Evidence on the value of attributes (data collection).

The first two types determine the structure of the concrete model and the last type fills

the structure with indications of attribute states so that the quality assessment can be

performed. Only evidence on entities, relationships and attributes present in the ab-

stract model is permissible evidence.

Before collecting evidences, considerations have to be made.

“To get the necessary information, the decision-maker needs to know what kind of

information to collect and then insure that this information is indeed collected and

properly modeled.” [55]

28

First, as shown in 6.1, assessment scoping is necessary to define the goal of the as-

sessment and to identify appropriate scenarios. Doing this reduces the complete envi-

ronmental system to a relevant domain of examination. Thus the amount of evidences

to be gathered decreases and hence the effort of collecting them declines, too.

Second, the ways of gathering information have to be considered. Usually, the col-

lection can be done by reading documents, performing interviews/manual test, from

first-hand experience, or a combination of these [67].

Referring to [31] the collection of type three evidences (data collection) can be done

as follows:

 Direct collection (of technical parameters of the actual EA elements; read out

log files, etc.);

 Indirect collection (of data bases at distributed locations that allow to draw

conclusions about element dependencies);

 User-based estimation of causal dependencies (by querying the users via in-

terview or questionnaire).

According to [31] “The manner of data elicitation may also depend on the individual

collection strategy of a company. Methods one and two usually require additional

technical efforts beforehand […]. Method three does not require […] technical ef-

forts. This approach collects relevant conditional probabilities through interviews

with e.g. architecture experts, programmers, and system users as well as through

analysis of the participating EA elements.”

The collection of evidences not only focuses on the evidence‟s core informational

contents but also on contextual information. For example, the source, the age, and the

type of the evidence are gathered, too. This is done to estimate the credibility of evi-

dences because the suitability of sources for providing certain information can differ.

For instance, evidences as an outcome of interviews can be colored and subjective. It

is obvious that an administrator itself would rate his responsiveness higher than a

related employee would. Thus, the credibility of evidences is quantified and processed

in CPTs. Moreover the “… evidential credibility is subsequently used to estimate the

credibility of the assessment as a whole.” [46]

Närman [67] states that there are two ways for determining the credibility of evi-

dences:

 Employ heuristics [38] or

 Use quantitative estimations of the credibility by experts [14, 48]

One example of heuristic simply could be the matching of the interviewee‟s domain

of competence with that required by the questions. The better the matching is the

better the credibility. Furthermore, the actuality of the information is an indicator for

its credibility, too.

The data collected in the evidence collection process is crucial for the process of

analysis as conditional probability distributions are derived from the evidences. Hav-

ing collected data for all CPTs (and hence specifying the Bayesian Belief Network)

enables reasoning (calculation process).

29

6.6 Concrete Model

The abstract model and the collected evidence together constitute a concrete model.

The concrete model can be understood as an instantiation of the abstract model like an

object diagram is the instantiation of a class diagram in the UML.

As the abstract model serves as Meta model for the concrete model a concrete

model can only contain instances of entities and relationships that have been modeled

in the abstract model before.

While the abstract model is about general correlation of objects or concepts, the

concrete model is about the concrete real world instance of the object or concept.

―The concrete model […] specifies which system and what administrator are under

consideration […]‖ [46].

Most of the time more than one concrete model of an abstract model exists. This is,

because each concrete model is the mapping of one scenario from which the decision

maker wants to choose. Different scenarios do not necessary have to consist of differ-

ent types of evidence, but rather can differentiate in the values that are assumed for

them.

Fig. 9. Example of a concrete model [46]

Fig. 9 shows an example of a concrete model corresponding to the previously intro-

duced abstract model. The goal is still to assess the ―Availability‖ of a ―System‖, in

this case the ―Customer Support‖-function of a ―CRM System‖. During the evidence

collection process, information about the existence of concrete entities and relation-

ships are gathered. A ―System administrator‖ called ―Juliet‖ who uses a ―Fault Man-

agement‖-function of a ―Maintenance system‖ to get notifications about possible

system errors, administrates the ―CRM System‖. Another ―System administrator‖

called ―Joseph‖ administrates the ―Maintenance system‖. ―Joseph‖ does not use any

other systems for his work. Therefore, the ―Availability‖ of the ―Maintenance system‖

is only dependent on the ―Reliability‖ of the system and the ―Responsiveness‖ and

―Experience‖ of Joseph. Evidence collection on the values of attributes identified that

both attributes of Joseph are stated as ―High‖ either by observation or by interviewing

30

him. By observing the error log of the ―Maintenance system‖, its ―Reliability‖ is

stated as ―Medium‖, what is consistent with the interview of Juliet, who said that the

availability of the fault management function is ―Medium‖. Juliet also said her ―Expe-

rience‖ is ―High‖ and it was observed that her ―Responsiveness‖ is also ―High‖.

With this information given and the addition of further information about the relia-

bility of the observed evidence it is possible to create a Bayesian network and with

this to calculate a possible value for the availability of the customer support in this

example.

The resulting concrete model is translated into a Bayesian network. The evidences

are used as parent nodes, as well as the priors of attributes, which are not influenced

by other attributes. Then auxiliary nodes are inserted to represent the aggregation

functions of the attribute relationships. Next all created nodes are connected accord-

ing to the specified relationships, which were defined in the abstract model. In the last

step, inference is made. After this calculation, the information of the values is stored

in the properties of the concrete model.

Further information about the functionality of a Bayesian network can be found in

chapter 6.3. The creation of a Bayesian network from a concrete model is described in

detail in chapter 8.3.4.

6.7 Further Considerations

The approach for decision-support taken in the enterprise architecture analysis me-

thod examined before is determined by mathematical modeling with Bayesian net-

works. It is obvious that the dependency on a large and credible amount of evidences

necessary for instantiating a good concrete model, can result in extensive efforts ga-

thering them. That is why section 6.7.1 provides a heuristic method of resolution for

this dilemma. Section 6.7.2 then shows that the probabilistic based method is only one

alternative for supporting architectural decisions. The section describes the approach

of Zimmermann et al., which is determined by a Meta model-based decision model.

6.7.1 Data Collection Prioritization

In general, there is one problem in evidence collection. The amount of evidences to be

gathered rises rapidly with the complexity of the concrete model. In a highly meshed

and cross-linked Bayesian network, the addition of an extra element increases the

number of attributes surpassingly. Considering multiple sources of evidences lets the

number of pieces to be collected rise dramatically. There can easily be more than ten

thousand pieces of evidence. It is obvious that trying to gather all pieces of evidence

will result in an unwarranted expenditure of time. Consequently, it is advisable not to

try to collect each and every piece of evidence, but only those which have the biggest

impact on the assessment result while having the lowest collection cost. An algorithm

to determine which piece of evidence to collect next is examined in [67].

Based on the work of Jagt [34] Närman et al turn to theory of diagnosis in Bayesian

networks. [95] states that diagnosis is best known as the process of identifying the

31

disease or disorder of a patient or a machine by considering its history of symptoms

and other signs. Diagnosis itself is done by conducting two tasks: (i) determining the

cause(s) of the observed effects, and (ii) increase the certainty of the true cause(s) by

gathering information, e.g. from tests or historic data. The collected information has

to comply with three assumptions:

 The information is perfect, i.e. not wrong or incomplete

 The information is non-intervening, i.e. does not change the world

 The information decreases uncertainty

As information usually cannot be collected without cost, there needs to be a strategy

to determining which information is worth being collected (next). As stated above the

most valuable information has the biggest decreasing impact on uncertainty while

having the lowest collection cost.

In order to conduct diagnosis on Bayesian networks Jagt associates them with a struc-

ture that distinguishes the variables necessary for diagnosis. In these so-called diag-

nostic probability networks (DPN), task (i) can be executed by applying Bayesian

network reasoning algorithms, and task (ii) can be done by using the value of informa-

tion concept described later.

A DPN is defined as a Bayesian network where at least one random variable H is a

hypothesis variable and at least one other random variable T is a test variable (here

variables of the model that one potentially can collect information about).
 Let H be a hypothesis variable and H a set of all hypothesis variables also re-

ferred to as hypothesis set. A state of a hypothesis variable h ∈ H is denoted

as a hypothesis state. Each hypothesis state may represent a possible disease,

fault in a system, or any other discomfort.

 Let T be a test variable and T a set of all test variables, also referred to as test

set. A state of a test variable t ∈ T is denoted as a test state. Each test state

may represent an observation, physical sign, indicant, symptom or laboratory

result. Each test is associated with a cost value Cost (T), if a test variable has

no cost, the cost value is set to 0.

Fig. 10 shows the application of the diagnosis structure on a Bayesian network, which

represents an extended version of the example from Fig. 8. For didactic purposes, it

introduces an additional attribute to the System entity: Security and another attribute

to the Function entity: Reliability. Moreover, some influence relationships have been

added. The structure of this example Bayesian network is based on the fictitious Asia

example from [93]. This network illustrates that the reliability of the customer support

function (CSR) is dependent on the availability (CA), security (CS), or reliability (CR)

of the CRM system. Thereby the responsiveness (JR) of the administrator Juliet in-

creases the probability of the CRM system‘s availability, while her experience (JE)

has influence on the probability of both security and reliability. Neither the fact that

the customer support function is available nor the fact that it is reliable discriminates

between the CRM system‘s availability and reliability. Each of the variables is asso-

ciated with a probability distribution. In the colored DPN from Fig. 10 the red colored

―caused effects‖ are part of a hypothesis set H = {CA, CS, CR}, whereas the green

colored nodes are part of the test set T = {JR, JE, CSA, CSR}. Assuming that each

hypothesis variable has only two states, this would result into 2³ = 8 scenarios.

32

Fig. 10. The DPN of the example (based on fictitious Asia example in [34])

It is obvious that the number of scenarios grows exponentially with the number of

hypothesis variables. The amount of the number of scenarios results from num-

ber_of_states
number_of_hypothesis_variables

. The exponential growth of the scenarios, which

can make systems hard to compute, can be antagonized by applying so-called ―idiot‘s

Bayes‖. This is a naive Bayes structure where only one hypothesis value is allowed

and a conditional independency between each test variable is assumed. This results in

a single cause assessment.

33

Fig. 11. Example transformed into naive Bayes structure

In Fig. 11 the example from Fig. 10 is transformed to a naive Bayes structure. With

this naive Bayes structure, there iss only one overall system quality state left. The

simplicity of such naïve Bayes structures make it easy to assess and to compute.

However, obviously there is a mismatch between the Bayesian network in Fig. 11 and

the ―real world‖ in Fig. 10. Thus large enterprise architecture models are likely not to

be transformed into naïve Bayesian networks as they should provide the most relevant

and exact picture of a company‘s enterprise architecture (moreover it is hardly

achievable to do so due to the complexity). That is why it is necessary to have infor-

mation collection prioritization within multi cause networks. Since the value of infor-

mation is based on the naïve Bayes structure and a foundation for understanding the

marginal probability approach, this topic is examined in the following paragraphs

briefly.

As explained earlier the uncertainty of causes can be reduced by gathering additional

information. Since usually there is a restriction of resources, e.g. time or personnel

limitations, it has to be assessed which information is worth collecting. This can be

done by applying the value of information concept. This concept computes, which test

to perform, i.e. which information to acquire. The formalization of this procedure is in

a similar notation as [35]

Consider a DPN with a set of hypothesis variables H, a set of test variables

T, and a value function V (Pr (H)) : [0; 1] → R. The expected value (EV) of perform-

ing a test T ∈ T is used:

Whether there will be a benefit when performing a test can be computed by calculat-

ing the expected benefit (EB) of performing a test, which is defined as the difference

34

between the expected value of performing a test and the value without performing a

test:

For assigning a ranking to each test based on the benefit of the test and the cost of the

test T, the test strength (TS) is used:

The coefficient K determines how much the cost of a test weighs in combination with

the benefit of a test. There is no standard formulation for the value of K, so it can be

set by the user.

Lastly, a value function is necessary to compute a prioritization ranking of all tests

that can be performed. Therefore linear functions are useless as they return always an

expected benefit of zero [35]. Jensen also discovered that convex value functions

always return a positive expected benefit, which complies with the assumption that

information never increases the uncertainty. According to [27] functions which have

the ability to determine most informative tests, are called quasi-utility based func-

tions. These functions reward tests that reduce uncertainty with high value and vice

versa. One of the most popular quasi-utility functions is the entropy function [90].

With these concepts, a prioritization of information collection can be achieved. A

small example of how to conduct single cause diagnosis with the help of GeNIe

(7.1.1.2) can be found in [34].

Jagt states ―… the major disadvantage of this application is the restriction of pur-

suing only one state instead of multiple states. If all the hypothesis states were mu-

tually exclusive as in the naive Bayes structure, this application would be logical and

even useful. However, if multiple causes are possible this application totally ignores

the other causes and only focuses on proving the presence or absence of the selected

cause.‖ To support the data collection prioritization for multiple hypothesis networks

(and hence solve the problems of presentational and computational complexity) he

introduced an approximation approach – the marginal probability approach2 (MPA).

Jagt gives a short summary of this approach:

“It uses the relation between the marginal and joint probability distribution to justify

the use of marginal probabilities. This approach saves a lot of computational effort,

since the joint probability distribution is no longer calculated. Furthermore, the ap-

proach allows the presentation of the hypothesis states instead of the enormous num-

ber of hypothesis scenarios.”

2 In fact he introduced two approaches: the marginal probability approach (MPA) and the ―less

radical‖ joint probability approach (JPA), but the focus lies on the function based on the

MPA

35

Therefore, he formalizes the relationship between marginal probability and joined

probability as a discrete derivation of the Frèchet-Hoeffding bounds [35]. This rela-

tionship allowed him to formalize a corollary that states that interesting probabilities

are only possible if the marginal probabilities are close to zero and one (and thus

certain). This characteristic is called marginal strength. With the help of this quality,

there is the ability to reduce the uncertainty between scenarios to the goal of decreas-

ing uncertainty of marginal probabilities. Jagt states that the benefits of this approach

are noticeable in the number of computations, since it is no longer necessary to de-

termine the computationally expensive joint probability distribution. Moreover, the

user is able to interpret the marginal probability states directly instead of needing to

look at the numerous scenarios and their probabilities.

An appropriate value function that determines which test to be selected should as-

sign high values to marginal probabilities close to zero or one (certain) and should

have its minimum at 1 - (1/n) (most uncertain), where n is the number of targets in a

set of hypothesis states. To assure that each information decreases uncertainty the

function has to be convex again. As the final value function, Jagt defines the Marginal

Strength1:

Where F is a set of target states where each target state f represents a hypothesis state,

which the user wishes to pursue, and nF is the total number of target states.

Fig. 12 shows that the function is convex and has its maxima at (0, 0), (1, 0), (0, 1),

and (1, 1) and its minimum at (0.5, 0.5) in the case of two random targets.

The final value function that is necessary for our purposes is the sum of the marginal

strength for all target states:

36

Fig. 12. The MS1 function over two random targets f1 and f2 taken from [34]

Närman et al. have applied the value function in GeNIe‘s (see 7.1.1.2) multiple cause

module (MCM) which itself is implemented by Jagt as a modification of the single

cause module (SCM). GeNIe itself is a graphical development environment for build-

ing graphical probabilistic and decision-theoretic models. It provides a user interface

to the underlying SMILE library (see 7.1.1.1).

Rather than staying with the fictitious Asia example it is now referred to a more com-

plex (multi cause) example from [46] within the domain of enterprise architecture

analysis. In short, the probable outcome of the attribute Interoperability in the entity

Service Cluster is the target. All possible causes can be resolved in Fig. 13. Fig. 14

shows the calculated ranking of the tests inside GeNIe‘s MCM UI. Once a test has

been selected and performed, the remaining list will be recalculated. For more infor-

mation about abstract models, it can be referred to section 6.4.

37

Fig. 13. Example: abstract model for Service Cluster Interoperability from [67]

Fig. 14. Test ranking result in GeNIe‘s MCM user interface taken from [67]

The example shows that that the use of the diagnosis algorithm reduces the cost of

evidence collection by providing a strategy of which data is to be collected first. In

comparison to not having a calculation-based particular strategy this approach can

save temporal and personnel efforts and thus reduce the cost of enterprise architecture

analysis. In future versions of EAT it will be worth integrating SMILE‘s MCM capa-

bilities and providing an integrated user interface for data collection prioritization.

6.7.2 Alternative

Alternatives in the domain of decision support have been developed since the 1990s,

e.g. Questions, Options and Criteria (QOC) [59] or Decision Support Systems (DSS)

[61, 98] as well as this work, but they mainly focus on decision-making. This chapter

presents a work that additionally takes decision identification and decision enforce-

ment into account, too.

38

This approach for architectural decision support has been developed by Zimmer-

mann et al. [114]. In their work, they propose a framework that facilitates proactive

decision support with the three conceptual steps - decision identification, decision-

making, and enforcement. They aim for the easement of reusing architectural deci-

sion rationale considering collaboration and automation aspects. With this framework,

they address the limitations of existing decision capturing methods, which are often

―… regarded as a retrospective and therefore unwelcome documentation task…‖ that

is not available to decision makers when they actually need it – before making deci-

sions.

The core idea of their framework is to instantiate Meta model-based decision mod-

els with the help of requirement models and reusable decision templates.

In the first step of the conceptual framework, decision identification, requirements

and earlier decisions help to identify individual decisions. In the second step, deci-

sion-making, the selection of alternatives according to specific decision drivers is

made. The last step, decision enforcement, then focuses on publishing the decision,

achieving acceptance, and reducing enforcement efforts.

In order to connect the steps of the framework and to enforce the identified design

goals team collaboration and previously-made-decision-harvesting they developed a

decision modeling framework that also supports basic decision-making requirements

(use cases), which have been identified by interviewing 100 practicing software archi-

tects [114]:

1. Obtain architectural knowledge from third parties

2. Adopt and filter obtained decision knowledge according to project specif-

ic needs

3. Delegate decision making authorities

4. Involve network of peers in search of additional architectural expertise

5. Enforce decision outcome via pattern-based generation of work products

6. Inject decisions into design models, code, and deployment artifacts

7. Share gained architectural knowledge with third parties

The Meta model is illustrated in Fig. 15:

39

Fig. 15. Meta model for architectural decision reuse taken from [114]

This Meta model provides a description for architectural decisions and their back-

ground(s). The entities Architectural Decision (AD) and ADAlternative provide

background information, whereas ADOutcome, as a third core entity, represents the

separated outcome. The ADTopic Entity groups closely relates to AD (hierarchical-

ly). These topics are assigned to one of the three ADLevel (abstraction level) which

should separate related but unmergeable topics from each other in order not to unde-

restimate either strategic or generic decisions [114].

With the help of this Meta model Fig. 16 shows the modus operandi for step 1, de-

cision identification. There the initial decision model should be instantiated from

specific requirements and decision templates (that serves as a completeness checklist).

Therefore, reference architectures can provide common vocabulary, certain domain

patterns, and design model elements.

Fig. 16. Semi-automatic decision identification in requirements model and reference archi-

tecture taken from [114]

The second step, illustrated in Fig. 17, then integrates decision support systems into

the framework that use the decision models from step 1. Moreover, a list of decision

drivers per decision provides additional information (functional, non-functional, tech-

nical, non-technical) for decision-making.

40

Fig. 17. Decision models, decision drivers and techniques for decision making taken from

[114]

The third step, illustrated in Fig. 18 enforces machine-readable decisions by automat-

ic code generation. This reduces ―…unnecessary development efforts and ensure[s]

architectural consistency.‖ [114]

Fig. 18. Decision enforcement via injection into model transformations and code generation

taken from [114]

An application of the conceptual framework to the SOA design space can be found in

chapter 4 of the Zimmermann paper [114]. ADkwik, a Web 2.0 collaboration front end

implementing the concepts presented in that paper can be found in [89].

 Concluding, this proactive decision-making approach has as its goals to improve

decision reusability and rationale sharing. The approach ―…is generally applicable if

several applications are built in the same or a similar context and if full decision au-

tomation is an illusion.” [114]. It is based on activities and results from software ar-

chitecture research, design decision rationale research, and pattern research. For this

approach, a well-structured requirements model and one reference architecture at least

are prerequisites. In comparison to the EAT approach “…decision making support in

[the decision model] approach empowers the architects to make informed decisions

based on collective insight …” [114] instead of being based on quantitative assess-

ment of enterprise information systems. Generally this approach distinguishes from

the EAT approach as it utilizes past decisions and needs explicit knowledge. Lastly,

the authors admit that their approach is not to fully automate decision-making. In their

opinion, “…the importance of tradeoffs in specific contexts and design drivers natu-

rally makes full automation impossible; heuristic solutions are required.” [114]

41

7 Concept of a Prototype

In this chapter, a concept for the implementation of the Enterprise Architecture Tool

is given. Therefore, the used technologies and software are presented first. Moreover,

the underlying data model and the architectural design of the tool are explained.

7.1 Chosen Platform

In this section, chosen technologies and the reason why they have been selected are

presented. In the process underlying technologies, implementation libraries, and de-

velopment environments are considered. The chosen platform defines the relevant

environment for the EAT implementation.

7.1.1 SMILE and GeNIe

In order to calculate the Bayesian networks described in 6.3 the SMILE library and

the GeNIe platform, provided by the Decision Systems Laboratory of the University

of Pittsburgh [22] have been used
3
. This software package, implemented for academic

purposes, consists of two independent parts, which are explained, in the following.

7.1.1.1 Structural Modeling, Inference, and Learning Engine (SMILE)

The platform independent library SMILE (Structural Modeling, Inference, and Learn-

ing Engine) provides functionality for implementing graphical probabilistic and deci-

sion-theoretic models. It supports different types of models, namely influence dia-

grams, structural equation models and Bayesian networks. The SMILE API provides

load, save, edit, and create functionality as much as operations for making inferences

in such models.

The library is implemented in C++, but several wrappers are available on the

SMILE website. In the program described, the Java wrapper jSMILE was used.

SMILE itself does not provide any visualization functionality. Its API can be used

by other software. Thus, a connection from the user interface of the application to

SMILE can be implemented (see more in 8.3.4).

3 There are several other tools which support decision making based on probabilistic inference,

an overview can be found at [111]. The SMILE and GeNIe platform has been successfully

used in the previous implementation. Positive experiences were also made by other research

groups, an example can be found at [30].

42

7.1.1.2 Graphical Network Interface GeNIe

An example of an implementation of a user interface for SMILE is GeNIe. It is a

graphical editor to consume the functionality provided by the SMILE API, in order to

create decision theoretic models by using the graphical click-and-drop interface.

―Models developed using GeNIe can be embedded into any applications and run on

any computing platform, using SMILE, which is fully portable‖ [12]. As all models

that were created with SMILE can be processed by GeNIe, the application can be

utilized as a visualizer for SMILE-models.

The tool helped to implement and follow the calculation process described in 8.3.4,

a control and comparison of the passed steps was eased. After each stage of the calcu-

lation process, a temporary SMILE network was build. This net was visualized with

GeNIe and compared to the target network that was built manually.

Discrepancies were found and corrected immediately. This ensured that network

creation was implemented correctly and the resulting networks were identical to net-

works, which were created by hand.

This approach turned out to be a wise proceeding, because the calculation process

was extended and got more complicated as models grew.

7.1.2 XSD (XML Schema)

XML Schema Definition (XSD), in the following often referred to as ―XML Sche-

ma‖, is one of several XML schema languages that have been developed in the last

years [54]. This language was published as a recommendation by the W3C. Its target

purpose is verbalized at the W3C homepage:

“The purpose of the XML schema language is to provide an inventory of XML mar-

kup constructs with which to write schemas.” [110]

In an XSD document, a class of XML documents is described and defined. An

XSD file can be considered as the construction plan of multiple XML documents.

Their components, especially relations, way of use, and content are restrained and

documented. All components of an XML structure that will ever occur must be consi-

dered and described in the underlying schema. The way these components were

nested (e.g. if a component consists of just one subcomponent or if a sequence with

zero to infinity elements of the same subcomponent is allowed) is regulated in an

XSD document. Elements and their meaning, data types, attributes and their values, as

well as content and notations of entities were limited [110]. Besides the typical data

types such as String, Integer and Boolean, user-defined types are possible as well.

These user-defined data types have to be introduced and described, in order to be

usable. Likewise, default values for properties can be set, so that elements are initia-

lized on start-up.

The requirements, which a certain XML Schema must fulfill, are documented in

the XML Scheme Requirements [110]. They were split into three categories; their

gists are listed on the following page:

43

 Structural Requirements:
 Mechanisms for constraining document structure and content

 Mechanisms to enable inheritance

 Mechanism for embedded documentation

 Data type Requirements:

 Define a type system that is adequate for import/export from database

systems

 Distinguish requirements relating to lexical data representation vs. those

governing an underlying information set

 Allow creation of user-defined data types, such as data types that are

derived from existing data types and which may constrain certain of its

properties

 Conformance:

 Describe the responsibilities of conforming processors

 Define the relationship between schemas and XML documents

 Define the relationship between schema validity and XML validity;

 Define the relationship between schemas and XML DTDs, and their

information sets

 Define the relationship among schemas, namespaces, and validity

 Define a useful XML schema for XML schemas

By fulfilling these requirements, a powerful language was created to catalog, describe

and define XML structures and their underlying vocabularies. With the use of these

features a large benefit was achieved in EAT (see 7.3.1), as type checking was eased.

XML documents were specified very detailed and so the data structure can be unders-

tood quickly by examining the underlying XSD file. The XML files contain the input

and output of the tool, since they were used for loading and saving. This means that

an understanding of the XSD document is a first and important step on the way of

comprehending the complete data model as the XSD file manifests start and end of

the data flow.

XML Schema documents were likewise represented in valid XML documents and

were therefore recursively defined in an XSD document. In comparison to Document

Type Definition (DTD)
4
, always two files were created: A specifying XSD document

and an instantiating XML. Additionally, XSD is known to be namespace aware,

which is a missing feature of DTD documents [66].

An analysis of the most used XML schema languages discovered that XML Sche-

ma Definition has a very strong expressive power. In [54] three levels of ―expression

4 DTD is another wide spread XML Schema language, which is under W3C recommendation

status, too.

“DTD is a description in XML declaration syntax of a particular type or class of

document. It sets out what names are to be used for the different types of elements,

where they may occur, and how they all fit together.” [103]

Its features were defined to be similar to the abilities of XSD documents; on the other hand, no

type checking was implemented. So a successor of DTD can be seen in XSD documents.

44

power‖ were defined with the result that XML Schema Definition was assigned to the

most powerful class. ―XML Schema, Schematron and DSD have the strongest expres-

sive power. [...] XML Schema supports features for schema data type and structure

fully ...‖

XSD was chosen as the description language for the Meta models in EAT (7.3).

7.1.3 Castor

In this chapter a brief description of the Castor library and the way it is utilized in this

project is given. Castor is used as a tool to create a Java class structure from an exist-

ing XSD description of a data structure. The created Java classes contain all methods

for checking their contents for data-structure compliance and provide the needed

functionality for writing and reading the according XML files.

7.1.3.1 Features

Castor is

“[…] an Open Source data binding framework for Java[tm]. It’s the shortest path

between Java objects, XML documents and relational tables. Castor provides Java-

to-XML binding, Java-to-SQL persistence, and more.” [8]

In this project, only the binding between Java and XML was used. There are two

ways in which Castor supports binding between Java objects and XML files. One way

is the possibility to map an existing Java class structure to an existing, or for this

purpose, created XML structure.

The other way is the creation of a Java class structure from an existing XSD file.

XSD is a description of the general structure of concrete XML Files (cf. 7.1.2). Castor

is able to create Java classes by using these definitions. The classes implement the

typing that is defined in the XSD file, for example the definition of a Double-Type or

a String-Type. Extensions in the XSD File are realized in the Java structure by the use

of inheritance. Castor is able to utilize Java-Collections for managing lists of ele-

ments.

7.1.3.2 Castor in EAT

In the EAT project, the way from an existing XSD document to a Java class structure

was chosen. This is because of the existence of XSD files from previous versions,

which describe the model structure (see chapter 7.3). It is also possible to build mod-

els with other XML editors and validate them against the XSD.

During development, Castor was not used as a library that provided methods used

in the code. It was used as an external tool inside the development workflow instead.

45

The workflow used to generate Java classes by utilizing Castor is described later in

this chapter.

The auto generated Java classes implemented all needed features for using them as

data basis. There are checking methods implemented, that examine whether objects

are valid and whether it is possible to marshal them into an XML document. The

marshalling ability makes it possible to save a model into an XML document by using

only one method-call. In addition to this marshalling feature, unmarshalling was also

implemented by the Castor code generation.

7.1.3.3 Usage Workflow

Since the data structure in EAT is generated externally there are precautions to be

made when altering the underlying structure by changing the XSD.

In this project, Castor was used in Version 1.2. To generate the Java classes from

the XSD file it is necessary to run the class SourceGeneratorMain from the

package org.exolab.castor.builder. The following command-line parame-

ters were used:

 -i <pathToXSDFile> specifies the complete absolute path to the used

XSD file.

 -package <targetPackage> specifies the desired packager which

contains the generated Java classes

 -types j2 tells Castor to use Java collections

 -dest <outDirectory> specifies the absolute path to the directory

where the classes are generated

 -f dismisses all minor warnings and errors of the code generation.

Warnings should be disabled because in default mode a warning is given and the

generation is aborted when the generated files already exist. This is improvable be-

cause while developing iteratively (as described later) most files exist already exist.

It turned out that the impacts on the code of the EA Tool were minimized when

changes were made using the described workflow. It was experienced that it is bene-

ficial to keep older parts in the model. Certainly, the structure becomes tainted but

implementing the feature throughout the whole EA Tool is not necessary anymore.

As the EA Tool was implemented, it was realized that changing the model struc-

ture and putting the changes through the whole code base works fine as follows:

1. Changing the model in a way that new features are added as optional

elements and keeping everything else.

2. Running Castor5 and copying the new Java class files into the code base.

3. Implementing the new features in the tool. Doing this it is necessary to

notice that the new parts are optional. Thus, there is no automated

checking.

5 Castor was parameterized with the command line options specified earlier in this chapter.

46

4. Changing the XSD again and make new must-features obligatory.

5. Running Castor and copying the new Java class files into the code base.

6. Check the whole program for errors by going through the complete

workflow and focusing especially on the new features.

7. Altering the model to remove old features that are no longer used.

8. Running Castor and copying the new Java Class files into the code base.

9. Cleaning the code from the usage of all old features.

7.1.4 Evaluation of Graph Libraries and Frameworks

This chapter first explaines why it was necessary that a graph library/framework
6

evaluation was conducted. Then it describes how the evaluation was realized by stat-

ing the candidates, explaining the criteria, and finally presenting the result of the

assessment. Based on the evaluation it was decided to use NetBeans Visual Library

2.0 pre3 for implementing graph management and interface actions.

7.1.4.1 Motivation

The implementation of a modeling tool makes high demands on the underlying graph

library, respectively framework. This is because most user actions take place on a

drawing surface that cannot be managed by default interface structures like tables,

trees, lists, and frames. The user is able to draw things somewhere on the surface that

can get easily confusing, unwieldy, and thus unusable if not managed properly. More

specifically, the Enterprise Architecture Tool requires features that are not usual in

other modeling or meta-modeling tools and turned out to go beyond the capabilities of

AWT and Swing. For instance, there has to be a possibility of drawing one or more

connections between an Attribute relationship Widget and its related Entity Relation-

ship Widget(s) automatically. Moreover the underlying model of EAT requires a

management that handles data model and visual representation separate but synchron-

ous.

As mentioned previously the version of EAT described in this work is a reimple-

mentation of an older version. In that older version, NetBeans Visual Library was

used, too. Thus, a verification of this selection was intended, too. Some problems,

especially with the low performing orthogonal router algorithm, emphasized the need

for a library/framework assessment before reimplementing the tool.

That is why it had to be examined what graph library or framework implementa-

tions exist and whether they fulfill our requirements at all (especially with respect to

chapter 7.4). Pay attention to the fact that the aim of the evaluation was to find the

6 A framework defines most of the control flow of developed software. Via inheritance and overriding new

functionality and look and feel can be added. A library ―only‖ provides routines and methods that can be

used for the implementation of software. Summarized: a framework calls the developed code; a library is
called by the developed code. [52]

47

most feasible solution within the context of the EAT project. It was not to declare any

solution to be the best graph library/framework implementation at all.

7.1.4.2 The Candidates

In general, the proposition of graph libraries is complex and extensive. Besides wide-

ly known technologies like Java AWT [96] or Swing [97], also SWT [15], SwingWT

[101], Zaval GUI Designer Package [113], and Buoy [5] are worth mentioning here.

Finally, four candidates out of the large range of implementations namely NetBeans

Visual Library [75], QtJambi [85], JHotDraw [36], and GEF (Graphical Editing

Framework) [20], were chosen. This section explains why they have been chosen and

gives a small introduction of each candidate.

The selection was determined by the decision that the interface of this tool should

be Java-based. This is because Java was used in the EAT project before and thus is

familiar to those who are going to extend the tool. In addition, Java is in conjunction

with the other technologies that have been used during the implementation, e.g. Cas-

tor. Choosing Java as the preferred programming language excluded XML User

Interface Language (XUL)-based alternatives like SwixML from the choice. The four

candidates mentioned above fulfilled the requirements of being Java-based, feature-

rich, prevalent, and free of charge.

NetBeans Visual Library

As the name says, NetBeans Visual Library is a library implementation. It is a further

development of the original Graph Library and supports graph-oriented modeling

[75]. The library is part of the NetBeans 6.0 platform, which provides a graphical

designer for modeling user interfaces. NetBeans Visual Library serves as the refer-

ence candidate because it was used in the preceding EAT project. Detailed informa-

tion about NetBeans Visual Library can be found in chapter 7.2.

QtJambi

QtJambi is a wrapper of the widespread Qt library and enables implementing platform

independent user interfaces in Java [85]. QtJambi was developed by Trolltech and

was released in June 2007. A specific feature of this library is the management of

object interactions via the ―Signal-Slot-Concept‖ which enhances maintenance and

extension of software implemented with QtJambi. Moreover, it provides a graphical

UI designer named Qt-Designer.

JHotDraw

The Open-Source project JHotDraw is a framework for the development of modeling

tools [36]. Hence, it provides graphical objects, toolbars, and views for implementing

appropriate editors. It is often used for academic purpose, especially for teaching the

advantages and the use of design patterns. Erich Gamma, one of the developers, is

also one of the authors of the famous ―Gang of Four‖ book ―Design Patterns, Ele-

ments of Reusable Object Oriented Software‖.

48

Graphical Editing Framework

GEF is another candidate of the class of IDE bundled libraries like NetBeans [20].

Because it is the graphical underlying of Eclipse's graphical modeling capabilities, it

is very prevalent. GEF is used ―…to build a variety of applications, including state

diagrams, activity diagrams, class diagrams, GUI builders for AWT, Swing and SWT,

and process flow editors‖ [21].

7.1.4.3 The Criteria

This section introduces the criteria the four candidates have been evaluated against.

The criteria used to assess the candidates resulted from two requirements. On the

one hand, there was the scope of the project and difficulties that occurred in the pre-

vious EAT implementation, which required specific features to be fulfilled. On the

other hand, there are fundamental requirements on libraries/frameworks that had to be

met.

From the previous EAT project, three important categories were identified that

contain at least one criterion: ―Drawing and Layout‖, ―Graphical Appearance‖, and

―Documentation (Learnability)‖. The category ―General‖ includes criteria that are

fundamental requirements for the project. The following Table 4 lists and explains the

criteria of each category:

Table 4. Assessed criteria

Category Criteria Explanation

Drawing and Lay-

out

Routing Algorithm Provides automatic routing (ortho-

gonal, curve, free)?
 Built-in Functions Features, e.g. zoom, grid layout,

satellite view, etc.

Graphical Appear-

ance

Customizability Capabilities for changing provided

figures, shapes, etc.

Documentation

(Learnability)

API Documentation Provides well-arranged, complete

API?
 Samples

Are there executable samples or

tutorial files? Could be videos, too.

General Dependencies Ease of install and diffusion of the

final application.
 Diffusion Rate Popularity. Degree of spreading.
 Maturity (Stability) Version, known bugs, release

cycle, community activity.
 License GPL, EPL, free at all? Developed

code under GPL, EPL, or commer-

cial license?

49

Initially there was an additional criterion ―Feasibility of Managing Widgets‖ in the

―Graphical Appearance‖ section, but this was not evaluated because it depends more

on the manner of implementation than on built-in capabilities provided by the libra-

ries/frameworks.

7.1.4.4 Evaluation and Result

Each candidate was evaluated against each criterion. For grading the candidates, a

numerical rating scale was used. The scale goes from ―1‖ meaning the criterion was

fulfilled ―very bad‖ up to ―5‖ meaning it was fulfilled ―very good‖. The abbreviation

―n/a‖ stands for ―not applicable‖ and means that there was no information found. For

calculation purposes, the numerical representation was set to ―1.5‖ because we as-

sumed that it is very likely that the criterion is fulfilled ―bad‖ or ―very bad‖ when

there is no public information found.

The evaluation itself was conducted in a way that all candidates were stepwise as-

sessed against each criterion. Table 5 shows the allocation of points for each candi-

date and criterion:

Table 5. Evaluation Result

Criteria NetBeans

Visual Library

Qt Jambi JHotDraw GEF

Routing Algorithm 3 1.5 2 4

Built-in Functions 5 3 4 4

Customizability 5 4 3 5

API Documentation 5 3 3 3

Samples 5 4 2 3

Dependencies 4 2 4 3

Diffusion Rate 5 2 3 5

Maturity (Stability) 4 3 1 4

License 5 3 5 4

Result 41 25.5 27 35

NetBeans Visual Library

Table 5 shows that NetBeans provided the best overall performance. It convinced

with its superior functionality, clean and complete documentation, and its popularity.

It has several partners like eBay or Ricoh [71] and is used in various projects, for

instance by Systinet, Software AG, and Flashline [72]. Furthermore, there is a large

knowledge base on the web that is well kept and extended by a diligent community.

The final application can be distributed within a simple .jar-File. SUN as the vendor

of NetBeans is very experienced and the development team of this library is very

active. The main problem of NetBeans Visual Library, the routing algorithm, is al-

ready a known issue and it is foreseeable that a patch will fix this soon [74].

50

QtJambi

The Qt implementation provided the second best documentation, which makes it easy

to learn. Nevertheless, Qt Jambi neither convinced with routing algorithm capabilities

nor maturity qualities. Although Qt is widespread (e.g. used for KDE, Opera, Skype,

Mathematica, GoogleEarth or VirtualBox) and proved to be mature, Qt Jambi has no

real reference until now. In addition, the native libraries for each operating system

make it inflexible.

JHotDraw

This framework convinced with many graphical built-in capabilities. Because of its

framework characteristic, a lot of functions and activities that usually occur on a user

interface were already implemented. It focuses on graphical visualization and pro-

vides a good API. Unfortunately, it delivers only rudimental routing and only offers

interfaces. Another negative is the fact that JHotDraw is a private project and

thus release cycle and bug fixes will take long. Furthermore, the current version 7 is

marked as unstable [37].

Graphical Editing Framework

GEF as the runner-up provides several routing algorithms. As the only li-

brary/framework in the field, it supports Bezier-routing, too. As a framework, it also

offers easy access to complex, graphical routines, because they are already imple-

mented. As a part of Eclipse, it is prevalent and licensed under EPL. Third party ap-

plications that were built using GEF can be made available under one‘s own license.

However, because of the poor and chaotic documentation as well as dependencies on

DLL-Files its usability and flexibility is unsatisfactory.

Overall

Finally NetBeans Visual Library was picked for the implementation of EAT. Despite

the fact that the implementation would be possible with any of these libra-

ries/frameworks, the effort of achieving this would be influenced by the quality and

quantity of built-in functions and documentation. These are strengths of NetBeans

Visual Library. The disadvantage of a library in comparison to a framework, which is

that complex graph and typical control flow routines are not implemented, is compen-

sated with the use of NetBeans IDE (see 7.1.5). This IDE provides a user interface

designer for building and managing windows and dialogs. Furthermore the overall

performance of GEF, Qt Jambi and JHotDraw did not exclude the possibility of fac-

ing currently unknown issues during the EAT implementation. That is why NetBeans

Visual Library was chosen for the implementation of the Enterprise Architecture

Tool.

For further information about the results of the evaluation and explanations of the

grading, conduct Appendix C: Evaluation Table.

51

7.1.5 Chosen IDE – NetBeans

This section explains why the development of EAT required an integrated develop-

ment environment (IDE) and why NetBeans IDE was chosen. Moreover, it outlines

the history of NetBeans IDE and shows what features it provides referring to the de-

bug mode user interface of the IDE.

7.1.5.1 IDE

Formerly, software developers used several tools from different vendors for their

development project. For example, there was a text-editor for main coding in Java or

C, an XML editor for building and validating XML schema definition files, a separate

CVS tool for versioning support, and SQL and HTML editors if the developed appli-

cation was web-based. Identifying that this situation slows down and complicates

software development projects, multiple vendors like Oracle, Microsoft, IBM, Bor-

land, and later NetBeans produced the idea of integrated development environments –

IDEs.

“An IDE is generally a programming environment that has been packaged as an

application program, typically consisting of a code editor, compiler, debugger, and

graphical user interface (GUI) builder.“ [106]

Beside these fundamental functionality provisions, IDEs also provided tools for less

important uses at the beginning of their evolvement, e.g. profiling, refactoring, and

testing. The growth of IDEs including more and more of small helpers, which became

unusable when their use cases exceeded the basic tasks, still forced developers to use

several vendor-specific and specialized software for development. This evolvement

led Caspar Boekhoudt to compare it with the ―Big Bang‖ theory of the universe [4].

Nowadays IDEs have a modularized architecture and can are customizable in any

way. For example, the NetBeans IDE can be downloaded in various versions provid-

ing capabilities for specific domains, e.g. basic Java development, SOA development,

etc. More functionality can be added via plug-ins. However, although the maturity of

plugged-in tools improved and the physical growth of IDEs seems under control it

was experienced in the EAT project that IDEs are still far away from being a ―truly

Schwarzeneggian‖ [4] development environment as the unavoidable use of XMLSpy

and Eclipse proves.

Due to the integration of editor, compiler, debugger, and version management in

one environment an IDE was chosen for the development of EAT.

7.1.5.2 NetBeans IDE

For the implementation of EAT the NetBeans IDE 6.1 was chosen. NetBeans IDE is a

free, open source, integrated development environment that is part of SUN‘s software

portfolio. It is implemented in pure Java and hence installable on all platforms pre-

52

suming a Java Virtual Machine. NetBeans IDE is dual-licensed under CDDL (v1) and

GPL (v2) with Classpath Exception [70].

Referring to [106] the IDE was developed in the mid-1990s by Roman Stanek and

other undergraduate students in the Czech Republic. The name of the IDE was Xelfi.

Stanek later founded NetBeans for selling the new IDE. NetBeans was acquired by

Sun in 1999 and declared as open source a year later. The main purpose was the popu-

larization of Java with a Java-based, open IDE. Besides the free NetBeans IDE there

were two commercial products called Sun ONE Studio and Sun Java Studio Creator

with additional functionality, e.g. web development. Nevertheless, since November

2005 all products were available in NetBeans as plug-ins.

As Fig. 19 shows, the modular architecture of NetBeans IDE makes it possible to

provide multiple variants of the IDE depending on the domain (e.g. desktop applica-

tion, web application, composite application, etc.) and chosen programming language

for a development project. For the EAT project the Java SE bundle was chosen as

EAT is a Java desktop application.

Fig. 19. NetBeans IDE download bundles with according feature packs, taken from [70]

Why NetBeans IDE?

There were several reasons for choosing NetBeans as the preferred IDE in the EAT

project instead of Eclipse or Borland JBuilder.

First, it was reasonable to choose NetBeans IDE because NetBeans Visual Library

was the selected graph library (cf. 7.1.4 and 7.2). Thus, it was expected that the inter-

play of two NetBeans products is less problematic and more mature. In addition,

NetBeans as Open Source software provides a large community, comprehensive do-

cumentation (tutorials and samples as well as documents) and an extensive pool of

plug-ins in case additional capabilities are needed. Auto-update functionality and the

provision of three perspectives on a project are supporting capabilities, too.

Secondly, Eclipse did not provide a graphical user interface (GUI) builder out of

the box as JBuilder and NetBeans IDE did. The presence of a GUI builder was rated

very high because it could save lots of time during the modeling of a user interface,

especially when it comes to handle Swing-Layouts. A GUI builder manages layouts

automatically and provides palettes of typical Swing or AWT elements, which can be

dragged and dropped onto a form representing the background of a window. Exam-

ples for these components can be buttons, menu items, text areas, and many others.

53

Furthermore, attributes like height, width, name, etc. can be edited easily. Subse-

quently the according code is generated. The GUI builder of the NetBeans IDE re-

ferred to as ―Designer‖, can be seen in Fig. 21. It shows the palette with exemplary

elements like Swing Menu Items. Moreover, the property window with the ―text‖

attribute of the selected ―Entity‖ button is shown. In the middle of the figure, one can

see the form, which represents the abstract modeler user interface.

Finally, JBuilder, specifically Turbo JBuilder 2007, was dismissed because it is

proprietary and ponderous. While there were no extraordinary requirements to the

build-in capabilities of the IDEs, both fulfilled them by providing an editor, a debug-

ger, a compiler, and version management. However, looking at soft goals like perfor-

mance and costs NetBeans IDE did better than Borland JBuilder did. NetBeans is

available free whereas JBuilder only provides a feature-reduced, free version named

Turbo JBuilder. Moreover, the free Turbo JBuilder 2007 packages were up to ten

times larger than comparable NetBeans IDE bundles and thus seem to represent the

Big Bang philosophy that Caspar Boekhoudt postulates. That may be one reason why

Turbo JBuilder 2007 proved to be slower than NetBeans IDE 6.1.

Getting Started with EAT and NetBeans IDE 6.1

Having used NetBeans IDE in the EAT project had required some software prere-

quisites. First NetBeans IDE 6.1 demanded at least Java Development Kit (JDK) 5

and a local subversion client in order to use the versioning plug-in. More information

on how to setup the IDE for using subversion can be found here: [76].

EAT was implemented as a Java Desktop Application project in NetBeans IDE. In

order to implement and compile it additional libraries were necessary:

 castor-1.2.jar

 commons-logging-1.1.jar

 smile.jar

 xerxes-2.8.0.jar

 org-netbeans-api-visual.jar (from Visual Library 2.0 pre3)

 org-openide-util.jar

Libraries can be added via right-click on project → Properties → Libraries.

Fig. 20 does not show the standard view but the user interface in the debug mode

as it only extents the standard view with the green bordered tabbed pane. Here one

can find additional information from the debugger, e.g. current local variables or set

breakpoints. As local variables could also be objects, it is possible to extend them to

see the object‘s attributes. With the continue button to the right of the disabled pause

button in the icon bar the program will be executed until it reaches the next break-

point. The stop button (red square) terminates the program.

54

Fig. 20. NetBeans IDE user interface (debug mode), red: version management information;

green: debug mode information (active local variables); blue: main editor; yellow: project

explorer

If the program should only be built and executed without debug mode, the use of the

green triangle button will be sufficient.

The red-bordered part in the lower left corner of the IDE interface gives additional

status information of the executed program (Output – also serves as the standard out-

put) and about versioning activity status (Versioning Output). Moreover, it is the

standard tabbed pane for displaying results from other activities, e.g. search queries.

The yellow-bordered pane in the upper left area represents the project explorer

where all projects with all its subdirectories and files are listed. The small blue barrel

in the lower right corner of the cup icon of the ―EAT_cm_fin‖ project indicates that

this project is under version control. Via right-click on the project, a directory, or a

file various features can be accessed, e.g. refactoring methods, JUnit Test creation,

and CRUD operations.

The blue-bordered part, the upper right pane of the interface, displays the files that

have been edited recently. Each file is presented as a tab. In the editor window, the

actual coding takes place. The developer is supported by code folding, profiling, ca-

mel case code completion, and code template insertion, just to name a few.

55

Fig. 21. NetBeans IDE Designer perspective

This section examined why it was necessary to use an IDE for the development

process. It also showed that NetBeans as an open source integrated development envi-

ronment was more suitable for the EAT project than Eclipse or Borland JBuilder. It is

available free, provides a large amount of documentation, an active community, a

modularized architecture, and goes well together with the Visual Library 2.0 pre3.

Additionally important features like editor capabilities, debug mode, and version

management of NetBeans IDE were sketched with the help of an example.

7.2 NetBeans Visual Library

NetBeans Visual Library is a high-level drawing library chosen for implementing the

user interface of EAT. It is built on top of Swing and Java2D and requires JRE 5.0+.

This general visualization library is especially ―… designed to support applications

that need to display editable graphs …‖ [108] such as UML diagrams.

As 7.1.4 shows, it is the best graph visualization library/framework that has been

evaluated. This is due to the superior functionality, the clean, structured, and exten-

sive documentation and the reliable and active developer community.

This chapter performs a closer look at the architecture and the capabilities of the li-

brary. For this, important concepts and classes are described.

56

7.2.1 The Architecture

David Kaspar, Chief Engineer of the Visual Library API describes the architecture of

the library as follows:

“The API provides a set of reusable pieces - widgets. By composing them, you are

creating a visualization. Each widget has various properties including layout, border,

assigned actions, [etc.]. The library contains a set of pre-defined widgets that can be

extended. All pluggable pieces are declared as interfaces or abstract classes - Widge-

tAction, Anchor, AnchorShape, PointShape, Animator, Border, GraphLayout, Look-

Feel, Layout, SceneLayout, Router, [and] CollisionsCollector. Also they all have their

built-in implementation.” [69]

The introduction of the official documentation says,

“The programming style is similar to Swing. You are building and modifying a tree of

visual elements that are called Widgets. The root of the tree is represented by a Scene

class, which holds all visual data of the scene. Since neither Widget nor Scene is an

AWT/Swing component you have to call Scene.createView method for creating a

Swing component which renders the scene. The created JComponent could be used

anywhere.” [73]

The following figure taken from [108] shows the top-level class structure of the li-

brary.

Fig. 22. Class diagram of the NetBeans Visual Library

Fig. 22 confirms the above descriptions of the architecture. The central class in the

architecture represents a Widget that is always part of the Scene and can have mul-

tiple Widgets. The Scene is the bridge to Swing by providing a JComponent via the

createView method. Moreover, Widgets representing UML classes for example

need to be connected to each other. Therefore, ConnectionWidgets – specializa-

tions of Widgets – are used. ConnectionWidgets hold source and target anchors

57

that are related to the source and target Widget. The role of the SceneAnimator

and WidgetAction classes is explained in the subsequent section.

7.2.2 Capabilities

This paragraph introduces important classes mostly referring to [73]. Important func-

tionalities and concepts are explained and finally a short mapping of the Visual Li-

brary capabilities to the EAT architecture is shown.

Widget

Widget is the class that provides the central visual element. According to the docu-

mentation, it is similar to a JComponent in Swing. It holds information about its

location, boundary, preferred location/boundary, preferred/minimal/maximal sizes,

layout, border, foreground, background, font, cursor, tooltip, accessible context, etc.

A Widget can serve as a container for other Widgets. Mapped to the tree structure,

this means that it is the parent of other Widgets. There are many specializations of

Widgets. For instance, a LabelWidget simply holds a label and is used for display-

ing lines of text. An ImageWidget represents a static or animated image, which can

be manipulated. It is possible to implement custom specializations of the Widget

class. Each widget can have WidgetActions assigned. Often used methods for

managing and manipulating widgets are getParentWidget, addChild, is-

Visible, and getLocation. An important Widget specialization for graph-

oriented modeling is explained in the following paragraph.

ConnectionWidget

This Widget represents a path between a source and target Widget. The source and

target are specified by anchors. The appearance of the connection can be changed by

customizing the line color, the anchor shape (e.g. AnchorShape. TRIAN-

GLE_HOLLOW or AnchorShape.TRIANGLE_FILLED) or the router. By default,

there is a direct router, which routes the path in a straight line from source to target.

Nevertheless, an orthogonal router can be used instead. It sets multiple control points

forcing the path to flow around other Widgets for instance. Control points can be set

and deleted manually, too. For more information about the class Router and routing

policies, classes refer to [73].

LayerWidget

Another specialization of Widget is the LayerWidget. It represents an important

concept in the implementation of EAT. Usually not all widgets of every kind are

added to the scene directly. For the purpose of separation concerns, several layers are

introduced. A LayerWidget ―… represents a glass-pane - similarly to JGlassPane

from Swing. It is transparent by default.‖ [73] By implementing LayerWidgets in

EAT it was bound to the recommendation in the documentation:

58

 backgroundLayer for temporary background interaction widgets […]

 mainLayer for main widgets,

 connectionLayer for connections […]

 interactionLayer for temporary foreground interaction widgets created by

decorators of interactive actions, e.g. grid[…]

Scene

As mentioned before, this Widget represents the root node of the Widget tree. It is a

specialization of the Widget class and contains additional functionality for controlling

the whole scene, its views, repainting and tree validation. The Scene class is extended

by multiple classes, where GraphPinScene was the most relevant for our purposes.

The GraphPinScene class is especially suitable for graph-oriented modeling. It

manages a model with nodes, pins and edges. A pin is always attached to a node. An

edge could be connected to a source and a target pin only. This class uses generics,

which makes it possible to specify one‘s own implementation of nodes, pins, and

edges. The class is abstract and has to be extended. Important methods of this class

are addNode (Node), addPin (Node, Pin), and addEdge (Edge) that

call appropriate methods for registering and validating new widgets on the Scene.

According methods for removing nodes, pins, and edges exist, too. As described in

7.4.3.2 the Scene is an important management class and part of the controller refer-

ring to the MVC architecture. It is the linking instance between the data model and

the view.

WidgetAction

WidgetActions define the behavior of the widget, which they are assigned to. Actions

are usually created through the ActionFactory class. Factory methods usually

require a Decorator or Provider parameter. ―Decorator is used for specifying

the visual appearance of objects temporarily created by an action. E.g., Rectangular-

SelectAction has RectangularSelectDecorator for acquiring the widget that will

represent the current selection rectangle. Provider is used for specifying the custom

behavior of an action. E.g., EditAction has EditProvider with edit method, which is

called when a user double-clicks on a widget where the action is assigned. It is up to

the EditProvider implementation whether it invokes an editor or run an application or

does something very different. Usually there are default implementations of the deco-

rators and providers available in ActionFactory class.‖ [73]

All Widget‘s actions are grouped in a chain that is hold by a Widget. In this chain

new actions can be added, old actions can be removed and all actions can be resolved

by the getActions method.

Popular actions are for example MoveAction (drag and move widgets), Edi-

tAction (edit widget on double-click), and PopupMenuAction (opens a popup

menu supplied by the provider parameter).

59

High-Level Capabilities

NetBeans Visual Library provides functionality that can be added with only a few

lines of code. These built-in capabilities supply useful features that do not need to be

implemented anymore.

As an example, the previously described ActionFactory offers a ZoomAtion,

which is usually assigned to the Scene and provides zoom-in and zoom-out via mouse

scroll-wheel / middle-button. Moreover a SceneAnimator class provides 500ms-

long animations, for instance set the preferred location of a widget in an animated

way. In addition only few lines are needed to export the Scene or the current view into

a PNG-file [73]. One last feature worth mentioning is the createSatelliteView

method of the Scene class which supplies an overview of the scene including a view-

port that shows a rectangle representing the viewable area on the scene (e.g. if the

Scene is larger than the window and hence the frame creates scrollbars).

Visual Library in EAT

The Enterprise Architecture Tool provides animation, zoom, export to PNG, and

satellite view capabilities. Moreover, actions facilitating multiple selections, in-place

editing, expanding lists, and adding/removing/moving control points are used.

The class structure in EAT sticks very close to the Visual Library defaults. An

overall EATGraphPinScene defines the previously explained LayerWidgets. This

scene is extended by the abstract and concrete representations. The abstract modeler

uses AbstractEATGraphPinScene as the Scene provider; the concrete modeler

uses ConcreteEATGraphPinScene for that. The Scenes know appropriate

JComponents, called Views (EATAbstractView, EATConcreteView), that

supply the user interface and create the satellite view, for example.

The main Widget in EAT is the Entity Widget, and its abstract and concrete specia-

lizations. It contains actions like createSelectAction, createMoveAction,

or createPopupMenuAction. Entity Widgets hold multiple children e.g.

Attribute Widgets and LabelWidgets.

The EATConnectionWidget extends the ConnectionWidget class and

serves as the base for EntityRelationshipWidget as well as External- and

InternalAttributeRelationshipWidget and their abstract and concrete

correspondents.

The Scene has methods that register or unregister respectively add or remove main

and connection Widgets.

This chapter introduced the characteristics of NetBeans Visual Library as a general

visualization and graph-oriented modeling library. It explained its architecture with

Scene and Widget as the main components and gave examples for built-in functionali-

ties (zoom action or satellite view). Finally the mapping of the intended use case

architecture to the EAT class structure showed the applicability of the library.

60

7.3 XSD and Model Structure

In this paragraph, the use of the XSD documents (cf. 7.1.2) and the way the imple-

mentation benefited from their application is described. It is followed by an explana-

tion why two models were necessary. Finally, the abstract and concrete models are

explained.

7.3.1 Motivation - The Intended Way of Use

For the tool two XSD files were used, one delineation per model
7
. In this use case the

style of the models created with the tool (see 7.3.3 for a detailed view on the model

structures) were specified in the XSD files. The schemas were considered as Meta

models.

Application of an XSD schema to build modeling tools is considered obvious, as

the functionality provided by an XSD complies very well with typical modeling con-

ventions. The ability to represent cardinality (e.g. the amount of attributes within an

entity can vary between zero and infinity) and generalization (which is found in gene-

ralization of entities) was adopted. The hierarchical structure defined by an XSD is

reflected in the Scene structure. A refinement in the XSD is mapped to a refinement

in the Meta model.

The abstract and concrete models were created based on XSD
8
 to be flexible and

adaptable. Additions in these Meta models were rapidly transferred to the model's

Java classes and in this way to the model's structure.

The Castor generated classes are a one-to-one representation of the model defini-

tions. Therefore, a valid instantiation of the classes is reflected in compliance with the

model structure.

The model saving is eased: Castor (cf. 7.1.3) offers functionality to serialize its in-

stantiated classes to XML documents. The loading of models is also controlled by

Castor; Java classes are instantiated based on their corresponding values within XML

documents.

During the implementation process and with regard to future changes, Meta model

extensions and restructuring are handled easily and quickly. The demand for manual

implementation activity was reduced. An advantage is achieved when typical refactor-

ing tasks, such as pull up of fields or generalization, are performed.

A certain model (stored in an XML document) can be processed by any tool that is

able to handle XML documents, so it can be reworked and adopted when needed.

Concrete or abstract models are helped in getting compliant again manually when

they got incompatible through Meta model changes.

7 Section 7.3.2 explains the need of two separate files
8 Chapter 7.1.3 describes the way from XSD to Java classes with the use of Castor

61

7.3.2 The Need of Two Separate Models

In the previous version of the tool, two separate XSD files were used. The abstract

model's content was described in a schema, the concrete model's structure was deter-

mined in a second one. Redundancy between these two structures was created and an

understanding of both definitions was needed to change the modeler. Thus, a reorgan-

ization of these underlying concepts was discussed.

The initial idea discussed was to build a unified XSD structure for both models.

Existing code from the abstract modeler could have been reused in the concrete mod-

eler. Super types of the elements, on which the tools (see 7.4 for an overview of the

tool concept) could work, were planned in order to make this possible. The idea was

that general modeling elements were introduced, from which the special elements of

the abstract and concrete model would be derived.

Unfortunately, several challenges were found, while attempting to introduce such a

super element structure.

Extension or restriction of defined types is not allowed by the XSD structure. Re-

striction was only found to be feasible on the value range of an element rather than on

the type of an element. The use of this restriction is considered necessary to make

sure that a subtype would only accept elements of another subtype.

Furthermore, the necessary overriding capability, by extension, turned out to be

impossible with respect to the project resources. The introduction of most of the ele-

ments on a very low subtype level was considered as the consequence. This means

that a similar structure as seen in the previous version of the modeler was expected.

Because these issues were considered very limiting, several possible solutions were

considered:

7.3.2.1 Use of General Model with Given Problems

The introduction of generalization classes that serve only as types could be a solution.

The introduction of attributes in subtypes was expected to be the consequence. A

type-certainty seemed possible on this way, but no real benefit was expected. The

super types neither would provide attributes nor needed signature for their use. No

difference in later usage compared to the existing versions of the model files was

expected.

7.3.2.2 Development of a Completely New Model

Another possibility was seen in the creation of an entire new approach implementing

the model structure. This could be a data structure completely written in Java with the

usage of inheritance, overriding, and multiple-inheritance by the usage of interfaces.

The desired uniform model structure was expected as the result. The abandonment of

the use of Castor was implied this way. The loss of advantages provided by Castor

(cf. 7.1.3 and 7.3.1) was stated as the costs of this approach.

The loss of an underlying Meta model was especially seen as a very high price.

62

7.3.2.3 Staying with Current Model and Separating Code

Due to the lack of benefit from building a new model structure, staying with the exist-

ing one was considered in detail. Two ways of handling the differentiation of the

abstract and the concrete modeler were identified.

The first way could be to copy all existing classes to a cm package and to start to

adopt all occurrences of the abstract model elements to concrete model elements. A

completely new branch with heavy code doubling was expected as the result. The

setting apart of the two branches, which was seen as the start of two separate applica-

tions, was a concern.

The other way is explained in the following subsection.

7.3.2.4 Staying with Current Model, Enforcing Code Reuse

The other possibility of handling the different parts of EAT while staying with the

existing model structure was seen in the approach to extend the existing tools in a way

that was applicable for elements of both models. The formation of two parts in each

tool was seen as the consequence. The abstract model was handled by one part, the

concrete model by another part. The avoidance of doubled code parts was not ex-

pected to be feasible in all tools. On the other hand, side-by-side synergy effects were

expected to be more obvious. Individual decisions in each situation were expected to

be necessary, especially when it comes to the point where general and special code

was disjoined.

The same functionalities were still found at the same place, which was seen as a

great benefit. An identification of the relevant points, which were influenced by

changes, was expected to be very fast.

7.3.2.5 Conclusion/Final Decision

In the end, the application of the current XSD data structure was determined to be the

best way. The use of Castor was seen as elementary and important. Its benefit was

considered not achievable manually. An enlargement of the tools, to make them uti-

lizable for abstract and concrete models, was agreed. Having one single point of truth

was seen as best fitting to the Object-Oriented Software approach that the tool was

designed to follow. With regard to further extensions, this decision was seen to be

very understandable and adoptable on the other hand. The functional classification

was kept. However, more Java-typecasts and instanceof checks had to be imple-

mented. That way, many already existing algorithms were reused, while the data

structure was extended.

The practicability of this solution was also seen as a large benefit, especially as no

familiarization with XSD serialization and creation by hand was needed.

63

7.3.3 Models

A detailed consideration of the abstract and concrete model is presented in this chap-

ter. In comparison to chapter 6, where the different models were explained and moti-

vated, this chapter focuses on the contribution of the XSD documents to the modeler.

The XSD files are attached in the appendix (Appendix B: XSD).

In section 7.3.1 it was said that the rules of the models were described in the XSD

schema. Not only the elements described in chapter 6 are meant in the term ―model‖

in this case. Non-functional properties of the modeled elements were also specified in

this rule-set. To give an example: the location of a certain entity on the Scene is said

to be non-functional. The model's information will not be influenced if the position of

an entity is changed. On the other hand, a clear view is created when unique positions

were set. A consistent structure of the model is achieved when the entities are posi-

tioned identically each time the underlying model is loaded.

All possible constructions and valid combinations of elements were described in an

XSD document. No matter whether visible or not, functional or non-functional, op-

tional or obligatory, each part of a model must have been defined in the schema so

that proper models were created. In the following paragraph, all specified elements

are named and classified in the context of their defining structure.

With this compendium, a complete and full description of the modeler's ability is

engendered.

7.3.3.1 Abstract Model

Abstract models, which were described in chapter 6, were used as the foundation of

multiple concrete models. Structures that were modeled in the abstract modeler were

instantiated in the concrete modeler. A consistent processing in the concrete model

was achieved by consequently observing modeling rules in the abstract modeler.

These rules are explained in this subsection.

In the abstract modeler, each model consists of one to infinity entities. An entity is

composed of a name, a unique ID, numerous tags, a collection of attributes, and a

certain position, which was expressed through X and Y coordinates. An attribute was

specified to have a name, a unique ID, and numerous tags as its enclosing entity was

already determined to have. In addition, an Aggregation function is required. The

structure of the attribute‘s CPM (6.2) is described in an Aggregation function. Names

of the states, the optional CPM, and one to infinity Priors are attached to an Aggrega-

tion function. To combine the CPM's content Adder-, ―Exclusive Or‖-, Maximum-,

Medium-, Minimum-, Negation-, Parametric-, Static-, and Weighted-function are

allowed as Aggregation functions.

For each entity, zero to infinity connections to other entities or itself can be speci-

fied. Again, these relationships consist of a name, a unique ID, and numerous tags.

For a relationship between entities, it is necessary to have a defined origin and target

entity; multiplicity information is needed on both ends. Names of origin and target are

allowed to be annotated optionally.

64

Connections between attributes were also implemented. A separate treatment of

attribute relationships of a certain attribute compared to attribute connections of two

involved entities was realized. Relationships between attributes of a single entity are

called internal attribute relationships. They were attributed with ID of origin and

target attribute, a flag to show whether a causal relationship was modeled, and option-

ally dedicated to an entity relationship between the entity and itself.

The external relationships were designed as opposite to the internal ones. Their

properties were specified to be the same as the properties of their oppositions. Addi-

tionally zero to infinity entity relationships are allowed to be appended. That way, the

indirect attribute relationship (6.4) was realized. Each attribute connection was speci-

fied to have an optional relationship Aggregation Function. Therefore, Average-,

Maximum-, Medium-, and Minimum-function can be chosen as valid relationship

Aggregation Functions.

A small example of a possible model can be seen in Fig. 23. The entities ―Entity 1‖

and ―Entity 2‖ are connected through an entity relationship. These entities are

represented as EntityWidgets. Their attributes, which are wrapped in attribute Wid-

gets, ―Attribute 1‖ and ―Attribute 3‖, are also linked through an attribute relationship

(boxed in an Attribute Relationship Widget), which is based on the entity relationship

(Entity Relationship Widget). A Maximum relationship Aggregation Function is se-

lected for this attribute relation. ―Entity 2‖ is tagged with the tag ―Entity Tag 1‖, whe-

reas ―Attribute 3‖ is tagged with ―Attribute Tag 1‖.

Fig. 23. Abstract Model Example

65

7.3.3.2 Concrete Model

A certain abstract model gets instantiated in the concrete model. Therefore, many

elements of the concrete model are provided with a reference to an element of the

abstract modeler.

The concept that a concrete model is based on an abstract model is because the

concrete elements either are a reuse of abstract elements or are defined very close to

them.

As it has been explained for the abstract model (7.3.3.1), entities in the concrete

model are specified as the base of the models. Their properties are the same as the

ones in their abstract counterparts. The name of the underlying abstract entity was

added, so a connection between them was established.

 A change was made, when the attributes of an entity were defined. They were spe-

cified to have a name, a unique ID, numerous tags, but additionally the CPM, which is

taken from the corresponding abstract attribute during construction. Calculated values

and evidences were added as optional properties. Calculated value stands for a map-

ping between a numerical value (its probability) and a certain state. Thereby a CPM, a

state, and a source are stored for evidence.

Entity connections are hold in a shortened way. The ID of the origin and the target,

as well as the reference to the abstract entity relationship is stored. A similar approach

was chosen for the attribute connections. Besides ID of origin, target, and underlying

entity relationships, only the ID of the abstract attribute relationship is saved.

7.4 Architecture

This chapter deals with the main architecture of the application. At first, the boundary

conditions are shown and an examination of the concept‘s evolution is given. After-

wards the final architectural design is presented and illustrated in detail.

66

7.4.1 Interaction Design

Fig. 24. Open Decision

Following the Model-View-Controller approach, the EA Tool implementation has

been divided into three parts. The first part is the Model-Part or Data-Part where the

data structure of the model is located. The second part is the View-Part where all

visualizations and user interface elements are handled. Finally, the third part is the

Controller-Part. In the Controller-Part, a connection between the Data-Part and the

View-Part has to be made.

The Data-Part was determined by the usage of XSD files and the Castor tool. The

structure View-Part has also been predefined, because it was the goal to implement a

Java desktop application. Only the Controller-Part was designed freely (Fig. 24).

One main objection while designing the interaction concept was the extendibility

of the tool. It was necessary to build an extendible architecture where future additions

are feasible and easy to accomplish. Another objection that had to be taken care of

was the straightforwardness, and intuitive structure, of the complete construction in a

way that it would not take future developers too long to get an overview and start

developing. Therefore, a granular functional partition of individual tools was intro-

duced following the single point of truth [104] principle.

67

7.4.2 Design Alternatives

Fig. 25. Design Alternative

While designing an interaction model several alternatives were discussed.

The first alternative was to stick near the existing architectural design of the pre-

vious version of the tool. This approach consisted of one main managing class, which

held all the information about the model and provided the needed functionality to

manipulate the model. A partition of different use,-cases or classes of functionality

was provided by the use of interfaces, which were then implemented in wrapper-

classes around the main managing class. In this way, only necessary functionality for

the defined use case was visible.

It has come to the point where sticking with this approach would increase difficul-

ties while extending the functionality, because it would have been necessary to pro-

vide new interfaces with their corresponding implementation in some parts or to build

new functionality into existing parts of the code.

The second alternative was to split up the functionality into more atomic parts (Fig.

25). These specialized units would then be ordered thematically and functionally.

They would provide all abilities to handle and modify the models. In addition, they

would be placed around one main managing module, which holds all information

about the model in one place. By using this design approach, it would have been poss-

ible to provide slender interfaces to smaller independent parts of the code. Extension

of the functionality would have been possible by adding another functional compo-

nent and its use cases to the managing class.

68

7.4.3 Final Design

Fig. 26. Final Design

In the end a modular architecture was set up, which consisted of few main classes that

handled the visualization and model managing part and several extension modules,

called tools (Fig. 26).

These tools provide a uniform access to their functionality. They were imple-

mented in a common way using the design pattern of a singleton. By using singletons,

it was not necessary to provide a registration and handling part inside the code. More-

over, it was possible to simply add new tools to the code base and use them in the

desired part of the managing classes.

The role of the managing classes is taken by the Scene as part of the NetBeans

Visual Library (see 7.2). The management of the model elements and the graph struc-

ture of the model were also done by the Scene using its widgets to hold references to

the model elements. By doing so the Scene and the Widgets become part of two piec-

es of the program structure. On the one hand they are in charge of managing the mod-

el elements, or the controller part, on the other hand they are used to vizualise the

models, they belog to the view part. This is possible because Java allows to merge the

controller and the view part [81].

69

7.4.3.1 Data Structure

The class structure of the Model-Part or Data-Part is completely auto generated by the

use of Castor. Although a model is designed, no complete model exists in EAT. In

fact, all elements and relations are handled by the management class. Only while

loading, saving, and calculating a concrete model, a complete model as described in

the XSD files is generated.

7.4.3.2 Management Classes

The Scene described in 7.2.2 serves as the main connection and management location

at the same time. All model elements are referenced by the Widgets that are organized

and held together by the Scene.

The other main connection and management location is the so-called view. A view

is part of the Swing Application Framework [99]. The view is in charge of handling

all user interactions that are not concerned with the drag-and-drop modeling features

of the scene. There are methods that handle button and menu actions. In addition,

loading and saving tools are called by the view.

7.4.3.3 Connection of Data Structure and Management Class (Entity &

Attribute)

Fig. 27. Connection between Widgets and data elements (focus on main Widgets)

70

The diagrams in Fig. 27 and Fig. 28 show how the data structure of the Castor gener-

ated Java classes and the Scene from NetBeans Visual Library with its Widgets is

accomplished. Castor generated classes are shown as ellipses and Widgets are shown

as boxes. The arrows represent methods of the classes in which the arrows have their

origin. The arrowhead points towards a class that is returned by the method annotated

on the arrow.

All widgets provide a getScene-method, which returns the current Scene. To get

hands on an attribute the getAttributes-method of the Entity Widget, whose

entity contains the attribute, has to be called first. From the returned Widget, the

getChildren-method returns a vector of attribute Widgets that now have refer-

ences to the according attributes.

As one can see in Fig. 27 and Fig. 28, the way from the Scene to a data model

element such as an entity or an attribute relationship is somewhat longer. For regis-

tered objects like entities (GraphPinScene: node) and relationships (GraphPinScene:

edge) the according Widgets can be resolved by the Scene‘s findWidget-method.

To find the matching Entity Widget, which contains a given attribute, it is neces-

sary to iterate through all Entity Widgets returned by the Scene‘s getChildren-

method (precisely: its mainLayer Widget which contains all Entity Widgets) and, in

the lower level, to iterate through all Attribute Widgets of these entities. A for-each

iteration is also necessary in order to find all Entity Relationship Widgets that are

connected to an entity. The Relationship Widgets can be resolved via the get-

Children method of the Scene‘s connectionLayer. Then, for each Entity Relation-

ship Widget, it has to be checked whether the source or target is the particular Entity

Widget.

These iterations mark a tradeoff between introducing additional references to the

elements and accepting some more computation effort for finding an element. It was

decided that no additional references are being introduced to keep the interfaces of the

classes slender [99] and to stick with the already defined and well-documented access

methods in almost all cases. Especially when it came to information gathering and

comparison between elements in the abstract and concrete model these iterations were

necessary. Since the iteration purpose and the iteration participants were mainly

unique a generalization was not possible (except for using a for-each loop).

71

Fig. 28. Connection between Widgets and data elements (focus on connection Widgets)

7.4.3.4 Tools

In this context, the term Tool is used as a specialized piece of software that is used to

fulfill predefined tasks. A Tool only offers one relevant function for one defined task,

for example to handle a dialog, or to add an element to the model. By implementing

the functionality in this way, it is possible to extend the application with new func-

tions by adding an appropriate tool and using this tool in the corresponding place in

the management classes. It is also possible to use a tool only from inside a tool.

The Tools should be implemented in a universal way so it is possible to use them

in the abstract modeler and in the concrete modeler.

7.4.3.5 Concrete and Abstract Modeler

On one hand, the existence of two modelers is owed to the fact that the concept is

based on these two models. On the other hand, the two data structures were incompat-

ible (see 7.3.2). Because there were, only few similarities in the data structure it was

necessary to implement a complete second application to draw a concrete model.

The two modelers share the main MainApp class so there is only one main-method

in the whole project and it is possible to choose between both modelers by using a

command line parameter at launch time.

Other commonalities between both modelers are several tools, which were imple-

mented in a general way by using generalization classes.

72

7.4.4 Additional Architectural Decisions

The following chapters deal with additional architectural decisions that were made.

The construction of the inheritance hierarchy of the Widgets is described. Moreover

the composition of an Entity Widgets from different other Widgets is illustrated.

These parts are chosen for detailed description because of their complexity and their

relevance for further extension and development of the EA Tool.

7.4.4.1 Inheritance Hierarchy of Widgets

The following description is based on the inheritance hierarchy for Widgets as visua-

lized in Fig. 29.

The anchor of the complete hierarchy is the Widget class, which is Part of Net-

Beans Visual Library. To provide a uniform access to the model element of the Wid-

get an interface EATElementReolver is used. All Widgets keep a reference to a

model element that is stored in an object of a class generated by Castor, e.g.

eat.am.model.Entity in the case of an EntityWidget. The reference is stored

in an attribute of the class EATWidget. Because all visual model elements have a

name, which has to be displayed, a LabelWidget, which is also part of NetBeans

Visual Library, is stored in each EATWidget. Because these entire abilities match to

every Widget, no matter if it is an abstract or concrete element, an attribute, or an

entity, the reference to the model element is by now of a generic type T.

The next level of inheritance provides a differentiation between EntityWidgets and

AttributeWidgets. In consideration of the fact that there is no difference between an

abstract entity and a concrete entity concerning the visualization, the construction of

the EntityWidget is still done on a generic base. More information about the construc-

tion of an EntityWidget can be found in 7.4.4.2.

73

Fig. 29. Hierarchy of Entity and Attribute Widgets

Only in the final level of inheritance, it is necessary to instantiate the generic type of

the reference to the model element with the actual type of the model element. This

would be eat.am.model.Entity for an AbstractEntityWidget and

eat.cm.model.Entity for a ConcreteEntityWidget.

Since the same considerations can be made on Attribute Widgets, they were im-

plemented analogously to Entity Widgets, which is also visualized in Fig. 29.

74

Fig. 30. Inheritance Hierarchy of Relationship Widgets

For the implementation of relationship Widgets, a similar inheritance hierarchy as

described for Entity Widgets and Attribute Widgets was designed.

The structure for Relationship Widgets is shown in Fig. 30. All Relationship Wid-

gets are subclasses of ConnectionWidget from the NetBeans Visual Library. In

analogy to the other model elements, Relationship Widgets store a reference to their

corresponding model element. A uniform access to this element is provided by the

implementation of the same interface EATElementResolver, which provides the

getElement-Method.

Due to the existence of three different relationship Types in each model it was ne-

cessary to introduce one class for each Type. There is one class for relations between

entities called EntityRelationshipWidget and two for relations between

75

attributes. InternalAttributeRelatinshipWidget is used for attribute

relationships, which connect two attributes of the same entity. ExternalAttri-

buteRelationshipWidget is used for the connection between attributes of

different entities.

7.4.4.2 Construction of an Entity Widget

Fig. 31. Construction of an EntityWidget

The following description of an Entity Widget and its different parts suits for both

Entity Widgets, abstract and concrete ones. This is because all layout and visualiza-

tion tasks are handled in the class EntityWidget that is a super class of the special

Widgets. Fig. 31 shows a schematic diagram of an EntityWidget.

The outer black border is the border of the Widget. An EntityWidget has two

borders. One default border and another one used for the visualization of a selection.

Both borders are generated by the usage of the BorderTool (cf. 8.2.2). Inside the

main Widget, a VerticalFlowLayout is used to arrange the inner elements in a

vertical stacked layout.

In the top part, the LabelWidget is located. This Widget is provided with an

empty border of 5-pixel width to assure a gap between the text and the border of the

EntityWidget. The next part is the horizontal divider line that is realized by using

a SeperatorWidget from the NetBeans Visual Library.

In the lower part of the EntityWidget, the attributes are shown. For organiza-

tional reasons all Attribute Widgets, which are the representation of the model ele-

ment attributes, are placed inside a so-called attribute compartment. This attribute

compartment is just a plain Widget of the NetBeans Visual Library and ensures that

there is also a 5-pixel border maintained around all attributes.

76

Inside the attribute compartment, all AttributeWidgets are arranged in another

VerticalFlowLayout to stack them vertically.

7.4.4.3 Construction of an EntityRelationshipWidget

The composition of an EntityRelationshipWidget, which will be explained in this

paragraph, refers to the architecture of an AbstractEntityRelationship-

Widget. The counterpart in the concrete modeler only differs in the absence of at-

tached Widgets.

As Fig. 32 shows, an AbstractEntityRelationship-Widget is primari-

ly a simple line leading from a source, an (Abstract) EntityWidget, to a target, an

(Abstract) EntityWidget. The relationship is connected to the source and target via

appropriate anchors. In addition, the AbstractEntityRelationshipWidget

is made up of five additional Widgets. It has two children at the source, two children

at the target, and one child, a LabelWidget, at the center of the connection. This center

label is invisible and used for debugging purposes. The text of the label contains the

ID of the relationship. The second and more important purpose of this LabelWidget is

that it serves as the target Widget for the ConnectionConnectionWidget. This

kind of Widget is displayed as a line between an AbstractAttributeRela-

tionshipWidget and all of its related AbstractEntityRelationship-

Widgets.

The AbstractMultiplicityWidgets at the source and target end of the

connection let the user choose which cardinality should be assigned to the involved

elements. The composition of an AbstractMultiplicityWidget will be ex-

plained later.

The LabelWidgets attached to the line hold information about the role names

referring to the source and target EntityWidget. It is a simple text and can be modified

at design-time.

7.4.4.4 Construction of an AbstractMultiplicityWidget

AbstractMultiplicityWidgets can be found at the source and target end of

an AbstractEntityRelationshipWidget. With the help of this widget, the

user can choose between four cardinality choices: ―1‖; ―0..1‖, ―0..*‖, and ―1..*‖. This

widget is an expandable widget. More information about the manner of operation can

be found in 8.2.2.

Fig. 33 illustrates that the AbstractMultiplicityWidget appears on the

scene in two different states. If it is collapsed, only a Widget that contains a Label-

Widget is displayed. In this LabelWidget, the current chosen multiplicity is

shown. After double-clicking this Widget, it expands itself. In addition to the pre-

viously stated Widgets, it shows a Widget, named detailsWidget, that contains

four ComponentWidgets. In this case, these ComponentWidgets are Visual

Library Wrapper for Swing‘s JRadioButtons. These buttons provide the four

77

choices and are grouped in a ButtonGroup, which means that only one of them can

be selected at a time.

Fig. 32. Composition of an EntityRelationshipWidget in the Abstract Modeler

Fig. 33. Composition of an AbstractMultiplicityWidget

78

7.4.4.5 Construction of an AbstractExternalAttributeRelationshipWidget

Similar to section 7.4.4.3 it is referred to the most complex representative of the At-

tributeRelationshipWidgets, the AbstractExternalAttributeRelation-

shipWidget, to describe the composition of this kind of widgets. This is because

the architecture of all other RelationshipWidgets can be deduced and understood from

the explanations of the AbstractExternalAttributeRelationship-

Widget.

Fig. 34 illustrates that the line between source and target AttributeWidget

has two centrally attached widgets. The invisible LabelWidget serves nearly the

same purpose as the invisible central LabelWidget of the AbstractEntityRe-

lationship-Widget. However, there is one difference: this LabelWidget is the

target, not the source, of the ConnectionConnectionWidget.

The other central widget is a RelationAggregationFunctionWidget.

Like the AbstractMultiplicityWidget, this is another expandable widget.

The composition of this widget is very similar to the architecture of the Abstract-

MultiplicityWidget. The only difference is that the RelationAggrega-

tionFunctionWidget provides choices for aggregation function types: ―AVG‖,

―Max‖, ―Min‖, and ―Med‖.

Fig. 34. Composition of an AbstractExternalAttributeRelationshipWidget

79

PART III – The Enterprise Architecture Tool

This part describes the implementation of a software tool, called Enterprise Architec-

ture Tool, which uses the theoretical concepts and implementation proposals pre-

sented in Part II. The foundation of the theoretical concept is the enterprise architec-

ture analysis method. This method includes the creation and visualization of abstract

models. Abstract models are instantiated by creating concrete models based on col-

lected evidence. Their computation, by using Bayesian networks, allows an analysis

of different scenarios. These scenarios are used to examine different information

system goals. The enterprise architecture analysis method could support decision

making within enterprise architectures by providing quantitative comparisons be-

tween different enterprise information system scenarios. The software supports all

steps of this method.

In the following chapters, the source code of the developed tool is explained. The

usage of the Enterprise Architecture Tool is depicted in an example. Finally, addition-

al ideas of further extensions are specified.

8 Implementation

In the following the details of the implementation of the abstract and the concrete

modeler are explained. Then, the structure of packages and classes are described. In

addition, the design of the user interface is presented. The construction of a Bayesian

network and its calculation is described systematically. Finally, challenges and solu-

tions that were discovered during the implementation process are described to ease

future development.

8.1 Package and Class Structure

This chapter illustrates and explains the package and class structure of the implemen-

tation. Therefore, it first provides an overview of the package tree and gives addition-

al information for each package. In the second part, each class of the packages (except

the eat.am and eat.cm package, refer to 8.2 Abstract Modeler and 8.3 Concrete

Modeler) are explained by stating their purpose, important methods, and usages. Due

to non-unique naming, all package names in this section are referred to by their fully

qualified name in dot notation, e.g. eat.edit.attribute instead of package

attribute. Thus, confusion can be avoided.

80

8.1.1 Package Structure

Fig. 35 gives an overview of EAT‘s package structure. In general, this structure can

be divided into four parts that refer to the Model-View-Controller (MVC) approach as

described in 7.4.

This can be illustrated by having a look at the eat.am package. This package in-

cludes necessary classes that make up the abstract modeler. It contains classes that are

only used in the abstract modeler. One can see that there are four subpackages namely

eat.am.model, eat.am.tool, eat.am.ui, and eat.am.widget.

The eat.am.model package contains the Castor generated classes that provide the

data model. Thus, this package represents the ―Model‖ in the Model-View-Controler

approach. In the eat.am.tool package, one can find the classes that control the

behavior of the attributes and relationships. Tool classes represent the mediator be-

tween model and view classes. Hence, this package typifies the ―Controller‖ of the

MVC architecture. Consequently and apparent the eat.am.ui package is responsi-

ble for user interface functionality – the MVC ―View‖. The eat.am.widget pack-

age holds a special position as its classes forge the link between the ―Model‖ and the

―Controller‖ by embodying the data model elements.

The same subpackage structure can be found in the eat.cm package because the

architecture of the concrete modeler is identical to the abstract modeler‘s architecture.

Three of the remaining packages, eat.tool, eat.ui, and eat.widget,

serve the same purpose as the namely similar ones in the eat.am and eat.cm

package. The only difference is that all classes contained in these packages can be

used in both EA tools, the AM and CM.

eat.cpm, eat.edit, eat.filehandling are made up of classes that

only have supplemental characteristics. They assist tool classes by providing their

functionality or simply provide fundamental computation routines.

More detailed descriptions of the purpose and contents of each package are pro-

vided on the following pages.

81

Fig. 35. The package tree of the EAT with brief descriptions

eat

The top-level package eat contains all subpackages.

eat.am

The classes in this package make up the abstract modeler. It consists of subpack-

ages that provide model, view, and controller classes that are exclusively used in the

abstract modeler. More information about included subpackages and classes can be

found in 8.2.

eat.cm

Here one can find the subpackages that define the appearance and fundamental be-

havior of the concrete modeler. For a more detailed description about all classes and

packages included in eat.cm, refer to 8.3.

82

eat.cpm

This package is one of the supplemental packages and provides basic and extended

classes for enabling dynamic creation of conditional probability tables (CPT). It offers

multiple types of CPTs. Moreover, it contains probability calculation variations, e.g.

―Max‖ and ―Min‖ functions.

This package contains the following classes:

 CPT

 Max

 Min

 Frequency

 Parametric

 Weighted

eat.edit

eat.edit is another supplemental package. Here Undo/Redo management

classes can be found. Classes providing this functionality are referred to as ―Edit‖-

classes. This package comprises two subpackages, eat.edit.attribute and

eat.edit.entity, and two classes:

 EATEdit

 RenameEdit

eat.edit.attribute

This subpackage of eat.edit is made up of four classes that primarily extend

the EATEdit.java class for providing undoable and redoable actions for attributes.

This includes adding, editing, and removing attributes.

This package contains the following classes:

 AddAttributeEdit

 AttributeEdit

 EditAttributeEdit

 RemoveAttributeEdit

eat.edit.entity

According to the eat.edit.attribute subpackage, here one can find classes

that facilitate undoable and redoable actions for entities. Currently this can be add,

remove, and multi-remove actions.

83

This package contains the following classes:

 AddEntityEdit

 EntityEdit

 RemoveEntityEdit

 RemoveMultiEntityEdit

eat.filehandling

This is the third supplemental package and simply provides a class for checking

and filtering XML files in a FileChooser dialog.

This package contains following class:

 XmlFileFilter

eat.tool

This is the enclosing package for several subpackages that make up a large part of

the MVC-―Controller‖. All classes in the subpackages can be used with both Abstract

modeler and concrete modeler. They are all referred to as ―tools‖ and implemented as

Singletons. Each tool provides one relevant use case, e.g. create a new Attribute-

Widget inside an EntityWidget. For further information on tools, please refer to

section 7.4.3.4. Since this package consists of various subpackages, they are all listed

below:

 attribute

 entity

 popupmenu

 relationship

 scene

 tag_filter

eat.tool.attribute

This is the tool package that contains classes, which provide various attribute han-

dling features. For example, the AttributeHelperTool.java proffers functions for deep-

copying and comparing attributes.

This package contains the following classes:

 AddAttributeTool

 AggregationFunctionTool

 AttributeHelperTool

 CustomCPTDialogTool

 EditAttributeDialogTool

84

eat.tool.entity

In this package, entity-relevant classes can be found. The tools of this subpackage

cover capabilities reaching from adding EntityWidgets and removing Entity-

Widgets to managing connections between EntityWidgets. Non-tool classes

providing outer appearance of EntityWidgets are contained in this package, too.

This package contains the following classes:

 AddEntityTool

 BorderTool

 EATBorder

 EATBorderSelected

 EATColorScheme

 EntityConnectTool

 RemoveEntityTool

eat.tool.popupmenu

Each class in this package implements PopupMenuProvider and Action-

Listener for the createPopupMenuAction assigned to the according object. For

each relevant modeling element, a specific popup menu is implemented. The create-

PopupMenuAction is triggered by right clicking on a widget where the action was

assigned. Currently a popup menu is available for EntityWidget, AttributeWidget,

EntityRelationshipWidget, ExternalAttributeRelationshipWidget, InternalAttribute-

RelationshipWidget, and the scene.

This package contains the following classes:

 AttributePopupMenuTool

 CreateTagSubmenuTool

 EntityPopupMenuTool

 EntityRelationPopupMenuTool

 ExternalAttributeRelationPopupMenuTool

 InternalAttributeRelationPopupMenuTool

 ScenePopupMenuTool

eat.tool.relationship

The tool-classes inside eat.tool.relationship provide capabilities for ac-

tions on relationships that are not restricted to either abstract modeler or concrete

modeler. The tools enable general use cases like removing relationships or renaming

the labels of source role and target role. Moreover, the AttributeConnection-

PathFinderTool contains path-finding algorithms and neighbor-determination,

which is necessary for drawing indirect relationships between attributes.

85

This package contains the following classes:

 AttributeConnectionPathFinderTool

 RemoveAttributeRelationTool

 RemoveEntityRelationTool

 RenameSourceOfConnectionTool

 RenameTargetOfConnectionTool

eat.tool.scene

This package contains tools whose purpose is not dedicated to modeling elements,

but to the scene and the form. All provided actions take part on the scene directly

(MultiMoveTool), manipulate the scene (NewSceneTool), or need information

from the scene (ExportToPNGTool).

This package contains the following classes:

 CreateModelsTool

 ExpandOnSelectTool

 ExportToPNGTool

 FileHandlingTool

 KeyActionsTool

 MultiMoveTool

 NewSceneTool

 OpenAbstractModelTool

 OpenSceneTool

 RenameWidgetTool

 SaveSceneTool

 UndoManagerTool

eat.tool.tag_filter

Classes that enable tagging and filtering can be found here.

This package contains the following classes:

 AddTagDialogTool

 DeleteTagTool

 FilterDialogTool

 FilterTool

 GetAllTagsTool

 GetTagTool

 UnFilterTool

86

eat.ui

In eat.ui, there are interfaces and abstract classes serving as a unified founda-

tion for the ―View‖ part of the MVC architecture. Moreover, this package contains

dialogs that are used in both modelers. It also provides fundamental table handling

classes.

There is one subpackage, called resources, inside eat.ui, which contains

optional description files of dialogs.

This package contains the following classes:

 ColumnGroup

 EATAddTagDialog

 EATGraphPinScene

 EATView

 GroupableTableHeader

 GroupableTableHeaderUI

 TypedTableModel

eat.widget

Inside this package there are generalized and parameterized classes providing the

basics for any kind of widget that appears in the abstract modeler or the concrete

modeler. For example, each widget implements the EATElementResolver in

order to allow access to the embraced, particular data model element. Here it makes

no difference whether the widget represents a relationship or not.

This package contains the following classes:

 AttributeWidget

 ConnectionConnectionWidget

 EATConnectionWidget

 EATElementResolver

 EATWidget

 EntityRelationshipWidget

 EntityWidget

 ExternalAttributeRelationshipWidget

 InternalAttributeRelationshipWidget

8.1.2 Class Structure

eat.cpm.CPT

The class eat.cpm.CPT is an abstract Java class. Its idea is to represent the dif-

ferent types of dynamic CPTs that were used in this implementation. It provides func-

tionalities to calculate matrices and to convert them into Castor complying CPMs.

87

This class is used if during the network creation process dynamic CPMs are needed.

Its specializations differ in the way they create these CPMs.

eat.cpm.Frequency

This class is a specialization of eat.cpm.CPT. It creates a frequency based CPM

eat.cpm.Max

This class is a second specialization of eat.cpm.CPT. It filters the maximum

value in the parents‘ states and gives this state in the child node probability of 1.0.

eat.cpm.Min

This class is another specialization of eat.cpm.CPT. The created CPM is the

opposite of the one created by eat.cpm.Max. The minimum value in the parents‘

states is searched and the state of the child node is set to 1.0.

eat.cpm.ParametricCPT

This class is also specialization of eat.cpm.CPT. Now it has to be considered as

a mock-up of a parametric CPM creator. Therefore, parameters should be used to

create a CPM based on them.

eat.cpm.WeightedCPT

The class eat.cpm.CPT is specialized by this class as well. As

eat.cpm.ParametricCPT this is also a mock up. When it is implemented in the

future, dynamic CPMs, based on weights could be created.

eat.edit.EATEdit

This class is used as a foundation for all other edit classes used in the Undo-Redo

System of EAT. The default AbstractUndoableEdit is extended to make it

possible to uses an UndoManager that handles all necessary queuing of Edits. The

UndoManager is handled in the UndoManagerTool.

The class provides uniform access to necessary values such as an entity, an attribute

or the Scene. In the three member variables a reference of the edited object is saved to

make it possible to find out if an Undo or Redo request has to be fulfilled.

eat.edit.RenameEdit

The RenameEdit class provides functionality to undo and to redo renaming ac-

tions of Widgets. Because of the unification of the Widgets, (see 7.4.4.1) it is possible

to use this edit class for all renaming actions on all widget that are subclasses of

EATWidget.

eat.edit.attribute.AddAttributeEdit

This class is a subclass of AttributeEdit and handles undo and redo requests

for the addition of attributes. Undo is implemented using the RemoveAttribute-

Tool and redo is implemented using the AddAttributeTool.

88

eat.edit.attribute.AttributeEdit

This class provides all general attribute related undo- and redo-features and serves

as superclass for all other AttributeEdit classes, such as AddAttributeE-

dit, EditAttributeEdit and RemoveAttributeEdit. The reference to the

original attribute, entity and the Scene is saved in this class.

The AttributeEdit class also provides a findAttributeWidget method

that enables one to find the matching AttributeWidget based on the entity. This

method is necessary because by undoing an entity addition the reference to the cor-

responding EntityWidget is lost. To redo the possible following attribute addition

it is necessary to identify the new Widget.

eat.edit.attribute.EditAttributeEdit

This class is a subclass of AttributeEdit and handles undo- and redo-requests

for editing attributes. On construction, a reference to a deep copy of the original

attribute and a reference to the new attribute are saved.

On undo, the original attribute is restored by using the update method of the At-

tributeWidget. The AttributeWidget is found using the findAttribu-

teWidget method implemented in the AttributeEdit class.

In case a previous undo-action has to be made undone by the redo action, the new

attribute is restored via the update method of the AttributeWidget.

eat.edit.attribute.RemoveAttributeEdit

This class is a subclass of AttributeEdit and handles undo- and redo-requests

for the removal of an attribute. In analogy to the AddAttributeEdit, an undo-

request is fulfilled by using the AddAttributeTool and a redo-request by using

the RemoveAttributeTool.

eat.edit.entity.AddEntityEdit

As a subclass of EntityEdit this class provides the functionality for handling

undo- and redo-requests of the addition of an entity.

In the event of an undo-action, first, the current position of the entity is saved and

in a second step, the entity is removed using the removeNode method of the Scene.

Redo works vice-versa. First, the entity is added to the Scene using the addNode

method and second the previous position is restored using the setPreferredLo-

cation method provided by the Widget.

eat.edit.entity.EntityEdit

This class provides all general entity related undo- and redo-features and serves as

superclass for all other EntityEdit classes such as AddEntityEdit, Remo-

veEntityEdit and RemoveMultyEntityEdit. The reference to the original

entity, its position and the Scene is saved in this class.

eat.edit.entity.RemoveEntityEdit

As a subclass of EntityEdit, this class provides the functionality for handling

undo- and redo-requests of the removal of an entity.

89

In the event of an undo-action, first, the entity is added to the Scene again using the

addNode method and in the second step, the previous position is restored using the

setPreferredLocation method provided by the Widget. The entity is removed

using the removeNode method of the Scene.

eat.edit.entity.RemoveMultiEntityEdit

RemoveMultiEintityEdit is also a subclass of EntityEdit and deals

with the undo and redo requests regarding the removal of multiple entities in one step.

Since it is possible to select multiple entities by dragging a rectangle around them in

the modeler, and it is possible to remove them afterwards a handling for undo and

redo of this case is needed.

The RemoveMultiEntityEdit utilizes the existing RemoveEntityEdit by

storing one RemoveEndityEdit Object per removed entity in its own UndoMa-

nager. Therefore, in the end RemoveMultiEntityEdit is mainly a wrapper for

multiple single entity removals.

eat.filehandling.XmlFileFilter

This filter examines a certain file. It checks if its file type (the last three letters of a

filename) are ―XML‖. This filter functionality is used in open- and save-dialogs, to

show only valid documents. In addition, the assignment of a filename is eased, as

―XML‖ can be attached automatically.

eat.tool.attribute.AddAttributeTool

This tool handles the addition of an attribute to an entity. It provides functionality

for the generation of a new attribute. This new attribute is filled with default values to

ensure the feasibility of saving the model without changing any values. In addition to

this it is also possible to add concrete and abstract attributes, which already exists, to

concrete and abstract entities.

eat.tool.attribute.AggregationFunctionTool

This tool provides two methods to map an AggregationFunction to an In-

teger value and vice versa. This is used to map indices of ComboBoxes in Dialogs to

the adequate AggregationFunction and the other way around.

eat.tool.attribute.AttributeHelperTool

The AttributeHelperTool provides two methods that are related to

attributes. The first method is the copy method, which generates a deep copy of an

attribute. The other method is the isEqual method that checks if two attributes have

the same values.

Since the attribute classes are automatically generated using Castor, it is not con-

venient to change them manually. Therefore, such an addition to the functionality of

an attribute has to be implemented in a Tool.

eat.tool.attribute.EditAttributeDialogTool

This Tool handles the Dialog EATEditAttributeDialog that provides the

ability to edit an attribute. The Tool initializes the dialog and shows it. When the

90

dialog is closed, the corresponding AttributeWidget is updated to show the new val-

ues.

eat.tool.entity.AddEntityTool

Every time the addNode method calls the attachNodeWidget method of the

EATGraphPinScene, the AddEntityTool provides the creation of a new ab-

stract or concrete EntityWidget. Therefore, it expects the entity, the node that has to

be encapsulated. It provides two execute methods, one for the AbstractEntityWid-

get and one for the ConcreteEntityWidget. The creation of the EntityWidget includes

the calculation of an appropriate point where the widget is placed on the scene. The

computation of this so-called creation point considers whether the place is already

blocked by another widget.

eat.tool.entity.BorderTool

This tool is used for the generation of an order for Entity Widgets. It uses the ap-

pearance definitions of EATBoder and EATBorderSelected. In the future, it

would be possible to use the Color definition of an EATColorSceme to determine

the appearance (see 10.3.2).

eat.tool.entity.EATBorder

This class defines the colors of an Entity Widget. The visual appearance of a Wid-

get, for example the gradient, is defined in the paint method.

eat.tool.entity.EATBorderSelected

The appearance of a selected entity is defined in this class. It is used to differentiate

a selected entity from an unselected entity by different visualizations. In the current

Version, the border of a selected entity is painted darker than the border of an unse-

lected one.

eat.tool.entity.EATColorScheme

The EATColorScheme class holds information about a combination of different

colors, which can be used for the design of entity, attribute and Relationship Widgets.

A set of multiple balanced colors is necessary for the gradient in Entity Widgets.

This feature is not implemented completely. Only the foundation is included in the

current Version (see 10.3.2).

eat.tool.entity.EntityConnectTool

Like the AbstractAttributeConnectTool, this tool is also used for the

manual drawing of relationships via ―drag & drop‖. This class provides the functio-

nality of drawing a connection between two EntityWidgets. This class is assigned as a

createExtendedConnectAction of an EntityWidget in EntityWidget. It

separates between abstract and concrete EntityRelationships.

In order to draw a relationship the isSourceWidget and isTargetWidget

methods try to resolve and verify the correct source and target Widget of the drag and

drop action. The createConnection method gathers all relevant data, creates the

91

abstract or concrete EntityRelationship, and initiates the registration and drawing of

an abstract or concrete EntityRelationshipWidget.

eat.tool.entity.RemoveEntityTool

This tool handles the removal of an entity and its corresponding Widget from the

Scene. It is takes care of all in and outgoing relations before the removeNode of the

Scene is invoked. The rest of the removal action takes part in the removeNode me-

thod.

The tool is capable of handling abstract entities as well as concrete entities.

eat.tool.popupmenu.AttributePopupMenuTool

This popup menu implements the PopupMenuProvider for the createPo-

pupMenuAction in the AttributeWidget class. After right clicking on an

AttributeWidget, an appropriate menu pops up. This class defines the appear-

ance of the menu, its menu entries, and the according action for each menu item (ac-

tionPerformed method). Capabilities like ―add tag‖, ―delete attribute‖, or ―bring

to front‖ can be accessed via this menu.

eat.tool.popupmenu.CreateTagSubmenuTool

This tool creates the menu to show tags of a certain Widget in a list representation.

In case the Widget is an attribute representation, tags of the underlying Entity and

attribute itself are displayed. This tool is called by the eat.tool.popupmenu-

.EntityPopupMenuTool, eat.tool.popupmenu.EntityRelation-

PopupMenuTool, eat.tool.popupmenu.ExternalAttributeRela-

tionPopupMenuTool, eat.tool.popupmenu.InternalAttribute-

RelationPopupMenuTool, and eat.tool.popupmenu.Attribute-

PopupMenuTool.

eat.tool.popupmenu.EntityPopupMenuTool

This popup menu implements the PopupMenuProvider for the createPo-

pupMenuAction in the EntityWidget class. After right clicking on an Entity-

Widget, an appropriate menu pops up. This class defines the appearance of the menu,

its menu entries, and the according action for each menu item (actionPerformed

method). Capabilities like ―add tag‖, ―delete entity‖, or ―bring to front‖ can be ac-

cessed via this menu.

eat.tool.popupmenu.EntityRelationPopupMenuTool

This popup menu implements the PopupMenuProvider for the createPo-

pupMenuAction in the AbstractEntityRelationshipWidget and Con-

creteEntityRelationshipWidget class. After right clicking on an EntityRe-

lationshipWidget, an appropriate menu pops up. This class defines the appearance of

the menu, its menu entries, and the according action for each menu item (action-

Performed method). Capabilities like ―add tag‖ or ―delete relationship‖ can be

accessed via this menu.

92

eat.tool.popupmenu.ExternalAttributeRelationPopupMenuTool

This popup menu implements the PopupMenuProvider for the createPo-

pupMenuAction in the AbstractExternalAttributeRelationship-

Widget and ConcreteExternalAttributeRelationshipWidget class.

After right clicking on an ExternalAttributeRelationshipWidget, an appropriate menu

pops up. This class defines the appearance of the menu, its menu entries, and the

according action for each menu item (actionPerformed method). Capabilities

like ―add tag‖ or ―delete relationship‖ can be accessed via this menu.

eat.tool.popupmenu.InternalAttributeRelationPopupMenuTool

This popup menu implements the PopupMenuProvider for the createPo-

pupMenuAction in the AbstractInternalAttributeRelationship-

Widget and ConcreteInternalAttributeRelationshipWidget class.

After right clicking on an InternalAttributeRelationshipWidget, an appropriate menu

pops up. This class defines the appearance of the menu, its menu entries, and the

according action for each menu item (actionPerformed method). Capabilities

like ―add tag‖ or ―delete relationship‖ can be accessed via this menu.

eat.tool.popupmenu.ScenePopupMenuTool

This popup menu implements the PopupMenuProvider for the createPo-

pupMenuAction in the EATAbstractGraphPinScene and EATConcrete-

GraphPinScene class. After right clicking on the scene, an appropriate menu pops

up. This class defines the appearance of the menu, its menu entries, and the according

action for each menu item (actionPerformed method). The functionality of add-

ing a new node, EntityWidget, to the scene can be found in this menu. The new Enti-

tyWidget then flies in or just appears at the point of right clicking.

eat.tool.relationship.AttributeConnectionPathFinderTool

When an indirect AbstractExternalAttributeRelationship-

Widget needs to be drawn, this happens with the support of the EATAttribute-

ConnectionPathDialog. In that dialog, the user chooses which path to take

from the source to the target node. The path, the EntityRelationships between the

chosen nodes (EntityWidgets), are then associated to the new AbstractExterna-

lAttributeRelationship. In order to display correct and relevant neighbor

nodes at each point on the path some algorithms are necessary. This tool provides

these algorithms.

There are two methods for both the abstract modeler and the concrete modeler. The

first method, pathExists, determines whether there is a path from a given source

to a given target node. It is a recursive depth-first search and considers already visited

nodes (entities) and edges (relationships).

The second method is called getAppropriateNeighbors and finds for a

given source all neighbor nodes that lie on a possible path between source and target

node.

The execute methods wrap the according (abstract/concrete) getAppropria-

teNeighbors method and make it accessible.

93

This tool is also used when it has to be determined if there is a (indirect) path be-

tween two nodes, e.g. in AbstractAttributeConnectTool and CheckIn-

directAttributeConnectionPathTool.

eat.tool.relationship.RemoveAttributeRelationTool

This class provides the functionality of removing Internal or ExternalAttributeRe-

lationshipWidgets from the scene. Therefore the execute method expects the Attri-

buteRelationshipWidget that should be deleted as an argument, decides whether it is

internal or external and then removes the AttributeRelationshipWidget with its op-

tional ConnectionConnectionWidgets.

This tool is used in popup menu tools, where it is assigned to menu item actions

(e.g. DELETE_RELATIONSHIP in ExternalAttributeRelationPopup-

MenuTool). Moreover, it is called when an EntityWidget, an AttributeWidget, or an

EntityRelationshipWidget is in deletion process.

eat.tool.relationship.RemoveEntityRelationTool

This tool executes the unregistration and removal of an EntityRelationship and its

Widget. Therefore the execute method receives the EntityRelationship that should be

deleted and calls the removeEdge method that calls the scene‘s detachEdgeWidget

method. Moreover, it checks whether there are depending AttributeRelationships and

-widgets that should be removed, too.

This tool is used in the EntityRelationPopupMenuTool as a performed ac-

tion for the DELETE_RELATIONSHIP menu item. Moreover, it is called when an

EntityWidget has been removed whose entity was the source or target node of this

EntityRelationship.

eat.tool.relationship.RenameSourceOfRelationTool

To be able to edit the text of a LabelWidget at an EntityRelationshipWidget‘s

source node end, this tool is needed. The tool implements the TextFieldInpla-

ceEditor for the createInplaceEditorAction of the appropriate Label-

Widget. Currently it is used for the sourceName LabelWidget in the Abstrac-

tEntityRelationshipWidget class. It gets and sets the text of the LabelWid-

get and sets the OriginName of the EntityRelationship data model element.

eat.tool.relationship.RenameSourceOfRelationTool

To be able to edit the text of a LabelWidget at an EntityRelationshipWidget‘s tar-

get node end, this tool is needed. The tool implements the TextFieldInplaceE-

ditor for the createInplaceEditorAction of the appropriate LabelWidget.

Currently it is used for the targetName LabelWidget in the AbstractEntity-

RelationshipWidget class. It gets and sets the text of the LabelWidget and sets

the TargetName of the EntityRelationship data model element.

eat.tool.scene.CreateModelsTool

This tool creates Castor conform models, based on the scenes content. At first, an

empty abstract or concrete model is created. In the next step all widgets, which are on

the scene, are visited and their underlying Castor element are added to this model.

94

Afterwards these models can be saved (eat.tool.scene.SaveSceneTool) or

processed for the calculation (eat.cm.tool.scene.CollectValuesTool).

eat.tool.scene.ExpandOnSelectTool

This class implements the SelectProvider necessary for the createSe-

lectAction that is assigned to the instances of the AbstractMultiplicityWidget and

RelationAggregationFunctionWidget in the AbstractExternalAttributeRe-

lationshipWidget and AbstractEntityRelationshipWidget classes.

This tool decides what happens when these Widgets are clicked. In this case the

select method calls the expand method of the previously verified, expandable

Widget.

eat.tool.scene.ExportToPNGTool

This tool simply writes the contents of the current viewable area or the whole scene

into a PNG-file that was chosen with the help of a FileChooser dialog. This func-

tionality can be found in the exportToPNGAction or exportSceneToPNGAc-

tion method in the EATView classes. This feature can be accessed via a menu entry

in the ―File‖ menu.

eat.tool.scene.FileHandlingTool

This tool extracts the file type of a given file name. As EAT is only designed to

work on XML documents, this check is necessary. Whenever it comes to file interac-

tions, a validation of the type has to be performed.

eat.tool.scene.KeyActionsTool

This tool provides the ability of handling Key Events on the Scene. It is a subclass

of WidgetAction.Adapter from the NetBeans Visual Library. The tool over-

rides the keyPressed method. This method gets a WidgetKeyEvent and the

current Widget as parameters. The keycode can be resolved from the WidgetKeyE-

vent via its getKeyCode method.

The tool has to be added to the list of actions in the Scene.

eat.tool.scene.MultiMoveTool

The MultiMoveTool implements the interface MoveProvider. By adding it

as MoveAction to the EntityWidget it is possible to select multiple entities and

to move them using drag and drop.

The functionality is implemented in four methods. The first is the move-

mentStarted method, which is called in the moment the movement of the selected

entities starts. It collects references to all EntityWidgets that are part of the selection.

Then the getOriginalLocation method is used to determine the position of one

anchor Widget from the selected Widgets. The setNewLocation method calcu-

lates the movement of the anchor Widget and moves all other entities by the same

amount. Finally, the movementFinished method clears the list of entities.

95

eat.tool.scene.NewSceneTool

This class provides functionality to refresh a scene. All content that has been mod-

eled before is removed. Afterwards the scene is prepared for a new model. Besides

the obvious use case to start from scratch, the tool is also used to clean up the scene

before an existing model gets loaded (eat.tool.scene.OpenSceneTool).

eat.tool.scene.OpenAbstractModelTool

This tool is an analogical tool to eat.cm.tool.scene.OpenConcrete-

ModelTool. It loads an abstract model that can be found at a certain file path in a

XML file. Unmarshall functionalities provided by Castor were used. They also result

in an instantiation of Castor generated classes.

eat.tool.scene.OpenSceneTool

This tool is used to load XML documents, in which previously created models are

contained. The OpenSceneTool can be used inside the abstract and concrete mod-

eler. This is the reason why the tool has to determine whether the current model is

abstract or concrete. After this decision, either eat.tool.scene.Open-

AbstractModelTool or eat.cm.tool.scene.OpenConcretemodel-

Tool is executed.

eat.tool.scene.RenameWidgetTool

This tool provides a TextFieldInplaceEditor for changing an entity or an

attribute name. The TextFieldInplaceEditor is shown at double-click on a

Widget that can be renamed. It materializes at exactly the same position as the name

has been shown before.

The tool is capable of editing the names of abstract entities, abstract attributes and

concrete entities. Due to modeling conventions, it is not possible to edit the name of a

concrete attribute.

eat.tool.scene.SaveSceneTool

This class contains the functionality to save a scene's content to an XML file.

Therefore, the content of the scene is read, with the help of (eat.tool.scene.

CreateModelsTool), and Castor-compliant models are created. These models are

serialized using the Castor provided functionalities into an XML document.

eat.tool.scene.UndoManagerTool

This tool provides access to the undo and redo functionality in EAT. It contains the

UndoManager Object that handles all queuing activities of edits.

By using the UndoManagerTool, it is possible to access the functionality from

virtually any point of the code.

eat.tool.tag_filter.AddTagDialogTool

This tool displays a dialog to add a new tag (eat.ui.EatAddTagDialog) for

the different elements that could be created. The dialog is prepared in advance, de-

pending on whether an abstract or concrete element should be tagged.

96

eat.tool.tag_filter.DeleteTagTool

This tool displays a dialog (eat.am.ui.DeleteTagDialog) to delete one or

more tags of an element. The dialog is prepared with the assigned tags of the underly-

ing EntityWidget, AttributeWidget or RelationshipWidget.

eat.tool.tag_filter.FilterDialog.Tool

This tool prepares and displays the dialog to configure the filter functionality

(eat.am.ui.EATConfigureFilterDialog). For easier use the settings, made

on last dialog run, are preset. On first execution, this tool sets a flag, so that the dialog

shows an initial default configuration. The tag filtering of the dialog is preset as well.

Therefore, all tags, assigned to any model elements are read (using

eat.tool.tag_filter.GetAllTagsTool) and transferred.

eat.tool.tag_filter.FilterTool

This tool filters the scene content based on a filter configuration made in the

eat.am.ui.EATConfigureFilterDialog. The filter process consists of two

sections. In the first step, all elements are set to invisible, therefore the eat.tool.

tag_filter.UnfilterTool is used. Afterwards the content fitting to the filter

criteria are displayed.

eat.tool.tag_filter.GetAllTagsTool

A list of all assigned tags is created by the eat.tool.tag_filter.Get-

AllTagsTool. This collection is built by iterating over all elements of the scene. In

case they were tagged with a label that is not already known, the tag is added to the

collection.

eat.tool.tag_filter.GetTagTool

This tool is implemented to deliver tags of a certain scene element, whereas the

eat.tool.tag_filter.GetAllTagsTool collects tags of all elements (this

is done by multiple runs of the eat.tool.tag_filter.GetTagTool).

eat.tool.tag_filter.UnfilterTool

This tool offers functionality to set the whole scene visible or to set it completely

non-visible. This functionality is needed during the filtering process. In addition, it is

applied when the filter is switched off and the scene is displayed completely again.

eat.ui.ColumnGroup

This class is used to organize multiple columns in a table as a group. It is mainly

used in association with a GroupableTableHeader. It stores information about

all columns that belong to a group.

Original source from [28] has been marginally modified.

eat.ui.EATAddTagDialog

 This dialog offers functionality to add a new tag to an element. Before a tag is as-

signed, a check is performed whether the element is already tagged with this label.

97

The eat.tool.tag_filter.AddTagDialogTool prepares this dialog in

advance, to anchor the widget that should be tagged.

eat.ui.EATGraphPinScene

From Visual Library 2.0 - Documentation: "GraphPinScene manages a model with

nodes, pins and edges. A pin is always attached to a node. Edge could be connected to

a source and a target pin only." [It uses] generics and therefore developers can specify

their classes that represents nodes, pins and edges. [...]"

This class is an abstract and parameterized generalization class for the Ab-

stractGraphPinScene and the ConcreteGraphPinScene. It provides

functionality that is used in both subclasses, like the counter for the generation of IDs

and the handling of the different layers on the Scene. It is a subclass of GraphPinS-

cene (cf. 7.2) and is still implemented as a generic class. The instantiation of the

generic types is done in the subclasses of EATGraphPinScene.

eat.ui.EATView

This is a generalization interface for EATAbstractView and EATConcrete-

View. It determines common functionalities like the checkUndoRedo method.

eat.ui.GroupableTableHeader

The GroupableTableHeader provides the ability to visualize which table

columns belong together by grouping them under a spanning table header. To achieve

this, a subclass of JTableHeader is generated which holds information about the

groups of columns, beside the usual needed information about the standard columns.

The column groups are provided by the class ColumnGroup and the visualization

is done by the GroupableTableHeaderUI class.

Original source from [28] has been marginally modified.

eat.ui.GroupableTableHeaderUI

This provides visualization Information and methods for a GroupableTable-

Header. All needed paint methods are defined in this class.

Original source from [28] has been marginally modified.

eat.ui.TypedTableModel

This class is a derivation of the TableModel used in JTables. It was necessary

to implement an own TableModel because the DefaultTableModel is not

capable of handling different data types for different table columns. This was neces-

sary in the Edit-Attribute-Dialogs where the table should contain the name of a state

as string and the value as double.

Main extensions are an array of classes, which contains the corresponding data type

of a column, and overriding the getColumnClass method, which provides access

to the type array.

98

eat.widget.AttributeWidget

This is a generalization class for the AbstractAttributeWidget and the

ConcretAttributeWidget. More information about the class model of the

Widgets can be found in chapter 7.4.4.1.

eat.widget.ConnectionConnectionWidget

This extension of a FreeConnectionWidget is a special kind of Widget

whose main purpose is to illustrate the dependency between EntityRelationships and

AttributeRelationships. It is displayed as simple lines between an AttributeRelation-

shipWidget and all of its associated EntityRelationshipWidgets. This tool defines the

appearance, sets the source and target of the line, and assigns actions to the Widget.

Finally, it adds the new Widget to the connectionLayer and updates the scene.

eat.widget.EATConnectionWidget

This Widget class serves as the foundation for all EntityRelationshipWidgets and

AttributeRelationshipWidgets. It is a generalization class of Visual Library's Connec-

tionWidget. Its purpose is to provide common attributes and methods for managing

the data model element.

eat.widget.EATElementResolver

This interface is part of the Widget inheritance hierarchy. It provides the getEle-

ment method. See 7.4.4.1 for more information.

eat.widget.EATWidget

This is the entry point of the Widget hierarchy. It marks the connection between

the NetBeans Visual Library and the self-designed parts. See 7.4.4.1 for more infor-

mation.
eat.widget.EntityRelationshipWidget

This class is used for generalization of the AbstractEntityRelationship-

Widget and the ConcreteEntityRelationshipWidget. See 7.4.4.1 for

more information.

eat.widget.EntityWidget

This class is used for generalization of the AbstractEntityWidget and the

ConcreteWidget. See 7.4.4.1 for more information

eat.widget.ExternalAttributeRelationshipWidget

This class is used for generalization of the AbstractExternalAttribute-

RelationshipWidget and the ConcreteExternalAttributeRela-

tionshipWidget. See 7.4.4.1 for more information.

eat.widget.InternalAttributeRelationshipWidget

This class is used for generalization of the AbstractInternalAttribute-

RelationshipWidget and the ConcreteInternalAttributeRela-

tionshipWidget. See 7.4.4.1 for more information.

99

8.2 Abstract Modeler

The abstract modeler provides the ability to build abstract models as described in

7.3.3.1. It is possible to add, edit and remove entities and attributes of entities, as well

as the definition of relationships between them.

The ability to save and load models has also been implemented.

8.2.1 Package Structure

This chapter deals with all subpackages of the eat.am.* package. As described in

8.1 and in 7.4 EAT incorporates the Model-View-Controller approach.

The package eat.am contains classes that are only used in the abstract modeler

and not in the concrete modeler. In several cases the abstract modeler uses also

classes of the more general eat.* package. These are described in 8.1.1.

All packages of the abstract modeler can be matched to the MVC approach. The

eat.am.model.* package contains all classes needed for the model or data part.

For visualization, mostly the classes of the eat.am.ui.* package and in some

parts the classes of the eat.am.widget package are used. Finally, the controller

part is mainly represented in the classes of the package eat.am.tools and in part

by the classes of the eat.am.widget package.

eat.am.model.*

All classes, which can be found in the eat.am.model and its subpackage, are auto-

matically generated by Castor (7.1.3). All information about an abstract model is

stored by using these classes.

The eat.am.model.decriptors package contains additional information of

the model elements that are also generated by Castor.

eat.am.tool

The package eat.am.tool contains the tools that are only used in the imple-

mentation of the abstract modeler. It contains two subpackages

eat.am.tool.attribute and eat.am.tool.relationship.

eat.am.tool.attribute

In the package eat.am.tool.attribute, two tools are stored which deal

with attributes in abstract models.

This package contains the following classes:

 AbstractAttributeConnectTool

 RemoveAttributeTool

100

eat.am.tool.relationship

Tools that are related to relationships in abstract models can be found in the pack-

age eat.am.tool.relationship. Here the contained classes call dialogs that

are relevant for relationship handling.

This package contains the following classes:

 ChooseRelationshipForIntAttRelDialogTool

 ConnectionPathDialogTool

eat.am.ui

The package eat.am.ui contains all classes needed for displaying the user in-

terface of the abstract modeler with all its components and dialogs. Key-classes are

the EATAbstractView as the main perspective of the modeler and the EATAb-

stractGraphPinScene as part of the NetBeans Visual Library (cf. 7.2), which

provides the modeling surface.

Another very important component of the EA Tool can be found in this package.

The EATApp class contains the main-method of the project and serves as entry point

on program launch.

The subpackage eat.am.ui.resources contains additional property-files for

information like button labels or menu entries. These files are automatically generated

while using the NetBeans User Interface Designer (cf. 7.1.5). In addition, bitmap

images for the toolbar buttons are stored in this package.

This package contains the following classes:

 EATAboutBox

 EATAbstractGraphPinScene

 EATAbstractView

 EATApp

 EATAttributeConnectionPathDialog

 EATChooseRelationshipForIntAttRelDialog

 EATConfigureFilterDialog

 EATCustomCPTDialog

 EATDeleteTagDialog

 EATEditAttributeDialog

eat.am.widget

Widget classes used to visualize model information on the Scene are stored in the

package eat.am.widget. More information on the role of Widgets can be found

in 7.2.2.

101

This package contains the following classes:

 AbstractAttributeWidget

 AbstractEntityRelationshipWidget

 AbstractEntityWidget

 AbstractExternalAttributeRelationshipWidget

 AbstractInternalAttributeRelationshipWidget

 AbstractMultiplicityWidget

 RelationAggregationFunctionWidget

8.2.2 Class Structure

eat.am.tool.attribute.AbstractAttributeConnectTool

This tool provides the functionality of drawing a connection between two abstract

AttributeWidgets. In order to register and draw a relationship, first the source and

target Widgets have to be resolved. If none of them is null, it is checked whether the

connection is going to be internal or external, i.e. whether the source and target Wid-

gets are the same or not. Related EntityRelationshipWidgets are resolved, too. By

now, it is also possible to draw attribute connections between AttributeWidgets that

are indirectly connected. This class is assigned as an ExtendedConnectAction

of an AttributeWidget in AbstractAttributeWidget.java. The methods in this tool are

called automatically by the action.

eat.am.tool.attribute.RemoveAttributeTool

This tool provides the necessary functionality for removing attributes from entities.

In the first step, the entity containing the attribute is resolved from the model struc-

ture. After removing the attribute from the according entity, it is also removed from

the Entity Widget and by this from the scene. In the last step, it has to be taken care of

the attribute relationships that are connected to the deleted attribute. In this step, the

incoming and outgoing attribute relations have to be considered as well as internal

and external ones, as they are represented by different Object-Types.

eat.am.tool.relationship.ChooseRelationshipForIntAttRel-

DialogTool

This tool calls a dialog that lets the user choose whether a recently drawn Abstrac-

tInternalAttributeRelationshipWidget should be associated to an according Abstrac-

tEntityRelationshipWidget. Therefore, the tool computes all AbstractEntityRelation-

shipWidgets that have the same source and target EntityWidget as the latterly drawn

AbstractInternalAttributeRelationshipWidget. The result list is then passed to the tool

that displays the results in a ComboBox to the user. The chosen AbstractEntityRela-

tionshipWidget, that can be ―NONE‖ also, is then set as the result and passed back to

the tool.

102

eat.am.tool.relationship.ConnectionPathDialogTool

Each time a user wants to draw an AbstractAttributeRelationshipWidget between

AbstractAttributeWidgets whose parent AbstractEntityWidgets are not directly con-

nected, this tool is called (by the AbstractAttributeConnectTool). It subse-

quently calls the EATAttributeConnectionPathDialog that lets the user

choose which path along AbstractEntityRelationshipWidget to take until the target is

reached. More information about this procedure can be found in the EATAttribu-

teConnectionPathDialog class description below. The result of the dialog

(EntityRelationshipWidgets on the selected path) that was passed back to this tool is

subsequently passed to the AbstractAttributeConnectTool. Here the AbstractEntityRe-

lationshipWidgets on the selected path are essential information for the creation of an

AbstractAttributeRelationship(Widget). The AbstractEntityRelationshipWidgets be-

come associated with the newly created AbstractAttributeRelationship, visualized in

the AM by a ConnectionConnectionWidgets between both types of relationships.

eat.am.ui.EATAbstractGraphPinScene

From Visual Library 2.0 - Documentation: "GraphPinScene manages a model with

nodes, pins and edges. A pin is always attached to a node. Edge could be connected to

a source and a target pin only." [It uses] generics and therefore developers can specify

their classes that represents nodes, pins and edges. [...]" (note: maybe move to EAT-

GraphPinScene)

EATAbstractGraphPinScene provides all methods for managing the scene in the ab-

stract modeler

eat.am.ui.EATAbstractView

This class represents the main Application Frame of the abstract modeler. It con-

tains information about all UI elements such as Buttons and Menus. In addition, vari-

ous Actions for different Interaction Events as Menu selection or Mouse Clicks are

handled in this class.

eat.am.ui.EATApp

This class is the main class of the Application. It contains the main-Method that in-

itializes all UI and Application elements and serves as entry point on startup.

The differentiation between the concrete modeler and the abstract modeler is also

handled in this Class. It is implemented as a command-line-parameter, which has to

be given on startup. If the application is launched without parameter, the abstract

modeler starts. If the concrete modeler is the desired Application Part, one has to

specify the command line parameter ―-concrete‖.

eat.am.ui.EATAttributeConnectionPathDialog

This class provides a dialog in the abstract modeler that appears when the user

draws an indirect AbstractAttributeRelationshipWidget. Here a user can choose which

path to take from the source EntityWidget to the target EntityWidget via various Enti-

tyRelationshipWidgets. This dialog is called by the ConnectionPathDialog-

Tool. At first, the setup method prepares the dialog with the first choices. There-

fore, it depends on the path calculation results of the AttributeConnection-

PathFinderTool. This tool computes all possible neighbors of the source Enti-

103

tyWidget that are located on a path from source to target. These relevant neighbors

are then displayed in the ComboBox. After a user selection, the prepareNext-

Choice method is called which prepares the next step. This is repeated until the user

selects a node that represents the target EntityWidget. All EntityRelationshipWidgets

that lie on the selected path between source and target are stored in a Vector and

passed back to the ConnectionPathDialogTool.

eat.am.ui.EATChooseRelationshipForIntAttRelDialog

This dialog is called by the ChooseRelationshipForIntAttRelDialog-

Tool. This dialog displays all relevant AbstractEntityRelationshipWidgets that can

be chosen as associated relationships to the recently drawn AbstractInternalAttribute-

RelationshipWidgets. Thereby it is also possible to choose ―NONE‖, which means

that the AbstractInternalAttributeRelationshipWidget remains without a reference to

an AbstractEntityRelationship(Widget). In the case the ―Cancel‖-button is pressed the

whole registration and drawing process will be aborted. The ―Apply‖-button passes

the chosen AbstractEntityRelationshipWidget back to the tool.

eat.am.ui.EATConfigureFilterDialog

 This Dialog is used to configure the filter in the abstract modeler. A selection of

the different Scene-elements is possible. The decision can be made between entities

(EntityWidgets), attributes (AttributeWidgets), entity relationships (EntityRelation-

shipWidgets), and attribute Relationships (AttributeRelationshipWidgets). The dialog

takes care of the model hierarchy, so only useful combinations of elements are al-

lowed. When a certain component should be shown, its underlying also gets selected

if it is not already. This means that AttributeWidgets only are displayed, when their

EntityWidgets are selected, too. In case of de-selection of an element, its children are

deselected as well.

The consideration of tags can be activated too. This means that only scene ele-

ments that have one of the relevant tags are displayed. If the use of tags is selected, a

choice between the assigned tags gets enabled.

A filter that has been configured within this dialog can be activated in the main

view (eat.am.ui.EATAbstractView) or changed, when the Dialog is opened

again. For this use case, the functionality that is provided by eat.tool.tag_fil-

ter.FilterDialogTool is necessary.

eat.am.ui.EditAttributeDialog

This class provides a Dialog for editing attributes. It is possible to change the

attributes name and different characteristics of its CPM such as the dynamic CPM

type or the states and their values. The appearance of the displayed (conditional prob-

ability) table depends on the model structure.

eat.am.ui.DeleteTagDialog

This Dialog shows the assigned tags of a certain taggable element (viz. EntityWid-

gets, AttributeWidgets, and the different kind of relationship widgets). These tags can

be selected. When the Delete button is pushed, the selected tags are removed. In case

the Cancel button is selected, nothing happens, except the dialog disappears.

104

eat.am.widget.AbstractAttributeWidget

This class provides the visual container for an attribute element in the abstract

modeler. It extends the AttributeWidget class. In the tree-hierarchy of Widgets these

AbstractAttributeWidgets are children of a Widget (compartmentWidget) which

itself is a child of an EntityWidget. An AbstractAttributeWidget provides a field for

the data model element (attribute), a LabelWidget for displaying the name, and ac-

tions, e.g. for offering a popup menu.

eat.am.widget.AbstractEntityRelationshipWidget

This is the abstract specialization of an EntityRelationshipWidget. It is the user in-

terface container for the EntityRelationship data model element in the abstract mod-

eler. It lies in the connection layer of the EATAbstractGraphPinScene. Ab-

stractEntityRelationshipWidget is made up of two AbstractMultiplici-

tyWidgets, a central name LabelWidget, and two role-name LabelWidgets. Moreover,

it holds an action list for providing a popup menu and control points.

eat.am.widget.AbstractEntityWidget

The graphical representation of a node on the EATAbstactGraphPinScene is

provided by an AbstractEntityWidget object. It contains a field for the data model

element Entity. Furthermore, it holds a LabelWidget and zero or more AbstractAttri-

buteWidgets. This class extends the EntityWidget class.

eat.am.widget.AbstractExternalAttributeRelationshipWidget

This widget class is the abstract specialization of a relationship between two Attri-

butWidgets whose parent EntityWidgets are different. As this is a Widget its main

functionality is to provide a field for the data model element, which here is an Exter-

nalAttributeRelationship. Moreover, actions for popup menu and control point capa-

bilities are assigned. Because an AttributeRelationship holds information about its

associated EntityRelationships, this association needs to be displayed, too. Therefore,

an AbstractExternalAttributeRelationshipWidget computes the

targets of its related EntityRelationshipWidgets (precisely the central LabelWidget of

the EntityRelationshipWidget). Then for each associated EntityRelationship it creates

a ConnectionConnectionWidget between the source (LabelWidget of Ab-

stractExternalAttributeRelationshipWidget) and the target. The

created ConnectionConnectionWidget is then stored in a Vector.

eat.am.widget.AbstractInternalAttributeRelationshipWidget

This widget class is very similar to the AbstractExternalAttributeRe-

lationshipWidget. It provides exactly the same functionality, but is used when

source and target AbstractAttributeWidgets of the abstract AttributeRelationshipWid-

get belong to the same parent AbstractEntityWidget. A special characteristic of this

relationship widget is that it has at most one related EntityRelationship.

eat.am.widget.AbstractMultiplicityWidget

The AbstractMultiplicityWidget is located at the source and target En-

tityWidget of an AbstractEntityRelationshipWidget. Here the user can choose be-

105

tween four multiplicities - "1", "0..1", "0..*", and "1..*". It consists of a LabelWidget

showing the current selection and a detailsWidget, which contains the JRadioButtons

that provide the choices. Each button is linked to an ActionListener that processes the

selection. An AbstractMultiplicityWidget knows whether it is at the source

or target end. It is able to expand and collapse itself. In the collapsed state, only the

LabelWidget with the current chosen multiplicity is shown. On double-clicking, the

widget expands itself and shows the four choices. After selection, it collapses again.

The expand- and collapse-methods control the according behavior. The moment

of expand is controlled by the ExpandOnSelectTool which implements a Se-

lectProvider. This provider is a parameter for the createSelectAction

that is assigned to the AbstractMultiplicityWidget in the AbstractEn-

tityRelationshipWidget class.

eat.am.widget.RelationAggregationFunctionWidget

This widget works in the same way and provides the same methods as the Ab-

stractMultiplicityWidget. The difference is that the RelationAggre-

gationFunctionWidget is assigned to an AbstractExternalAttribu-

teRelationshipWidget.

8.2.3 User Interface

This paragraph is meant to explain the graphical user interface (GUI) of EAT. There-

fore, all menus and dialogs that might appear, during a program run will be consi-

dered, depending on the use-case. The illustration below is structured as follows: At

first, the main perspective and the abilities offered to the user are explained. This

main perspective is the scene on which the models are drawn. From there on the dif-

ferent options for the user are considered, according to their underlying user interface.

In this way, all dialogs and options, displayed to the user, are considered. It has to be

mentioned that, compared to the usage example (chapter 9), no continuous scenario is

considered. The advantage of this proceeding are that a certain dialog is explained on

its own and therefore understandable without knowledge of the rest of the model. A

consideration of a complete model would also lead to large redundancies and imply

that there is only a single way of using, which is not the case. It should be remarked

that the GUI description is restricted to the explanation of the dialogs and perspectives

presented to the user. Further, it is not intended to show here why a certain value

could be found at a certain place or which configuration has advantages over another

one.

106

In Fig. 36 the initial perspective of the abstract modeler is visualized. This perspective

is displayed each time the drawing of a new model is started. The largest share of this

perspective is the (white) space on which the models are drawn. A left-click on this

space displays a popup-menu that offers to add a new entity to a model (the corres-

ponding menu-entry is labeled: ―Add New Entity‖).

The heading of this model-perspective is separated into two parts: a textual-menu

part and a bar, which contains graphical and text-based icons. The first section of the

textual part is the ―File‖-menu. It provides the functionality to start with a clean, new

Fig. 36. Empty-Model Perspective of the Abstract Modeler

Fig. 37. Popup-menu of an Abstract Entity

107

model (shortcut is CTRL+N), to open an existing model (shortcut is CTRL+O), to

save a model, with use of the well-established ―Save‖- and ―Save As‖-functionalities

(shortcuts are CTRL+S and CTRL+Shift+S). The possibilities to create a screenshot

of the model or the section which is currently displayed, is also offered by the ―File‖-

menu. Its last menu-entry is the exit-functionality, which also can be accessed with

the shortcut CTRL+Q. The ―Filter‖-menu offers two functionalities: configuration

and application of a filter. By now, the ―Help‖ menu provides only information about

the vendor of the EA tool.

The buttons of the graphical part of the heading are explained starting from left to

right (in Fig. 37). At first, the opportunity to reset the model is offered again. The

next button offers functionality to open a previously modeled scenario. ―Saving func-

tionality‖- is provided by the third button. The next button causes an addition of a

new entity to the scene, whereas its neighbor to the right removes a selected scene

element. The sixth button provides ―undo‖-functionalities. This means that a modifi-

cation of the model is reverted. Button number seven provides ―redo‖-functionalities,

causing the reversion of a previous executed ―undo‖-functionality. The switch labeled

―Animation‖ switches on or off whether the entities, added by the popup-menu ―fly‖

into the scene or appear straight ahead. In case a defined filter should get applied this

can be switched on via the ―Apply Filter‖-switch. The last button displays configura-

tion options for the filter, which is presented below.

Besides menus and the model-scene, a so-called ―Satellite-view‖ visualizes the

complete modeled structure. This view, which virtually films the scene from a satel-

lite, is embedded in the right part of the GUI.

In the illustration presented above, besides the already explained GUI, the popup-

menu of an entity is visualized. It offers the possibility to add a new attribute and edit

the currently selected one. In addition, several options for tag-handling, namely addi-

tion and removal of a tag as well as showing of the attached tags, are offered. The

Fig. 38. Dialog of an Attribute, with zero multiplicity

108

EntityWidget, symbolizing an Entity, can also be brought to the front and send to the

back of the current scene. This helps to reorganize the models, especially when they

are very large. At last, the option to delete the current entity is offered.

Depending on the model structure, two different dialogs to edit an attribute are shown.

This depends on whether the multiplicities allow zero connections or not.

In Fig. 38 the dialog, which provides the edit-functionality of an attribute, is pre-

sented. First, the name of the attribute can be changed. Below that, the dynamic CPM

of the attribute can be chosen out of a predefined selection. In case the attribute is a

Prior, the CPM States can be selected again from a predefined collection. The table at

the bottom of the dialog allows mapping numerical values to the respective states. In

addition, the possibility to select a static CPM, which should be populated, is offered.

A configuration is saved, when the ―OK‖-button is pushed, whereas the execution of

the ―Cancel‖-button discards the changes which were made.

In the dialog, which is presented below (Fig. 39), the configuration of an attribute,

which has no multiplicity that could be zero, is displayed. The dialog is derived from

the first attribute-dialog (Fig. 38); however, in this case the CPM can be modified.

This CPM depends on the structure of the model and allows the modification of a

certain probability by the user.

This consideration of the GUI is continued with an explanation of the dialogs, which

are relevant for the different tagging functionalities.

Fig. 39. Edit Dialog of an Attribute, without zero multiplicity

109

The dialog displayed above (Fig. 40) is shown, when a new Tag should be added. It is

a simple input mask, to enter a tag, which is attached to the currently considered ele-

ment.

In Fig. 41, the dialog, which is displayed when a tag should be removed, is presented.

A list of all assigned tags of the selected scene element is shown. The user can select

any combination of tags that should be removed.

In Fig. 42, the dialog for configuring the filtering of the model is illustrated. The

dialog is separated into two parts. At first the elements, which should be considered

and therefore displayed on the scene, can be selected. At the bottom of the dialog a

selection of tags can be made, depending on the state of the ―use Tags‖-switch. In

case the tags should be used, they are presented in a list and a subset can be confi-

gured. When this configuration is applied all scene elements that have at least one tag

out of this subset, will be displayed on the canvas.

Fig. 40. Add Tag Dialog of a scene element

Fig. 41. Delete Tag Dialog of a

Scene‗s element

110

Fig. 42. Configure Filter Dialog

Fig. 43. Configuration of Multiplicity and Aggregation Function

Finally, the dialogs that occur during the creation of relationships are explained. A

relationship can be created with the use of ―Drag&Drop‖, while the CTRL-key is

pressed. An abstract model, which has been created in this way, is visible in Fig. 43.

For begin and end of an entity relationship a configuration of the multiplicities is

possible, by choosing one out of four possible candidates. In addition, the roles can be

named individually. The Aggregation Functions of the attribute relationships are also

allowed to be one out of four different kinds, to be selected by the user.

111

The dialog presented in Fig. 44 is displayed automatically when an internal attribute

relationship is created. This dialog allows connecting the internal attribute relation-

ship to an entity relationship, which was introduced earlier into the model. This map-

ping is optional.

An indirect attribute relationship between a pair of source and target nodes is con-

figured within a separate dialog (Fig. 45). In case of more than one valid entity rela-

tionships, a path has to be chosen manually. Therefore, on the way from source to

target, each currently considered node and its descendant has to be selected. The path

that has already been accepted is displayed in a box at the bottom of the dialog.

Fig. 44. Configuration of internal Relationship Dialog

Fig. 45. Configuration of indirect Attribute Relationship

112

8.3 Concrete Modeler

In the concrete modeler, the abstract models created with the abstract modeler are

processed. The model elements, which were defined in the abstract modeler, are in-

stantiated. Therefore, a certain abstract model has to be loaded. Concrete entities,

which have their root in abstract entities, can be connected based on the previous

defined relationships. To a given attribute of an entity, numerous evidences can be

attached. When the modeling process is finished, the calculation (8.3.4) can be ex-

ecuted. Afterwards the calculated values to each state of each attribute are set. A re-

consideration of the attributes shows them to the user.

8.3.1 Package Structure

As explained in 8.1 the EAT consists of a multitude of packages. This paragraph takes

a closer look on the eat.cm.* packages. They have in common that only Java

classes with relevance for the concrete modeler are provided here. Four different

kinds of packages can be found: eat.cm.model.*, eat.cm.tool.*,

eat.cm.ui.*, and eat.cm.widget.

eat.cm.model.*

The classes that can be found in the eat.cm.model.* were automatically gen-

erated by Castor (cf. 7.1.3), based on XSD documents (cf. 7.1.2). In these classes, the

representation of the model elements can be found. For each node element in the XSD

files (Appendix B: XSD) a separate class was introduced. The package

eat.cm.model.descriptors contains additional information about the model

elements ―...to dramatically enhance performance‖ [7].

eat.cm.tool.*

The package eat.cm.tool organizes the tools for the concrete models. It is

again subdivided into three parts. The subpackage eat.cm.tool.attribute

bundles classes with relevance to the concrete attributes. The functionalities to con-

nect and edit them were implemented inside this package. In addition, a tool to man-

age the creation of dynamic CPMs is found here (CreateDynamicCPMTool).

In eat.cm.tool.relationship tools with relation to the connections of

concrete attributes or entities are held.

The third subpackage eat.cm.tool.scene bundles all tools that offer functio-

nalities for a certain model. On the one hand, tools that are used during the calculation

process are found here. On the other hand, a tool to load a concrete model is defined

in this package (OpenConcreteModelTool).

113

The subpackage eat.cm.tool.attribute contains the following classes:

 ConcreteAttributeConnectTool

 CreateDynamicCPTTool

 EditConcreteAttributeDialogTool

 UpdateAttributeCPMTool

The subpackage eat.cm.tool.relationship contains the following classes:

 CheckIndirectAttributeConnectionPathTool

 ChooseRelationshipTypeDialogTool

The subpackage eat.cm.tool.model contains the following classes:

 CalculateTool

 CollectValuesTool

 DisplayResultsTool

 OpenConcreteModelTool

eat.cm.ui.*

Dialogs and components which are relevant for the user interface are found in the

eat.cm.ui.* package. Especially EATConcreteGraphPinScene, the scene

of the concrete modeler, and EATConcreteView, the default perspective of the

modeler, should already be mentioned here. They both build the foundation of the

concrete modeler.

This package also has a subpackage eat.cm.ui.resources. Inside, multiple

property-files can be found. They provide information about labeling of the user inter-

face and other configuration details. These properties are automatically generated,

when the NetBeans dialog-generation-wizard is used.

This package contains the following classes:

 EATChooseRelationshipTypeDialog

 EATConcreteGraphPinScene

 EATConcreteView

 EATEditConcreteAttributeDialog

eat.cm.widget.

The package eat.cm.widget contains the Widgets that are displayed on the

scene. EntityWidgets and AttributeWidgets are found here, above all the relation-

ships between these components.

114

This package contains the following classes:

 ConcreteAttributeWidget

 ConcreteEntityRelationshipWidget

 ConcreteEntityWidget

 ConcreteExternalAttributeRelationshipWidget

 ConcreteInternalAttributeRelationshipWidget

 EATConcreteGraphPinScene

 EATConcreteView

8.3.2 Class Structure

eat.cm.tool.attribute.CreateDynamicCPTTool

 This tool creates dynamic CPMs, based on a given aggregation function. For the

dynamic CPM creation the classes in eat.cpm.* were used. These were mostly

taken from the old version of EAT. This tool checks the aggregation function, which

is one of its execution parameters. Depending on the type of this function, a corres-

ponding dynamic CPM is created.

eat.cm.tool.attribute.ConcreteAttributeConnectTool

Unlike the manual creation of abstract attribute relationships, their counterparts in

the concrete modeler are drawn automatically. Therefore, this tool is called every time

a ConcreteEntityWidget is created or when a concrete entity relationship is drawn.

This tool provides three instead of one execute method because it has to decide

whether there is a need for a ConcreteInternalAttributeRelationship-

Widgets, a direct ConcreteExternalAttributeRelationshipWidget, or an indirect

ConcreteExternalAttributeRelationshipWidget. The usual process is that the ex-

ecute method provides parameters on which the method decides whether there

should be a new attribute relation. The case of an indirect ConcreteExternalAttribute-

RelationshipWidget makes an exception, because the need for this relationship is

already found and verified by the CheckIndirectAttributeConnection-

PathTool. The necessity-check is done based on the information of the abstract

model. The last step is to call the add- and set- methods of the scene in order to

register and initiate the drawing of a necessary attribute relationship.

eat.cm.tool.attribute.EditConcreteAttributeDialogTool

This tool provides functionality to handle the dialog for editing attributes in the

concrete modeler. The core functionality provided is the setup of the dialog and the

retrieval of the edited attribute when the dialog is closed.

115

eat.cm.tool.relationship.CheckIndirectAttributeConnection

PathTool

As mentioned before, this tool determines whether an indirect ConcreteExternalAt-

tributeRelationshipWidget needs to be drawn. This determination process starts when

a ConcreteEntityRelationshipWidget was created. Obviously, it is a complex and

expensive routine because this check must not only consider the source and target

ConcreteEntityWidget of the newly drawn ConcreteEntityRelationshipWidget, but

any ConcreteEntityWidget on the scene. For example, a new entity relationship could

merge parts of the graph where a node in part one could be the source and a node in

part two could be the target of an indirect attribute relationship in the abstract modeler

(which would enforce the drawing of an according relationship in the concrete mod-

eler).

To minimize the effort of collecting all necessary information, several HashMaps

were introduced. Thus, the collection can be done only once and the results can be

associated in these maps for quicker access.

The execute method is divided into two parts. First, it collects all indirect ab-

stract external attribute relationships including their source and target attributes and

entities. After that, it checks for each concrete entity if its according abstract entity is

part of those abstract external attribute relationships. Further validations ensure that it

is necessary to draw a new indirect concrete external attribute relationship between a

source and a target ConcreteEntityWidget.

eat.cm.tool.relationship.ChooseRelationshipTypeDialogTool

Concrete entity relationships contain a reference to their associated abstract coun-

terparts that represent the (abstract) type of a concrete relationship. They are related to

an abstract entity relationship. As there could be multiple AbstractEntityRelation-

shipWidgets between two AbstractEntityWidgets, there could also be more than one

possible association candidate for a concrete entity relationship. This tool has the task

to find these candidates and to send them to a dialog that displays them and waits for

the user‘s choice. The subsequently called dialog is the EATChooseRelation-

sipTypeDialog.

The determination of possible abstract entity relationships that are going to be refe-

renced by the new concrete entity relationship presumes another important task: a

multiplicity check. Therefore the execute method first gets all abstract entity rela-

tionships between the abstract representation of the source ConcreteEntityWidget and

the target ConcreteEntityWidget. Then it collects belonging abstract entity relation-

ships from existing concrete entity relationships between source ConcreteEntityWid-

get and target ConcreteEntityWidget in order to know how many abstract entity rela-

tionships are ―in use‖. Finally, with this information, a multiplicity check is per-

formed to know whether it is possible to draw a new concrete entity relationship of an

abstract type. With the result (filtered choices), the dialog is called. The tool with its

multiplicity check has also impacts on the EntityConnectTool as it decides

whether it is possible to draw a ConcreteEntityRelationshipWidget between the cur-

rent source and target at all. It could be the case that the multiplicity-limit is reached

or that there is not an according abstract entity relationship to refer to. The drawing

will then be canceled.

116

eat.cm.tool.scene.CalculateTool

 This tool controls the calculation of concrete models. First, the values are col-

lected, which form the basis for the smile net. Relevant values in this case are CPMs,

priors and evidences. The structure of the model (what type of relationships were

used, and which aggregation functions were selected) is important for the links inside

the network that has to be created. Afterwards, a Bayesian network is built, based on

this information. In the next step, the net is calculated. In the last step, the calculated

values are noted at the corresponding attributes.

eat.cm.tool.scene.CollectValuesTool

 This tool collects the values out of the scene and builds a Bayesian network based

on these beliefs. The SMILE API (see 7.1.1.1) is used for the building process. For

an optimal use of this API, it is recommended to proceed in a defined way (see 8.3.4)

[23], which is followed by this tool.

eat.cm.tool.scene.DisplayResultsTool

Inside an execution of eat.cm.tool.scene.CalculateTool, this tool

writes the calculated values back into the attribute. Therefore, the calculated network

and the scene are aligned. With the use of the SMILE API, the network can be ques-

tioned for the calculated values of a certain AttributeWidget and underlying attribute.

eat.cm.tool.scene.OpenConcreteModelTool

This tool loads a concrete model that can be found at a certain file path in an XML

file. The unmarshall functionalities provided by Castor (cf. 7.1.3) are. They led to an

instantiation of Castor generated classes, which can be processed.

eat.cm.ui.EATChooseRelationsipTypeDialog

This dialog appears when a user draws a concrete entity relationship. The user has

to choose an according abstract entity relationship that will then own the drawn con-

crete entity relationship. As explained before this dialog is called by the ChooseRe-

lationshipTypeDialogTool. The setup method expects a HashMap con-

taining all abstract entity relationship candidates calculated by the tool. It displays

theses candidates in a ComboBox and maps the user‘s choice to an abstract entity

relationship. The chosen abstract entity relationship is then passed back to the Choo-

seRelationshipTypeDialogTool, which returns it as the result to the Enti-

tyConnectTool.

eat.cm.ui.EATConcreteGraphPinScene

This class provides the GraphPinScene for the concrete modeler. Methods for add-

ing and removing elements to the model are provided along with references to neces-

sary additional management data. See EATAbstractGraphPinScene (in 8.2.2) for

additional information about fundamental modus operandi.

eat.cm.ui.EATConcreteView

This is the main view class of the concrete modeler. The view is shown as main

frame inside the Swing Application Framework. Central purpose of this class is to

117

provide all necessary UI elements like buttons and or menus and their corresponding

actions.

Due to a bug in the Swing Application Framework [100], it is necessary for addi-

tional views like this to add its own window listener for terminating the application

after the window is closed.

eat.cm.ui.EATEditConcreteAttributeDialog

This class provides a Dialog for showing information about an attribute of an entity

in a concrete model. Additional functionality is the addition of evidence to the

attribute. The current CPM and the results of a calculation process can be viewed in

this dialog.

eat.cm.widget.ConcreteAttributeWidget

This Widget class is used to visualize attributes in entities in concrete models. It

holds a reference to the corresponding model element and takes care of connection

events by using the AbstractAttributeConnectTool, right-click events

(AttributePopupMenuTool) and in-place editing (RenameWidgetTool).

eat.cm.widget. ConcreteEntityRelationshipWidget

This is the concrete specialization of an EntityRelationshipWidget. It is the user in-

terface container for the entity relationship data model element in the concrete mod-

eler. It lies in the connection layer of the EATConcreteGraphPinScene. In

comparison to an AbstractEntityRelationshipWidget the Concre-

teEntityRelationshipWidget does neither contain multiplicity widgets nor

role name LabelWidgets, but a central name LabelWidget. Moreover, it holds an

action list for providing popup menu and control points. As ConcreteEntityRe-

lationshipWidgets have a reference to their belonging abstract entity relation-

ship this class provides getter and setter methods for this variable, too.

eat.cm.widget.ConcreteEntityWidget

This class provides a representation of a concrete Entity. It is a subclass of Enti-

tyWidget and handles mainly the initialization of the Widget. For more information

about EntityWidgets see 7.4.4.2.

eat.cm.widget.ConcreteExternalAttributeRelationshipWidget

This widget class is the concrete specialization of a relationship between two Attri-

butWidgets whose parent EntityWidgets are different. It is very similar to the Ab-

stractExternalAttributeRelationshipWidget. Because this is a Widget, its main func-

tionality is to provide a field for the data model element, which here is an external

attribute relationship. Moreover, actions for popup menu and control point capabili-

ties are assigned. Because an attribute relationship holds information about its asso-

ciated entity relationships, this association needs to be displayed, too. Therefore, a

ConcreteExternalAttributeRelationshipWidget computes the targets

of its related EntityRelationshipWidgets (precisely the central LabelWidget of the

EntityRelationshipWidget). Then, for each associated entity relationship, it creates a

ConnectionConnectionWidget between the source (LabelWidget of Con-

118

creteExternalAttributeRelationshipWidget) and the target. The

created ConnectionConnectionWidget is then stored in a Vector. In comparison to

its abstract peer, this widget is drawn automatically whenever necessary.

eat.cm.widget.ConcreteInternalAttributeRelationshipWidget

This widget class is very similar to the ConcreteExternalAttributeRe-

lationshipWidget and AbstractInternalAttributeRelation-

shipWidget. It provides exactly the same functionality, but is used when source

and target ConcreteAttributeWidgets of the concrete AttributeRelationshipWidget

belong to the same parent ConcreteEntityWidget. A special characteristic of this rela-

tionship widget is that it has at most one related entity relationship.

8.3.3 User Interface

This paragraph explains the user interface of the concrete modeler, in an analogous

way, as it was already done for the abstract modeler (see 8.2.3). Again, the illustration

starts with a consideration of the main perspective, which is presented in Fig. 46.

In this perspective, a separation into two parts is visible. At the top of the modeler, the

configuration options are arranged, whereas the center offers space to draw a concrete

model. The ―File‖-menu offers functionalities for starting with a new model, for

opening an existing concrete model; also saving is provided. The underlying abstract

model can be opened, which means loaded, as well. The ―Edit‖- menu offers the pos-

sibility to set a filter.

With the use of buttons, several tasks can be performed additionally. The discus-

sion of the menu entries starts with the button, which is at the left and continues from

left to right. At first is also possible to load an abstract model using a button. The

functionalities to create a new concrete model, to load one that was made previously,

and to save a concrete model is also provided. The fourth and fifth buttons have to be

considered together, as essential functionality is provided by these two. Depending on

Fig. 46. Empty-Model Perspective of the Concrete Modeler

119

the opened abstract model, its entities are displayed in the pull-down menu at the fifth

position. Each entity can be instantiated, and in this way added to the current concrete

model, with use of the fourth button. Finally, the button, which is on the left, starts the

calculation process of the concrete model.

The popup-menu of a concrete entity is very similar to the menu of an abstract

entity. The identical opportunities are offered (Fig. 48), except for the possibility to

add attributes, which is done exclusively in the abstract modeler. Therefore, these

tasks are not explained again, as they can be found in the description of the graphical

user interface of the abstract modeler. The ―Edit Attribute‖- functionality is an excep-

tion with differing methods of operation, therefore it is considered in the following.

On selection of this item, a menu with three different tabs is displayed.

Fig. 48. Popup-menu of a Concrete Entity

Fig. 47. Add Evidence Dialog of an Attribute

120

The first one allows the user to add evidences to the current attribute. This is visua-

lized in Fig. 47. Evidence for the attribute is stored as CPMs. For each evidence a

source and the state, the evidence is corresponding to, can be saved, too.

The second tab displays the CPM, which is configured in the ―Edit-Attribute‖ di-

alog of the abstract modeler. This CPM cannot be changed anymore at this time.

The third tab that is named ―Calculated Values‖ is used to visualize the probabili-

ties after the execution of the calculation in the concrete modeler. It is visualized in

Fig. 49. For each state of the considered attribute, a numerical value is indicated.

Fig. 49. Report of the calculated values

When a relationship between concrete entities is made in the modeler, the underly-

ing abstract relationship has to be selected. Therefore, each time two entities are con-

nected, a dialog is shown, which offers the abstract relationship candidates. This di-

alog is visualized below in Fig. 50:

Fig. 50. Selection of the Abstract Entity Relationship

121

8.3.4 Calculation

In the following, the calculation process is explained. The way from a concrete model

over the creation and calculation of a Bayesian network finally to the calculated val-

ues is presented. Each important step is visualized with screenshots from the modeler

and GeNIe (cf. 7.1.1.2). In this way an illustration of the mathematical process is

made possible, which normally remains in the background. The underlying abstract

and concrete models as well as a mapping between components of them and the

network, which is considered in the following, are available in the Appendix (Appen-

dix A: Calculation).

The network-creation and -calculation algorithm is an adoption of the process de-

scribed in [24]. This is a bottom-up approach, in which nodes were created first and

their connection introduced afterwards. In this scenario, the adjusted method consists

of eleven steps, including preparation in advance and calculation after a successful

network creation.

The network is created and calculated with the help of the SMILE API (cf.

7.1.1.1).

Before the network creation starts, the scene content is collected and, based on the

modeled elements a Castor compliant concrete model is created. To have a valid and

complete model from the beginning helps to translate this structure into a Bayesian

network. An easy lookup of the model's context can be performed. In this way, it is

ensured that the created network remains consistent to the model. Another advantage

in this proceeding is that a direct access on the model‘s components can be performed

and the long way from the scene to the underlying Castor compliant elements does

not need to be taken.

After the preparatory stage in the first step shown in Fig. 51, the AttributeWidgets of

all EntityWidgets are read out of the previously generated concrete model. For each

Fig. 51. Step 1: Translation of Attributes to nodes

122

attribute (extracted out of the AttributeWidgets), a node in the network is added.

These nodes are named with A (for attribute) and a unique ID, which match with the

ID of the underlying attribute. Initially these nodes have two States (State0 and

State1), which are adopted in one of the following steps.

The addition to the network that is made in step 2 (Fig. 52), is that for each

attribute all evidences are collected. These evidences were again added to the net.

Their name at each time is set to ―E‖ (for evidence) combined with the unique ID of

the corresponding evidence in the concrete model.

 In the third step (Fig. 53) the States of the nodes, which were created during first

and second step, are adjusted. Therefore, all attributes and their attached evidences are

considered. Their states are read and used to replace the default states.

The aim of the fourth step is to connect the nodes, which are derived from the

attributes. This is shown in (Fig. 54). An important aspect of the creation of the

attribute connections is that the abstract model, which is the basis of the concrete

model to be calculated, has to be considered. It has to be checked, whether an aggre-

gation function node is necessary or not. This needs some computation, as it cannot

be read straight from the concrete model. If the abstract model requires an aggrega-

tion function node (see 6.4), this node has to be added before the already present

nodes can be connected.

Fig. 52. Step 2: Addition of Evidence nodes

123

Fig. 54. Step 4: Connection of Attributes

Fig. 53. Step 3: Setting of States

124

This node's states need to be changed, as already done for the other nodes. The

name is set to A (again for attribute) followed by the name of the underlying attribute

relationship in the abstract model and the remark that this node represents an aggrega-

tion function node.

Afterwards, the dependencies, which are represented through directed arcs, can be

added. The absence of an aggregation function node implies a direct connection. Oth-

erwise, a connection to the newly created node is introduced. As last sub-step, this

aggregation function node is connected, as it was modeled for the ingoing attribute

connections in the concrete model.

Step 5, which is not visualized, also deals with the aggregation function nodes.

Their CPM's have to be set dynamically, as it is not predictable during the modeling

process (in the abstract modeler) how their input will look like, especially how many

nodes will connect to them. Therefore, the type of CPM, which is remarked in the

abstract model, needs to be read. Based on this information and the knowledge about

the number of parents, which is available after the fourth step, a dynamic CPM crea-

tion can be done.

In the sixth step (Fig. 55), the missing connections between attribute nodes and evi-

dence nodes are added. Therefore, all attributes have to be reconsidered and linked to

their respective evidences. Afterwards all relations between nodes are set.

In order that the Bayesian network can be calculated, the information about the

nodes CPMs have to be set. This is done in three sequent steps, which again are not

visualized:

Fig. 55. Step 6: Addition of Dependencies between Attributes and Evidences

125

During step eight the CPMs, which were set in the abstract model, are set for the

attributes. Iteration over all attributes is performed. For each attribute, it is decided

whether the static CPM, which is defined in the abstract model is used. As described

in 6.4 dynamic CPMs were only used, when a zero lower-bound multiplicity at the

corresponding attribute of the attribute relationship is allowed. In case of a dynamic

CPM is needed, the type of CPM is taken from the abstract model and used to create

an appropriate one.

In the seventh step, the CPMs of the evidences are set. They were defined in the

concrete model and can easily be looked up through the Castor compliant model

created in the beginning.

The eighth step is already a preparation for further implementations. It adds evi-

dences to evidence nodes in the Bayesian network. Currently, these evidence-

evidences cannot be set in the concrete modeler, but in the future, this possibility

should be offered. However, the (empty) evidences of attributes are read and attached

to the evidence nodes in the Bayesian network.

With this last step, the network is complete. The concrete model has been trans-

lated into a Bayesian network. All information for inference is available.

Fig. 56. Step 9: Updated Beliefs

The following figure (Fig. 56) shows the networks after its beliefs have been up-

dated. The values of the states have been propagated according to the dependencies of

the network.

126

With this last step, the creation of a Bayesian network and its calculation process is

described completely. Now a benchmark on different scenarios can be performed and

recommendations based on a mathematical calculation can be made.

8.4 Challenges

In this section, challenges, which were discovered during the implementation process,

will be explained. Issues related to the chosen components that are used in the tool are

considered on the one hand. On the other hand, complicated, and therefore remarka-

ble, algorithms, which were implemented, are presented.

This section can be considered as a reference book in which solutions for hard nuts

are provided. The explanations, which are presented, are for understandable reasons

only an extract of all the solutions that were found as the program was created. The

criteria, which the elements of the compilation listed below have in common, is that

the provided solutions are considered not intuitive, that the only reasonable way was

implemented, or that they are very special for a certain case. The remedies, which are

provided, are expected to get relevant for further additions again.

8.4.1 Cyclic Dependencies in XSD

Castor is not able to handle XSD elements whose type is equal to its name. Therefore,

it is not possible to define an element ―Foo‖ whose type is also ―Foo‖. The names

have to be different like ―Foo‖ as name and ―FooType‖ as type.

Since Castor generates one class for the type, with the name of the type and one

class for the element, with the name of the element, the naming and the definition

order has to be well considered.

The class of the element is always a subclass of the class generated for the type.

Therefore, if an inheritance hierarchy of the type exists, it is necessary to choose the

name of the element the same as the super-class of all classes, which should be com-

pliant with the value of the element. The definition of the super-class also has to be

made before the definition of the given element.

An example would be the complex type ―FooType‖ which is extended by the com-

plex type ―SpecialFooType‖. Now an element should be capable of holding values

that are compliant with ―FooType‖ and all its subtypes. Because of this, it is neces-

sary to call this element ―FooType‖ as well. This way the complex type that holds the

element ―FooType‖ is also able to hold a value of ―SpecialFooType‖.

More information on XDS can be found in 7.1.2. The real world difficulty can be

seen in the XSD (Appendix B: XSD) for an abstract model, specifically in the defini-

tion of attributes and the ―AggregationFunctionType‖.

127

8.4.2 Property File Management

In its default configuration the NetBeans graphical user interface designer (NetBeans

GUI designer) is configured to use property files, to save information about the ap-

pearance of the created dialogs. Compared to a user interface creation by hand in

which e.g. the label of a certain button is defined within the Java code, the informa-

tion management of the IDE was found to be different. For each dialog, a properties-

file is automatically created once the NetBeans GUI designer is used. These proper-

ties-files are stored in a ―resources‖-subpackage of the package the dialog is created

in. These properties-files are structured as maps in which each button has a label

assigned. Optionally additional information is stored as short descriptions (displayed

when the mouse is moved over this button) as well. When a dialog is created or

changed, these properties are irrelevant for the programmer, as the NetBeans GUI

designer builds and updates them in case of changes.

During the use of the IDE, it sporadically turned out that these properties-files are

handled in a different way than expected. As the code of the involved programmers is

sheared with the use of the NetBeans SVN plug-in [76], all the files are administrated

by a defined authority. It was expected that the properties-files would be managed in

the same way. In some situations, which were found not to be reproducible, the prop-

erties-files were not exchanged. It turned out that changes, which were made by a

programmer, were not transferred to another programmer, whereas the exchange of

Java-files was found to be working. The exchange finally was made possible, as the

first user changes were committed again. Sometimes, multiple iteration of this proce-

dure was necessary. In the worst case, a complete project-checkout of the second

programmer was needed.

These problems were stopped as the ―Automatic Resource Management‖ of the

IDE was switched off. This possibility is offered in the dialog properties. Afterwards

the properties-files were not used any longer. The dialog now is realized completely

in Java-code.

8.4.3 Wrong JFrame When Using Multiple Views

Because of a bug in the Swing Application Framework, which is used in EAT, the

getMainFrame method of the application returns a wrong JFrame. The so-called

main frame is necessary for changing the window title of the application. It also han-

dles the quitting of the application if the window is closed (usually by clicking on the

x in the top-right corner). Because a reference to a wrong JFrame is returned, it was

not possible to terminate the application. It continued to run in the background after

the window was closed.

Some research revealed that this is a known bug [100]. The chosen solution con-

sisted of a reference to the necessary frame in the EATAbstractView and EAT-

ConcreteView classes to make it possible to change the title and the implementa-

tion of a custom WindowListener in the EATConcreteView class, which re-

cognizes the close-Event and terminates the application afterwards.

128

The bug only appeared after the second view for the concrete modeler was intro-

duced. While the application consisted of only one view, the reference was usable for

all actions. Only in the case the view is set manually on startup and is not equal to the

default one, the reference is unusable. It still references the default view.

8.4.4 Order of Actions

It was found out that the order of assigning actions to a Widget is relevant. Taking for

example the instantiation of an AbstractMultiplicityWidget in Abstrac-

tEntityRelationshipWidget.java; in line 59 and 60 two actions were

added to the action queue of the expWidSource, an instance of an Abstract-

MultiplicityWidget. The first action is a createMoveAction; the second

action is a createSelectAction that provides the ExpandOnSelectTool

functionality. When the actions are added in this order the AbstractMultipli-

cityWidget on the scene can be moved while holding down the left mouse button

on this Widget. When double-clicking on this Widget it expands itself and shows the

four multiplicity JRadioButtons. If these actions were added in the reverse order, a

drag and drop movement would not be possible because the widget would have ex-

panded itself on the first click (the click needed for holding down the mouse button).

Thus, the second action (createSelectAction) would be shadowed by the first

action.

8.4.5 Deselecting an Expandable Widget

Currently it is not possible to collapse an expandable Widget on deselect. Expandable

Widgets are AbstractMultiplicityWidget and RelationAggrega-

tionFunctionWidget. The action that provides the expand capability is the

createSelectAction of the ActionFactory. This action is assigned to these

Widgets after instantiation in the AbstractEntityRelationshipWidget

respectively AbstractExternalAttributeRelationshipWidget classes.

The createSelectAction needs a SelectProvider as an argument, which

controls the behavior in case of selection. In this case, the ExpandOnSelectTool

implements the SelectProvider. The tool implements the select method and

defines that the expand method is called after selecting these kind of widgets. Un-

fortunately, the SelectProvider does not offer a deselect method for deter-

mining the behavior in case of deselecting. Using the Visual Library, this is usually

handled by the call of a scene‘s createSelectAction without arguments. This

method is final and thus cannot be overridden in order to collapse all expanded Wid-

gets. The notifyStateChanged method of the expandable Widgets does not

notice a deselecting, too. A workaround could be done be overriding the notifyS-

tateChanged method in the EATAbstractGraphPinScene, AbstractEn-

tityWidget, AbstractEntityRelationshipWidget, AbstractEx-

129

ternalAttributeRelationshipWidget, and AbstractInternalAt-

tributeRelationshipWidget. In the case of a state change, the method

should then collect all expandable Widgets from the EATAbstractGraphPinS-

cene and call their collapse method.

8.4.6 Router Issue

As pointed out in 7.2 there is a performance issue with the OrthogonalSear-

chRouter in NetBeans Visual Library. This means if there is a sufficient amount of

orthogonal routes on the Scene, a movement of an EntityWidget, leading to the recal-

culation of several paths, will slow down the overall performance significantly. The

critical number of routes depends on the machine, but is often reached when five or

more connected EntityWidgets on the Scene exist. This problem is a known bug and

will be fixed with NetBeans 6.5 [74]. Referring to this API review the problem is that

the search router calculation is not free enough, i.e. the anchor should allow arbitrary

routing. In the future, the router will use the center of an anchor to calculate the best

route first and then makes a fine adjustment of the ends. This will be achieved by

introducing two additional methods to the API. The API itself will remain fully

backward compatible. Currently, there is a workaround by avoiding the use of the

OrthogonalSearchRouter and using the DirectRouter or FreeRouter

instead.

8.4.7 Path Algorithms

In order to improve the correctness of the model at design-time, the user is sometimes

provided only with possible options. Especially when it comes to relationships be-

tween attributes, several preconditions have to be fulfilled. Moreover, the model

needs to be consistent after the manual or automatic drawing of such relationships. As

attribute relationships can be drawn between indirect connected EntityWidgets, algo-

rithms are necessary to invoke an automatic drawing (in concrete modeler) or to pro-

vide only relevant and valid options (in abstract modeler). Following tools offer capa-

bilities to check and ensure connection-consistency: the AttributeConnection-

PathFinderTool provides (depth-first search) algorithms for the abstract and

concrete modeler, which determine whether there is a path between two Entity Wid-

gets. If there is a path, it also offers methods for finding appropriate neighbors of an

entity on a path (from source entity to target Entity). These neighbors are then passed

to a dialog that lets the user choose which one to take. The CheckIndirectAt-

tributeConnectionPathTool is called when a concrete entity relationship

(Widget) was drawn. It checks if an attribute connection between non-directly con-

nected entities should be drawn, too. Moreover, the Abstract and ConcreteAt-

tributeConnectTool provide routines for determining which relationship

should be drawn.

130

All these tools have in common that the algorithms are very costly. Most of their run-

time they collect and compare Widgets and its attributes from the scene. Thus, it was

very important to reduce the effort by introducing HashMaps, as they store and link

related and necessary objects.

9 Usage Example

In this chapter substantial capabilities and typical procedures during the creation of an

enterprise architecture model with EAT are explained. It gives an example of how to

use the Enterprise Architecture Tool for modeling. The order of actions is not obliga-

tory as EAT is able to retain model consistency throughout the modeling process.

Thus, swapping, repeating, or undoing steps, as well as deleting elements will not

result in negative formal impacts on the model.

As the usage example closely relates to the example written in [46] it presumes that

an analysis and formal creation of an enterprise information system scenario has al-

ready been done. This means that this usage example is not about identifying entities,

attributes, and relationships in a relevant enterprise environment, but transferring an

existing model (which already contains the elements) into a digitally processable

enterprise architecture model.

This chapter shows how to use EAT. A detailed explanation of the Abstract and

Concrete Modeler‘s GUI elements can be found in chapters 8.2.3 and 8.3.3. Follow-

ing the first subsection illustrates what happens in the Abstract Modeler, whereas the

second subsection shows the instantiation of the abstract model - the creation of the

concrete model.

131

9.1 Abstract Modeler

Fig. 57. The Abstract Modeler UI with three created entities

In Fig. 57 one can see the user interface of the Abstract Modeler. Below the menu bar

that is populated with the menu items ―File‖, ―Filter‖, and ―Help‖, one can find the

toolbar containing the ―new‖, ―open‖, ―save‖, ―add entity‖, and more buttons which

are explained in 8.2.3. The large, white pane is the drawing surface where all actions

take place. Located at the right border of the application is a so-called satellite view,

which provides a navigation window that displays the model‘s complete surface area.

The first step towards an expedient abstract model is to create the needed entities.

For this example, three entities have to be created. In Fig. 57 there are three corres-

ponding EntityWidgets generated with the help of the ―add entity‖ button and the

context menu entry ―Add New Entity‖, that appears by right-clicking on the empty

drawing surface. The entities can be renamed by double-clicking on their label.

The second step, which recurs after each step, is to rearrange the elements via drag

and drop.

132

Fig. 58. Entities with entity relationships

The third step is to draw entity relationships between entities whose future attributes

will be causally related. This can be done by moving the cursor from a start entity to a

target entity while holding down the left mouse button and the CTRL key. Note that

the drawing must start in the label area of the entity, not in the attribute area. In addi-

tion to the blue line between the source and target entity, there appears a label and a

multiplicity box at either side of the connection. The labels represent the role names

and they can be renamed after double-clicking. The multiplicity boxes extend them-

selves after having double-clicked on them. There the user can choose between mul-

tiplicities for the connection, as they are ―1‖, ―0..1‖, ―0..*‖, and ―1..*‖. Referring to

Fig. 58 this means, for example, that zero to infinity Systems are administrated by a

System administrator. The location of multiplicity boxes and labels can be changed by

drag & drop. Their position is relative to the connection. Thus, they move accordingly

to the movement of the connection line in cases of rearrangements.

An optional fourth step would be to set, move, or remove control points on the

connection lines in order to manipulate the routing.

Fig. 59. Abstract model with attributes added

The fifth step is to add attributes to the entities (Fig. 59). The attributes represent the

property assessment criteria. This means that the quantitative rating of a scenario

refers to one of these attributes. More detailed information about the role of attributes,

especially with respect to Bayesian networks, can be found in 6.3. Attributes can be

133

added by right clicking on an entity. The context menu that opens contains a menu

item named ―Add New Attribute‖. It is the first entry in the context menu. Selecting

this menu item adds a default attribute to the selected entity. The default attribute

―New Attribute‖ can be renamed either by double-clicking or by opening the ―Edit

Attribute‖ dialog. This dialog can be accessed via the context menu of the selected

attribute. The dialog is explained elaborately in 8.2.3. It provides possibilities for

changing the attribute‘s name, configuring the dynamic CPM type, the state values,

priors, or static CPM values. More information about CPMs is located in 6.2.

Fig. 60. Added attribute relationships to the abstract model

Drawing relationships between attributes is the sixth step. These relationships can be

drawn in the same way as entity relationship. There is only one difference: the mouse

cursor must be initially located above the source attribute within the entity. Then,

while holding down the left mouse button and the CTRL key, the connection can be

dragged to the target attribute. In comparison to entity relationships, which are undi-

rected, the attribute connections are directed. If there is no direct or indirect connec-

tion between the entities that the source and target attributes belong to, it will not be

possible to draw an attribute relationship, except the source and target entity is the

same one (internal attribute relationship). Depending on whether there is a self-looped

entity relationship, a dialog pops up after drawing an internal attribute relationship,

which wants the user to choose whether he wants to relate the attribute relationship to

any of the according entity relationships. In the case of an indirect attribute relation-

ship between different, indirectly connected entities (not in the usage example) anoth-

er dialog wants the user to choose the path to the target entity (containing the target

attribute) in order to determine the related entity relationships (see 8.2.3 and 7.3.3.1).

Having drawn the attribute relationship, the aggregation function needs to be confi-

gured. Like the multiplicity box, this is another expandable box that provides aggre-

gation function types. These types influence the way the CPM information of parent

attributes are aggregated before processing (see 6.3.3 and 7.3.3.1). The small, gray

line that appears between an attribute connection and its related entity connection just

illustrates their relation. On attribute relationships it is also possible to add, move, or

delete control points.

In addition to filtering capabilities for the ease of viewing the model and exporting

capabilities that can be used, the last step is to save the abstract model. The example

134

model in Fig. 60 is complete now. After having saved this model, it can be loaded and

processed in the Concrete Modeler.

9.2 Concrete Modeler

The Concrete Modeler can be started by adding the –concrete parameter on the com-

mand line. Its GUI is shown in Fig. 61. It is made up similarly to the Abstract Mod-

eler. Below the menu bar, the toolbar can be found. The ―Open Abstract Model‖ but-

ton is very important, as it loads the abstract model previously saved. After having

loaded the abstract model it will not be displayed, but managed internally to ensure

consistency of the instantiated elements – the concrete model. The long combo box on

the right of the ―save‖ button contains all entity types. At the right end, there is the

―calculate‖ button that starts the inference engine in order to calculate the attributes‘

CPM values. Below the toolbar is again the drawing surface. The status bar at the

bottom shows the current state of the model. More information about the user inter-

face can be found in 8.3.3.

In order to create a concrete model based on the abstract model built before, the

first step is to load the abstract model. This is done by using the ―Open Abstract Mod-

el‖ button in the toolbar. Having done this, the combo box shows all entities that have

been created in the Abstract Modeler; here: ―Function‖, ―System‖, and ―System‖

administrator. When there is an abstract entity selected, the button with the plus icon

adds an instance of this entity type to the scene. It can be renamed on double-click.

Fig. 61 shows that there are two instantiations for each abstract entity, e.g. ―Juliet‖

and ―Joseph‖ as ―System administrator‖. Belonging attributes, as well as internal

attribute relationships that are not related to a self-looped entity relationship, appear

automatically after the instantiation of an abstract entity. Again, these concrete enti-

ties can be rearranged, renamed, filtered, and the view exported. Attributes should not

be renamed to maintain consistency with the abstract model. Moreover, it is not poss-

ible to add more attributes to an entity. Characteristics of any attribute (e.g. CPM

states or priors) are transferred from the abstract to the concrete counterparts, which

also remain fixed.

135

Fig. 61. Concrete Modeler GUI with instantiated entities

The next step is to draw entity connections again. This happens in the same way as in

the Abstract Modeler. Several routines are capable of checking whether it is allowed

to draw a relationship or not. This depends on available entity relationships in the

abstract model and on multiplicity restrictions. Drawing a concrete entity relationship

launches several algorithms, which check whether related attribute relationships

should be drawn automatically. This is a difference to the Abstract Modeler: attribute

relationships cannot be drawn manually, as they have a determined relation in the

abstract model on which they are build upon. Fig. 62 shows the complete concrete

model in reference to the example from the paper mentioned at the beginning of this

chapter.

Now the last step (besides saving the concrete model) is to push the ―calculate‖

button that initiates the Bayesian network and starts the inference. The result of the

calculation can be found in the attributes‘ ―edit attribute‖ dialog. This dialog can be

accessed by right clicking on an attribute and choosing the ―Edit Attribute‖ menu item

in the context menu. More detailed information about the whole calculation process is

listed in 8.3.4.

136

Fig. 62. Complete concrete model

This usage example gave an introduction into how EAT could be used. As it is dedi-

cated to users, it focused on the description of how to create a concrete model starting

with a blank drawing surface in the Abstract Modeler. Detailed information about

how things work internally can be found in the linked sections and literatures. Moreo-

ver, not all capabilities of EAT could be shown in the usage example, as it was chosen

due to its pragmatic characteristic. Special cases, e.g. indirect external attribute rela-

tionships, were briefly explained and referenced.

10 Extension Guide

This chapter gives additional information about how to extend the Enterprise Archi-

tecture Tool. Therefore, it first provides detailed descriptions of the most typical use

cases in the EA Tool. These descriptions examine the interaction of participating

classes and the call flow. Wherever necessary a figure introduces the use case by

illustrating the central thread of its data flow. Pay attention to the fact that the model-

ing notation is lightweight. The circles denote classes and the arrows indicate the

direction of call. Thereby the arrowhead points to the class that is called. Double-

bordered circles stand for entry points – the start of the use case whereas thickly bor-

dered circles symbolize the end of the use case.

The second subsection conveys approaches for extending the tool. This is done by

explaining exemplary extension scenarios. In doing so, the scenario is divided into as-

is, to-be, and transition descriptions.

The last subsection gives further ideas that came up during the implementation.

The benefit of this subsection is gained by the categorization and assessment of future

extensions.

137

10.1 Use Cases and Their Used Classes

In this section, a mapping between the different use cases and the classes they are

using is presented. This is done for three reasons: The first motivation for this section

is to document the data flow inside the different use cases. This way, the order of the

used components gets clear. If the Java classes, which are described in 8.1.2, 8.2.2

and 8.3.2, are considered in parallel, an understanding of the whole architecture 7.4

will be achieved very easy.

The second motivation is that this section should sensitize developers to parts they

have to consider on the way to implement new features. They can find a template for

further extensions, considering already existing classes and their underlying data

flow. This way, it becomes clear at which place which functionality can already be

expected or where the right entry point is, if an addition needs to be made.

Finally, this section helps if debugging is needed. It might happen that the tool will

not work as expected, after new features have been added. Therefore, the following

sections help to locate the affected classes and to speed up the error correction. The

order in which classes are considered for debugging should be derived from the order

they are executed during the faulty use case.

10.1.1 Add Tag

In case a new tag should be added to an element of the scene, this action is started

with a right-click on the scene element to open the popup menu. Depending on the

element, the corresponding eat.tool.popupmenu.(element)PopupMenuTool

is executed (e.g. if it is an entity the eat.tool.popupmenu.EntityPo-

pupMenuTool is executed). When the ―Add Tag‖ entry is selected, the tool

eat.tool.tag_filter.AddTagDialogTool is started. This tool displays an

eat.ui.EatAddTagDialog, which allows entering the name of the label that

should be added. Afterwards the scene is shown again.

138

10.1.2 Delete Tag

If a label that has been assigned to a scene element should be removed, again this task

has to be initiated via the popup menu (as explained in the Add Tag use case

eat.tool.popupmenu.(element)PopupMenuTool is executed). From the

menu the eat.tool.tag_filter.DeleteTagTool is started. This tool pre-

pares and shows the eat.am.ui.DeleteTagDialog, where any tag of the ele-

ment can be removed. The element‘s tags were collected with use of the

eat.tool.tag_filter.GetTagTool. Finally the modeling process can be

continued.

10.1.3 Filter (Configuration)

The composition of new filter criteria is started when the ―Configure Filter‖ button in

the eat.am.ui.EATAbstractView is pushed. This leads to a start of the

eat.tool.tag_filter.FilterDialog.Tool. The task of this tool is to

prepare and display the eat.am.ui.EATConfigureFilterDialog, which

allows configuring the filter criteria. In case of tag-based filtering all assigned tags

were accumulated from the eat.tool.tag_filter.GetAllTagsTool, so

that an individual selection of considered tags can be made. When the filter has been

configured, it can be applied, which is explained in the following. Therefore, the

configuration is saved at the eat.tool.tag_filter.FilterDialog.Tool.

139

10.1.4 Filter (Execution)

When a configured filter should be utilized, the ―Apply Filter‖ box, in the main

(eat.am.ui.EATAbstractView) perspective has to be checked. Hereupon the

eat.tool.tag_filter.FilterTool is executed. This tool reads the configu-

ration, made previously, which is stored in the eat.tool.tag_filter.Fi-

lterDialog.Tool. Afterwards it uses the eat.tool.tag_filter.Un-

filterTool to set the whole scene content to be not visible. In the next step the

elements that should be displayed, depending on the configuration, are searched and

set visible again.

In case the filter should be switched off, an un-checking of the ―Apply Filter‖ box

again starts the eat.tool.tag_filter.FilterTool. The only operation that

is performed in this scenario is to execute the eat.tool.tag_filter.Unfilter-

Tool, which brings back all model elements to the scene.

10.1.5 Open (Load) of an Existing Model

A previously modeled scenario could be loaded using the main menu. A click on the

―Open‖ button in the file menu starts the loading process and displays an open-dialog.

The way presented here is also taken when the ―Open abstract model‖-button in the

concrete modeler is pushed. In all cases, the eat.tool.scene.OpenScene-

140

Tool is executed, parameterized with the file-path configured in the open dialog. At

first, the current scene content is removed and the scene is reinitialized by the

eat.tool.scene.NewSceneTool. Depending on the model to be opened either

the eat.tool.scene.OpenAbstractModelTool or the eat.cm.tool.

scene.OpenConcreteModelTool is started next. The used tool returns the

respective model. Out of this model information, the scene is created by the

eat.tool.scene.OpenSceneTool, so that the modeling can be continued.

10.1.6 New Model

A selection of the ―New‖-button, the icon in the modeling perspective, or the entry in

the file menu equally, runs the eat.tool.scene.NewSceneTool. This cleans

the scene and reinitializes the model.

10.1.7 Save Model

Saving can be achived in multiple ways. This includes, pushing the ―Save‖ Button as

icon or menu entry and saving via shortcut (Ctrl + S). In all situations the

eat.tool.scene.SaveSceneTool is started. Internally the eat.tool.

scene.CreateModelsTool is used, to transform the scene's content into a Cas-

tor compliant model. At the end of this activity, an XML document describing the

current model is available.

10.1.8 Save Model (“Save As” Usage)

When a ―Save As‖ action is executed inside the tool, the same tasks are performed as

already explained for the Save model use case. The only difference is, that a dialog is

shown to configure the path, were the resulting XML document should be saved (the

use of eat.filehandling.XmlFileFilter ensures that only valid filenames

are assigned to the output). This path is remembered at the scene, so that this configu-

ration is not necessary in the future anymore.

141

10.1.9 Calculate Concrete Models

The calculation of a concrete model is caused by pushing the ―Calculate‖ button in

the eat.cm.ui.EATConcreteView. This executes the eat.cm.tool.

scene.CalculateTool, which administrates the calculation. At first, a Bayesian

network is created which is done by the eat.cm.tool.scene.Collect-

ValuesTool. Inside the eat.cm.tool.scene.CollectValuesTool a

concrete model, is built with use of the eat.tool.scene.CreateModels-

Tool. This is the basis for the net. Depending on the structure the eat.cm.

tool.attribute.CreateDynamicCPTTool is applied to create dynamic

CPMs, when they are needed. These dynamic CPMs are built with use of

eat.cpm.CPT and all of its specializations.

When the network has been created, the eat.cm.tool.scene.Calcula-

teTool executes the updateBeliefs method of the Bayesian network to calcu-

late it.

The last step is to execute the eat.cm.tool.scene.DisplayResults-

Tool. This tool propagates the calculated values back to the scene, so that they are

visible for the user of the modeler.

10.1.10 Add EntityRelationshipWidget

When the user wants to add a new EntityRelationshipWidget to the scene, he starts

this task by pressing the CTRL key and left clicking on an EntityWidget. This is

called an extended action because an additional key has to be pressed.

142

This action invokes the drag handling tool eat.tool.entity.Entity-

ConnectTool. This happens because the tool is added to an EntityWidget‘s action

queue as a createExtendedConnectAction in eat.widget.Entity-

Widget.

The EntityConnectTool implements methods of the ConnectProvider

interface in order to determine the source and target Widget that is positioned under

the mouse pointer during the mouse-dragging process. If there is a valid target Wid-

get, the createConnection method prepares the new connection depending on

whether the action takes place in the abstract modeler or concrete modeler. In this

method, the data model element EntityRelationship is created and filled with

necessary information. Finally, the method indirectly calls the scene‘s methods by

calling the following library functions:

 addEdge: calls attachEdgeWidget which creates an according Widget

 addPin: (twice, for source and target); calls attachPinWidget that

adds PinWidgets to the appropriate source and target (serve as connection

points)

 setEdgeSource: calls attachEdgeSourceAnchor that sets the start

of the connection

 setEdgeTarget: calls attachEdgeTargetAnchor that sets the end

of the connection

Having done these calls the scene is validated and the new relationship is registered

and drawn. This workflow is the same for the AbstractEntityRelationshipWidget and

the ConcreteEntityRelationshipWidget.

10.1.11 Add AttributeRelationshipWidget in the Abstract Modeler

In principle, the workflow for adding an AttributeRelationshipWidget to the abstract

scene is the same as adding an EntityRelationshipWidget (see 10.1.10). Because in

the concrete modeler attribute relationships are added automatically, instead of ma-

nually, the createExtendedConnectAction, that executes the eat.

am.tool.attribute.AbstractAttributeConnectTool, is not located in

the eat.widget.AttributeWidget, but in the eat.am.widget.Ab-

stractAttributeWidget. Apart from that, the AbstractAttributeCon-

nectTool provides the same methods with the same purpose as the EntityCon-

nectTool. It also calls the library functions that invoke the scene methods for regis-

tering and drawing the new connection. The reason for more lines of code in the Ab-

143

stractAttributeConnectTool is the fact that it has to distinguish between

three types of AttributeRelationshipWidget: direct ExternalAttributeRelationship-

Widgets, indirect ExternalAttributeRelationshipWidgets, and InternalAttributeRela-

tionshipWidgets.

10.1.12 Add AttributeRelationshipWidget in the Concrete Modeler

AttributeRelationshipWidget in the concrete modeler are added automatically when-

ever necessary. Therefore, the eat.cm.tool.attribute.Concrete-

AttributeConnectTool is not assigned as a createExtendedConnectAc-

tion in a Widget, but is called at several points in the code. It is called every time a

ConcreteEntityWidget was created and subsequent checks diagnosed a need for an

AttributeRelationship. Currently, this happens in the addEntityAction method in

eat.cm.ui.EATConcreteView, in the createConnection method in

eat.tool.entity.EntityConnectTool, in the actionPerformed me-

thod in eat.tool.popupmenu.ScenePopupMenuTool, and in the execute

method of the eat.cm.tool.relationship.CheckIndirectAttribu-

teConnectionPathTool.

Having called the ConcreteAttributeConnectTool, the flow is the same

as in 10.1.10 and 10.1.11.

144

10.1.13 Add Entity in the Abstract Modeler

Entities can be added to an abstract model in two ways. One is the ―+ Entity‖ Button

in eat.am.ui.EATAbstractView. When the button is clicked, the addEnti-

tyWidgetAction method is invoked. In this method, the eat.tool.

scene.UndoManagerTool is used to store the according edit for undo and redo.

In addition, the addNode method of the Scene is called, which utilized the eat.

tool.entity.AddEntityTool to place a new Entity Widget on the scene.

The second way is to right click the scene and to choose ―Add Entity‖ from the

context menu. On right click, the eat.tool.popupmenu.ScenePopupMenu-

Tool is invoked. The actionPerformed method afterwards uses the addNode

method of the Scene to place the entity on the Scene. Thereafter the Widgets preferred

location is set to the current mouse position.

10.1.14 Add Entity in the Concrete Modeler

In the concrete modeler, entities can be added using the ―+‖ button in the toolbar of

eat.cm.ui.EATConcreteView. The invoked addEntityAction creates a

145

new concrete entity. The according abstract entity is read from the chooseAb-

stractEntityComboBox. Then the addNode method form the Scene handles

the creation of the EntityWidget by using the eat.tool.entity.Add-

EntityTool. Finally, the eat.cm.tool.attribute.ConcreteAttribu-

teConnectTool is invoked to handle all necessary relationships.

The second way is to right click the scene and to choose ―Add New Entity‖ from

the context menu. The invoked eat.tool.popupmenu.ScenePopupMenu-

Tool creates an entity in the way described above. Finally, the preferred location of

the new Entity Widget is set to the current mouse-pointer position.

10.1.15 Delete Entity

To delete, one could use the ―Remove‖ Button in eat.am.ui.EATAbstract-

View, which invokes the removeAction method to remove all selected entities, or

it is possible to right-click an entity and select ―Delete Entity‖ from the popup menu,

which is displayed by the eat.tool.popupmenu.EnityPopupMenuTool.

Both ways perform the following action: At first, the Edit is stored in the

eat.tool.scene.UndoManagerTool. Then the eat.tool.Remove-

EnitiyTool is used to remove the entity and the matching EntityWidget. This is

done by removing all in- and out-going Relations using the eat.relation-

ship.RemoveEntityRelationTool and the eat.relationship.Re-

moveAttributeRelationshipTool. In the end, the entity is removed by call-

ing the removeNode method in the Scene.

146

10.1.16 Add Attribute

Whenever an attribute has to be added to an entity, this could be done by right click-

ing on an EntityWidget and selecting ―Add attribute‖. In the actionPerformed-

method of the eat.tool.popupmenu.EntityPopupMenuTool the eat.

tool.scene.UndoMangerTool is used to store the extension and its reverse

action. Afterwards the eat.tool.attribute.AddAttributeTool is invoked

and the attribute is created and added to the entity and the matching EntityWidget.

10.1.17 Edit Attribute

If the actionPerformed-method of the eat.tool.attribute.Attribu-

tePopupMenuTool is invoked by right clicking on an Attribute Widget and select-

ing ―Edit Attribute‖ the eat.tool.attribute.AttributeHelperTool is

invoked in the first step to save a deep copy of the attribute, which should be edited.

In the second step, the eat.tool.attribute.EditAttributeDialogTool

is used to initialize and display the eat.am.ui.EditAttributeDialog. When

the dialog is finally closed, the eat.tool.attribute.AttributeHelper-

Tool is again used to check whether the attribute was really altered. If so, the

eat.tool.scene.UndoManagerTool is used to store the original and the

changed attribute for future restoration.

147

10.1.18 Delete Attribute

The actionPerformed-method of the eat.tool.popupmenu.Attribute-

PopupMenuTool is invoked in the case an attribute should be removed from an

entity. The method uses the eat.tool.scene.UndoManagerTool to store the

attribute for future restoration. After that, the eat.am.tool.attribute.Re-

moveAttributeTool is used to remove the attribute. It also takes care of the in-

and out-going attribute relations and deletes them via the eat.tool.relation-

ship.RemoveAttributeRelationshipTool.

10.2 How to extend X

In order to convey a sense of how to handle the EA Tool when it comes to adding

features, this paragraph provides exemplary extension scenarios. These scenarios have

been chosen so that they affect at least two parts of the Model-View-Controller ap-

proach and thus are sufficiently complex. They are not explained down to the last

detail but they should offer an approach of how to add complex features to the EA

Tool by means of finding the right points in the code to hook into.

10.2.1 Saving the Position of an Abstract Entity Relationship Widget’s

Children

The situation:

Referring to section 7.4.4.3, an AbstractEntityRelationshipWidget has four visible

children: two LabelWidgets and two AbstractMultiplicityWidgets. As the action

queue of these widgets is added with a createMoveAction in eat.am.wid-

get.AbstractEntityRelationshipWidget, these children can be selected

and moved anywhere on the scene. Nevertheless, they still belong to their AbstractEn-

tityRelationshipWidget, i.e. if the position of the relationship changes, the position of

these children changes proportionally.

148

The problem:

When the abstract model is saved, the saving process ignores the current positions of

the relationship‘s children Widgets. Hence, the positions of the four Widgets are set

back to default when an abstract model is loaded.

The idea:

Consider the current positions of a relationship‘s four children Widgets when the

abstract model is saved.

An approach to a solution:

As the position information should survive a shutdown of the tool, it is obvious that

they cannot be managed at runtime. The fact that this information should be stored in

the abstract model leads to the point that a data model element must take up the posi-

tion data. As these data belongs to an AbstractEntityRelationshipWidget‘s children,

the according data model element eat.am.model.EntityRelationship-

Type has to store this information. Thus, this element needs to be extended with four

pairs of X- and Y-coordinate attributes and according getter and setter methods. How

this can be done via the XSD file is explained 7.1.3.

Having done this, a closer look at the affected classes and tools is necessary. Natu-

rally, the SaveSceneTool must be involved in this process. This tool manages the

save workflow by reading scene contents, creating an abstract model and serializing

it. However, this tool calls another tool. This leads us to the collectValues me-

thod in the CreateModelsTool. Here all scene elements including the EntityRela-

tionshipWidgets are collected. This is an ideal point to store all current positions of

the children Widgets into the EntityRelationshipWidget‘s element. Doing this before

the entity relationship is added to the abstract model ensures that the positions will be

saved, too.

Now, because the OpenSceneTool simply invokes a creation of a new Abstrac-

tEntityRelationshipWidget (with the help of the stored entity relationship), it has to be

ensured that the saved positions are considered during the creation. Finally, this

means that the positions brought with the EntityRelationship data model element

should be set to the children Widgets in eat.am.widget.AbstractEntity-

RelationshipWidget (because this tool is called in the scene‘s attachEdge-

Widget method that is invoked by the addEdge call in the OpenSceneTool).

10.2.2 Extending the Undo-Redo Functionality

The situation:

Several editing actions performed in the abstract modeler can be reversed by clicking

the Undo Button. The actions are stored as edits in the UndoManagerTool, which

uses a simple queue to store these Edits. Each action requires implementing a specific

Edit as subclass of EATEdit to enable its cancelation.

149

These Edits have to be supplied with the needed data and stored in the UndoMana-

gerTool at the right point.

The problem:

The most challenging part is to define the right inverse action for undoing the modifi-

cation. It has to be kept in mind that more undo and redo actions could have taken

place before and after the current action. So it is clear that there are only very few

reliable parts in the surrounding environment. The most reliable information is about

the model elements, which could be identified by their ID. All other objects like Wid-

gets could be removed and restored again as completely new object with different

references.

Another challenge is finding the right position to store the action in the UndoMana-

gerTool. It is not possible to store the undo information in the according tools

themselves because in this case they are not usable for the inverse action anymore.

An approach to a solution:

The best position for inserting undo information is possibly the point where a tool

is used. Therefore, the usage of a tool is covered by the edit necessary for undoing.

Finding the correct inverse action depends on the action, which should be enabled

for undo and redo. Best results were created if the model elements themselves were

stored for restoration. In addition, the usage of the tools is positive since the technique

of the action is already implemented.

10.3 Further Ideas

During the implementation of EAT, several possibilities for future extensions were

discovered. The primary reason they were not implemented was that their implemen-

tation was considered too time-consuming. The aim was to have a complete tool-

based support of the modeling process, rather than having an imbalance of features on

the one hand and missing essential functionalities on the other hand. Even though

some features besides the core-functionalities were already realized.

The tool as it is now provides powerful abilities to create models and to deal with

them afterwards. Consequently, extensions will normally not provide any features that

are impossible with the current version. The benefit of these add-ons is that they will

offer an easier or faster solution compared to the one that is already implemented.

Usually, future additions will complement the automatic functionalities of the tool

and reduce manual tasks.

Upgrades implemented in the future will enlarge either the abilities of the model or

the functionalities of the graphical user interface (GUI). In this way, an improvement

for the abstract or concrete model is provided on the one hand or the scene is some-

how equipped with more features on the other hand. In a few special cases, benefits

for the models and the GUI at the same time could be achieved.

The suggestions, which are presented below, are organized in the following struc-

ture. First, the implementation ideas, which add benefit to the models, are discussed.

150

Next, extensions with influence on models and GUI are presented. In the third subpa-

ragraph look and feel upgrades of EAT provided by future add-ons are outlined. Fi-

nally, an outlook concerning further additions is presented.

10.3.1 Abstract Modeler and Concrete Modeler Additions

As the tool was implemented, it turned out that there were multiple ways to create

models which were not valid (e.g. cyclic dependencies of attributes or attribute de-

pendency chains, build on attributes, which have various different states). Models

based on such structures cannot be calculated, and therefore these compositions have

to be discovered. This can be done by the implementation of numerous validation

functions, which either checks the model on creation time or before the calculation is

performed. Thus, it is recommended to implement such functionality. As a result, the

modeling process would be eased and the occurrence of errors would be reduced.

In an abstract model, it sometimes happens that a certain entity has one or more

specializations; an addition of attributes is provided by them. On the one hand, these

specializations share some common features; on the other hand, they have unique

properties as well. The occurrences of multiple specializations leading to a granular

level of entities are also expected. This pattern can be found in the software develop-

ment as well, where it is called inheritance. With the introduction of inheritance, the

model structure would be eased and complexity of diagrams would be reduced. This

would be achieved through the fact that fewer relationships were necessary as rela-

tionships of the parent were automatically taken over for their specializations. The

number of displayed attributes would be reduced, too. This would lead to more space

on the scene. In case this feature would be displayed analog to inheritance defined for

UML Class Diagram [77], which is very common, understanding of numerous experts

is ensured.

During the modeling process, several decisions have to be made. These determina-

tions of the models have to be documented, in order to understand them afterwards.

There is also a good possibility explanations of certain aspects inside the model struc-

ture will be required. Therefore, the ability to make comments on the different model

elements (e.g. entities, attributes and their relations) should be implemented.

There are already some use cases implemented concerning tagging and the deletion

of those tags. Improving these use cases in order to speed up the modeling process is

suggested. As a result, it is recommend to extend the addition of tags, so that during

this process the already assigned tags (no matter to which element they have been

attached) are displayed. If a user-defined selection is made, the concerned tags should

be assigned to the current element. Multiple additions of tags simultaneously and a

reduction of manual entries are expected to be the benefit of this feature. To select

multiple scene elements at one time and to add a common tag to all of them is also

suggested as a use case to be implemented. Deletion of tags from more than one ele-

ment is suggested to be possible in an analog way.

151

10.3.2 Model and GUI Enhancements

The additions, which were explained so far, deal with the abstract and concrete mod-

el. Now two features are presented whose implementation would improve the models

and the GUI.

To clean up the scene on the one hand and to bundle elements with common prop-

erties on the other hand, the possibility of grouping the scene content would create

large benefit. An easier processing of multiple scene elements would speed up the

model creation as changes made on the group were propagated to all of its members.

The scene's content would be more structured as a minimization of the group's mem-

bers visualization to a single icon seems to be possible. If a certain group element

needs to be edited, as a box, this group could be expanded to provide access to this

element. In case the model should be rearranged, a movement of the group icon

would end up in an adjustment of all of the group's elements positions.

Another add-on enlarging model and GUI functionalities, is suggested by the im-

plementation of a wizard to create models. As a result, the model creation would be

supplemented by a dialog-based extension of the modeling as it is already made poss-

ible. With help of the wizard, all of the information, necessary for abstract or concrete

model, would be collected. Afterwards a mapping of these values into a correspond-

ing model would result. This guide would ensure that all data that is necessary (e.g.

for the calculation functionality) is available. As the models were created automatical-

ly and their elements were arranged without manual influence, the resulting models

would have a common structure. Thus, they would be easy to understand and well

arranged. The implementation of this wizard is considered complex and time-

consuming; on the other hand, the use of the tool would be much more guided. This is

seen as a large benefit, especially for users withlimited or no experience, or no well-

versed contact person.

10.3.3 Interface improvements

This last subsection explains features of the user interface that are suggested to be

implemented in the future. The appearance of the models could be improved in sever-

al ways. A decision has to be made between improvements of the whole model and

improvements of a certain element of the model.

The whole model could be visualized in a better way through the implementation

of an auto-layout feature. With help of this functionality, the entities on the scene

would be arranged in an optimal way. Therefore, the best distances between the enti-

ties would be calculated. Afterwards the elements would be moved, compliant to

these values. The resulting model is expected to look very heterogeneously standar-

dized and structured.

The next optional feature that should be discussed is to implement a grid, on which

the model would be built. This grid would define placeholders to add elements on the

scene. This way, it would be ensured that the scene structure has a certain organiza-

tion, defined by the structure of the grid. A functionality to switch off the grid should

also be implemented, to allow the individual positioning of the scene's content. The

152

use of the grid would move the positions of the elements so that they were aligned

compliant to it.

The grid would be implemented to be switched on and off as required. This ap-

proach could also be transferred for other helpers, like ledger lines and spacer. They

could be displayed on demand, to help the user. With the use of these features, it

would be easier to structure a scene and improve its appearance.

The image of a model would also benefit if the content could be colored more in-

dividually. A certain section could be colored apart from the rest of the scene to re-

mark that its content has something in common and diverges from the other modeled

elements. Similarities could be expressed by the use of similar colors whereas con-

trasts of colors could be used to express borders.

Different colors of sections lead to more individualism of a certain aspect or entity.

A future addition could offer functionality to change the appearance of a certain enti-

ty. This could be done with the use of preconfigured shapes or icons. In addition, the

possibility to add an image or define an individual color seems to be possible but

more complex. Especially for the storage of user-defined icons, the loading and sav-

ing as it is implemented now needs to be adopted.

The connections implemented so far, could also be improved within further exten-

sions: For example the user could have the choice to select between different routing

algorithms, e.g. direct router or orthogonal router. Moreover, there could be an option,

which controls the rerouting after an EntityWidget has been moved. Here the user

could select between option one: calculate complete new route, or option two: only

update the last control point of the connection. Another aspect concerning the connec-

tions is that it could be discussed whether each entity should be equipped with a fixed

number of connectors for relationships to connectors of other entities. These connec-

tors would be evenly spread so that the appearance of the resulting model would be

improved, as all relationships would be well regulated.

The modeling process itself could be made better, with implementation of the usual

Copy & Paste functionalities. Already modeled sections could be duplicated and be

inserted into the model a second time. This feature again reduces the time needed to

create a model as redundant work is avoided. It has to be noted that this functionality

would work based on simple copies. Changes on the underlying IDs, with considera-

tion of the assigned IDs to all model elements, would be mandatory.

The perspective of the user of the modeler could also be improved, if tabs, similar

to the tab-functionalities of popular web browsers would be added. Especially in the

concrete modeler, it seems to be helpful to consider more than one model at the same

time. With this possibility, a chronological workflow would be encouraged and com-

parison between different models would be simplified.

When the calculation process is finished, the results are displayed numerically in

the properties of their underlying attributes. This could be changed to diagrams,

which would ease the understanding of the values, especially when different colors

were used. On the other hand, all calculated values could be presented at one certain

place so that a manual (collected-) value collection is not necessary anymore.

The filter functionality as it is implemented now provides only basic configuration

possibilities. Complex inquiries could only be realized with the help of additional

tags, only added for filtering. Therefore, these functionalities could be enlarged. A

consideration of more model aspects (e.g. cardinalities or certain model structures)

153

could be added in the future. Benefit would also be created if sentential connectives

were introduced. This would allow the creation of complex inquiries in a catchy and

intuitive way.

At this time, the creation of exports is realized with two simple buttons. They could

be replaced by a dialog. This dialog could provide functionalities to select the image

section to be considered. Quality and type of the output could be influenced at that

place, as well.

Analog to this export dialog a print dialog could be implemented as well. This di-

alog should provide typical configuration possibilities, such as format and alignment

of the printout.

The last suggestion that should be discussed is a configuration or properties dialog.

This dialog should collect all the different configuration possibilities at one place. On

the one hand, this would clean up the user interface, on the other hand all options

were offered at one single place. There would be no need for the user to search a

certain switch, as they all were present at the same time and place.

The extensions of EAT described above have to be considered as a selection of

possible add-ons. It should be noted that this list is not exhaustive. The features pre-

sented can be considered as possible candidates, which are not too complex to be

implemented, based on the current code basis. These suggestions have in common

that the tool, as it is now, is expected to have a large benefit from every proposal that

is accepted. This does not mean that additional features are urgently needed to be

implemented in order to make the tool work; it is already applicable now.

On the other hand, it is not recommended to implement each idea. This would lead

to redundancies and the use of EAT would get more complicated, as several ap-

proaches could be followed to get to a certain result. The clearness of the user inter-

face of the tool in the current version would get lost. This means that more or less the

opposite of the intent would be achieved.

The implementation of a subset of the additions described above increases the val-

ue of the tool. Functionalities improving the displayed abstract or concrete model help

the user during model creation and the viewers, who have a look at a certain scenario

afterwards. Extensions on the models seem to speed up the modeling process and

avoid that the same task has to be done a second time.

Nevertheless, before adding a feature it has to be evaluated which benefit is ex-

pected. Add-ons, which provide functionalities that are not, used very often mainly

increase the code complexity and decrease the maintainability of the tool. The trade

off whether an additional feature is worth implementation has to be made. This is

because implementations often are considered more time-consuming than expected at

the beginning of their development.

The features presented can be considered as an inspiration for individual ideas.

They show, which aspects are worthy of consideration, and explain the different

scopes that could be considered during an implementation.

As the tool is fast-growing software whose code is changing very quickly and of-

ten, the recommendation refer to the current version. It is possible that additions made

in the future will make some of the suggestions needless or not possible to be rea-

lized. On the other hand, the need of a certain feature might increase as more and

more use cases (which might be implemented in the future) might profit from it.

154

11 Discussion and Conclusion

The main objective of this diploma thesis was to implement a prototypic software tool

for supporting architectural decisions by providing routines for enterprise architecture

analysis. This goal was achieved by implementing the abstract modeler and the con-

crete modeler, which facilitate scenario definition, instantiation, evidence handling,

and quantization calculation. The tool - EAT - enables comparative assessments of

system qualities of an enterprise information system scenario (and its environment)

and gives an estimate of its credibility.

The development process was conducted in a 4-phase-loop based on the spiral

model [3].

 Plan next phase;

 Determine objectives, alternatives, and constraints through prioritized

requirements list;

 Develop and test;

 Feedback in daily and weekly meetings.

A clear and prioritized requirements list especially leveraged the progress in these

phases.

The evaluation of IDE‘s at the beginning of the project proved beneficial, as the se-

lected IDE, NetBeans IDE, in conjunction with the Visual Library, made a very un-

complicated and fluent development process possible. The only disadvantage in using

this highly capable IDE was a noticeable performance lag in comparison to Eclipse.

The design of the tool‘s architecture, including preliminary considerations for module

segregation based on the MVC architecture, eased the process of distributed pro-

gramming, too. By using the commonly used XML Schema Definition (XSD) for the

description of the structure of the models, it was possible to store the models in XML

files. Due to the high interoperability of XML processing it was possible to separate

the data structure from the modeling tool. This way, a guaranteed future for the mod-

eled scenarios was achieved. The use of jSMILE eased the mathematical processing

of the models. This way GeNIe-compatible Bayesian networks were created and cal-

culated with a minimum amount of preparation on the part of the EAT implementa-

tion.

The Enterprise Architecture Tool in its current state and this thesis mainly serve

the purpose for providing a solid, modularized and well-documented base for further

development. Nevertheless, it can already be used for educational purposes in archi-

tectural modeling, as an as-is modeling and documentation tool, or as an enterprise

architecture analysis software.

The probabilistic approach taken in the enterprise architecture analysis method,

with the Bayesian network serving as the mathematical backbone for the assessment

of a scenario‘s qualities, has the advantage that it states a clear value of a decision.

The prediction and diagnosis abilities of Bayesian networks enable a non-

collaborative decision support that is independent of historic decisions (cf. [114]).

Nevertheless, this can also be seen as a disadvantage, as there is nearly no verification

(at least the credibility and structural correctness can be considered) and thus confi-

dence in the calculation results is necessary. On the other hand, the tool makes a

quantitative assessment, although many states of the scenarios could be uncertain.

155

Moreover, it considers the environment of an enterprise information system and thus

comprises human factors into the decision, too.

The problems of large CPTs resulting from extensive concrete models (and thus

Bayesian networks), were met by introducing intermediary attributes with the help of

aggregation functions and by utilizing PRM slot chains through enabling indirect

attribute connections. The solution for the problem of gathering huge amounts of

evidences – their prioritization – has been described, too. Nevertheless the complexity

of computation and presentation of large Bayesian networks still needs research ef-

forts, e.g. the reduction of complexity by removing arcs with a weak influence [49].

156

157

Fig. 63. Underlying Abstract Model

Appendix A: Calculation

In this appendix, the abstract and concrete model is pictured on which the description

of the calculation process in section 8.3.4 is based. Concluding, a mapping between

these Modes and the final Bayesian network is presented.

158

Fig. 65. Concrete Model (created using above Abstract Model)

Fig. 64. Resulting Bayesian network

159

Table 6. Mapping Bayesian network and models

Element in Bayesian Network Corresponding Element in abstract (AM)

or concrete model (CM)

Node A2 Attribute 1 (ID:2) (CM)

Node A6 Attribute 2 (ID:6) (CM)

Node A4 Attribute 2 (ID:4) (CM)

Node A8 Attribute 3 (ID:8) (CM)

Node A10AggregationNode Maximum Aggregation Function on

relation between Attribute 2(ID:7) and

Attribute 3(ID:8) (AM)

Evidence E16 Evidence for Attribute 1 (ID:2) (CM)

(not visible)

Evidence E17 Evidence for Attribute 1 (ID:2) (CM)

(not visible)

Evidence E18 Evidence for Attribute 1 (ID:2) (CM)

(not visible)

Evidence E19 Evidence for Attribute 2 (ID:6) (CM)

(not visible)

Connection A2 to E16 Assignment of Evidence E16 to Attribute

1 (ID:2) (CM) (not visible)

Connection A2 to E17 Assignment of Evidence E17 to Attribute

1 (ID:2) (CM) (not visible)

Connection A2 to E18 Assignment of Evidence E18 to Attribute

1 (ID:2) (CM) (not visible)

Connection A2 to A8 Relationship between Attribute 1 (ID:2)

and Attribute 3 (ID:8) (CM) build on

Relationship between Attribute 1 (ID:6)

and Attribute 3 (ID:8) (AM)

Connection A6 to E19 Assignment of Evidence E19 to Attribute

2 (ID:6) (CM) (not visible)

Connection A6 to A10AggregationNode Relationship between Attribute 2 (ID:4)

and Attribute 3 (ID:8) (CM) build on

Relationship between Attribute 2 (ID:7)

and Attribute 3 (ID:8) (AM)

Connection A4 to A10AggregationNode Relationship between Attribute 2 (ID:6)

and Attribute 3 (ID:8) (CM) build on

Relationship between Attribute 2 (ID:7)

and Attribute 3 (ID:8) (AM)

Connection A10AggregationNode to A8 Relationship between Attribute 2 (ID:7)

and Attribute 3 (ID:8) (AM)

160

Appendix B: XSD

In this appendix, the XSD documents, the underlying of the models, are explained. At

first the relevant elements (precise: their type definitions) are visualized. Therefore,

Altova XMLSpy was used9. Afterwards the entire XSD files are presented.

Abstract Model

At the top level (Fig. 66) of the XSD document a split-up into ―Entity‖, ―EntityRela-

tionship‖ and ―ExternalAttributeRelationship‖ was made. The fields ―elementName‖,

―elementId‖, ―Tag(s)‖ and ―Comment‖ were defined as their common attributes.

9 Altova XMLSpy, which is developed by Altova (http://www.altova.com), is considered to be

one of the most popular XML editors [109]. It has multiple capabilities to modify XSD doc-

uments and to visualize them.

Fig. 66. Abstract Model Overview

161

Each ―Entity‖ (Fig. 67) was allowed to have numerous ―Attributes‖. Between those

attributes, ―InternalAttributeRelationships‖ were made possible. Moreover the posi-

tion of the ―Entity‖, with X and Y coordinates, was stored (―XPos‖, ―YPos‖).

The attributes ―elementName‖, ―elementId‖, ―Tag‖ and ―Comment‖ were saved for

an ―Attribute‖ (Fig. 68) likewise. Supplemental the ―AggregationFunctionType‖ was

added.

Fig. 67. Abstract Model Entity

Fig. 68. Abstract Model Attribute

162

Fig. 69. Abstract Model Entity Relationship

Besides the common properties that were also made available for the scene‘s other

elements, more connection details were stored for an ―EntityRelationship‖ (Fig. 69).

The IDs and names of origin- and target-entity were kept. In addition, the respective

multiplicity was saved. Finally, the ―RelationshipAggregationFunction‖ was stored

too. The conventional properties of an element can also be found in an ―ExternalAt-

tributeRelationship‖ (Fig. 70). IDs of origin and target were stored too. The capability

for saving multiple ―EntityRelationships‖ and a ―RelationshipAggregationFunction‖

was provided, too.

163

Fig. 70. Abstract Model External Attribute Relationship

The properties of an ―InternalAttributeRelationship‖ (Fig. 71) are known from the

―ExternalAttributeRelationships‖. A difference was made concerning the entity rela-

tionships, where just one instance is allowed to be saved. In addition, no aggregation

functions were stored.

Fig. 71. Abstract Model Internal Attribute Relationship

164

On the following pages, the content of the abstract model XSD document is pre-

sented:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema

 targetNamespace=http://www.ics.kth.se

 xmlns=http://www.ics.kth.se

 elementFormDefault="qualified">

<xsd:complexType

 name="RelationshipAggregationFunctionType">

</xsd:complexType>

<xsd:complexType name="MaxRelType">

 <xsd:complexContent>

 <xsd:extension

 base="RelationshipAggregationFunctionType">

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="MinRelType">

 <xsd:complexContent>

 <xsd:extension

 base="RelationshipAggregationFunctionType">

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="AverageRelType">

 <xsd:complexContent>

 <xsd:extension

 base="RelationshipAggregationFunctionType">

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:element name="AbstractModel" type="AbstractModelType" />

<xsd:complexType name="AbstractModelElementType">

 <xsd:sequence>

 <xsd:element minOccurs="1" maxOccurs="1" name="elementName"

 type="xsd:string" />

 <xsd:element minOccurs="1" maxOccurs="1" name="elementId"

 type="xsd:int" />

 <!-- Addition for Tagging -->

 <xsd:element minOccurs="0" maxOccurs="unbounded" name="Tag"

 type="xsd:string" />

 <xsd:element name="Comment" type="xsd:string" maxOccurs="1"

 minOccurs="0">

 </xsd:element>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="AbstractModelType">

 <xsd:complexContent mixed="false">

 <xsd:extension base="AbstractModelElementType">

 <xsd:sequence>

 <xsd:element minOccurs="1" maxOccurs="unbounded"

 name="Entity" type="EntityType" />

 <xsd:element minOccurs="0" maxOccurs="unbounded"

 name="EntityRelationship"

 type="EntityRelationshipType" />

 <xsd:element minOccurs="0" maxOccurs="unbounded"

 name="ExternalAttributeRelationship"

http://www.w3.org/2001/XMLSchema
http://www.ics.kth.se/
http://www.ics.kth.se/

165

 type="ExternalAttributeRelationshipType" />

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="EntityType">

 <xsd:complexContent mixed="false">

 <xsd:extension base="AbstractModelElementType">

 <xsd:sequence>

 <xsd:element minOccurs="0" maxOccurs="unbounded"

 name="Attribute" type="AttributeType" />

 <xsd:element minOccurs="0" maxOccurs="unbounded"

 name="InternalAttributeRelationship"

 type="InternalAttributeRelationshipType" />

 <xsd:element name="XPos" type="xsd:int" minOccurs="1"

 maxOccurs="1"/>

 <xsd:element name="YPos" type="xsd:int" minOccurs="1"

 maxOccurs="1"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="EntityRelationshipType">

 <xsd:complexContent mixed="false">

 <xsd:extension base="AbstractModelElementType">

 <xsd:sequence>

 <xsd:element minOccurs="1" maxOccurs="1"

 name="OriginEntityId" type="xsd:int" />

 <xsd:element minOccurs="1" maxOccurs="1"

 name="OriginMultiplicity"

 type="EntityMultiplicityType" />

 <xsd:element minOccurs="1" maxOccurs="1"

 name="TargetEntityId" type="xsd:int" />

 <xsd:element minOccurs="1" maxOccurs="1"

 name="TargetMultiplicity"

 type="EntityMultiplicityType" />

 <xsd:element name="OriginName" type="xsd:string"

 maxOccurs="1" minOccurs="0">

 </xsd:element>

 <xsd:element name="TargetName" type="xsd:string"

 maxOccurs="1" minOccurs="0">

 </xsd:element>

 <xsd:element name="RelationshipAggregationFunctionType"

 maxOccurs="1" minOccurs="0"

 type="RelationshipAggregationFunction">

 </xsd:element>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="AggregationFunctionType">

 <xsd:sequence>

 <xsd:element minOccurs="1" maxOccurs="unbounded" name="State"

 type="xsd:string" />

 <xsd:element minOccurs="1" maxOccurs="unbounded" name="Prior"

 type="ProbType" />

 <xsd:element name="CPM" type="CPMType" maxOccurs="1"

 minOccurs="0">

 </xsd:element>

 </xsd:sequence>

166

</xsd:complexType>

<xsd:complexType name="MaxType">

 <xsd:complexContent>

 <xsd:extension base="AggregationFunctionType">

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="MinType">

 <xsd:complexContent>

 <xsd:extension base="AggregationFunctionType">

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="NegationType">

 <xsd:complexContent>

 <xsd:extension base="AggregationFunctionType">

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ExclusiveOrType">

 <xsd:complexContent>

 <xsd:extension base="AggregationFunctionType">

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="FrequencyType">

 <xsd:complexContent>

 <xsd:extension base="AggregationFunctionType">

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="AdderType">

 <xsd:complexContent>

 <xsd:extension base="AggregationFunctionType">

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ParametricType">

 <xsd:complexContent>

 <xsd:extension base="AggregationFunctionType">

 <xsd:sequence>

 <xsd:element minOccurs="1" maxOccurs="unbounded"

 name="parameter" type="xsd:double" />

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="WeightedType">

 <xsd:complexContent>

 <xsd:extension base="AggregationFunctionType">

 <xsd:sequence>

 <xsd:element minOccurs="1" maxOccurs="unbounded"

 name="weight" type="xsd:double" />

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="AttributeType">

 <xsd:complexContent mixed="false">

 <xsd:extension base="AbstractModelElementType">

167

 <xsd:sequence>

 <xsd:element minOccurs="1" maxOccurs="1"

 name="AggregationFunctionType"

 type="AggregationFunction" />

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="EntityMultiplicityType">

 <xsd:sequence>

 <xsd:element minOccurs="1" maxOccurs="1" name="Min"

 type="xsd:string" />

 <xsd:element minOccurs="1" maxOccurs="1" name="Max"

 type="xsd:string" />

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="AttributeRelationshipType">

 <xsd:complexContent mixed="false">

 <xsd:extension base="AbstractModelElementType">

 <xsd:sequence>

 <xsd:element minOccurs="1" maxOccurs="1"

 name="AttributeOriginId" type="xsd:int" />

 <xsd:element minOccurs="1" maxOccurs="1"

 name="AttributeTargetId" type="xsd:int" />

 <xsd:element minOccurs="0" maxOccurs="1" name="IsCausal"

 type="xsd:boolean" />

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="InternalAttributeRelationshipType">

 <xsd:complexContent mixed="false">

 <xsd:extension base="AttributeRelationshipType">

 <xsd:sequence>

 <xsd:element name="EntityRelationship"

 type="EntityRelationshipType" minOccurs="0"

 maxOccurs="1">

 </xsd:element>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<!-- <xsd:complexType name="ExternalAttributeRelationship">-->

<xsd:complexType name="ExternalAttributeRelationshipType">

 <xsd:complexContent mixed="false">

 <xsd:extension base="AttributeRelationshipType">

 <xsd:sequence>

 <xsd:element minOccurs="0" maxOccurs="unbounded"

 name="EntityRelationship"

 type="EntityRelationshipType" />

 <xsd:element name="RelationshipAggregationFunctionType"

 maxOccurs="1" minOccurs="0"

 type="RelationshipAggregationFunction">

 </xsd:element>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="ProbType">

 <xsd:restriction base="xsd:double">

168

 <xsd:minInclusive value="0"/>

 <xsd:maxInclusive value="1"/>

 </xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="StaticType">

 <xsd:complexContent>

 <xsd:extension base="AggregationFunctionType">

 <xsd:sequence>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="CPMType">

 <xsd:sequence>

 <xsd:element name="Row" type="CPMRowType"

 maxOccurs="unbounded" minOccurs="1">

 </xsd:element>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="CPMRowType">

 <xsd:sequence>

 <xsd:element name="StateName" type="xsd:string" maxOccurs="1"

 minOccurs="1">

 </xsd:element>

 <xsd:element name="Col" type="xsd:double" maxOccurs="unbounded"

 minOccurs="1">

 </xsd:element>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="MedRelType">

 <xsd:complexContent>

 <xsd:extension base="RelationshipAggregationFunctionType">

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="MedType">

 <xsd:complexContent>

 <xsd:extension base="AggregationFunctionType">

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

</xsd:schema>

169

Fig. 72. Concrete Model Overview

Concrete Model

On the top level of the XSD document (Fig. 72) the same structure was created as it

was already explained for the abstract model (Fig. 66).

The ―Entity‖ element of the concrete model was copied from the abstract equivalent

(Fig. 73). The ability to save the name of this corresponding object was added.

170

Fig. 73. Concrete Model Entity

Besides element ―Name‖ and ―ID‖, ―Tag‖ and a ―Comment‖, ―Calculated Values‖, a

―CPM‖ and ―AttributeEvidence‖ were defined for the ―Attributes‖ in the concrete

model (Fig. 74).

A CPM (Fig. 76) of an attribute was built up from multiple ―Rows‖. They were de-

scribed with a ―State‖ and numerous Columns (―Cols‖). With this structure, a matrix

equivalent was achieved.

Fig. 74. Concrete Model Attribute

171

The properties of ―Evidence‖ (Fig. 75) were set to be its ―Name‖ and ―ID‖, ―Tag‖(s),

a ―Comment‖, the evidence ―Source‖, a ―CPM‖, and a ―Statement‖.

The entities in a concrete model were also connected through relationships (Fig. 77).

The typical properties were added. Additionally Origin- and Entity- ID, numerous

external attribute relationships and the ID of the underlying abstract entity relation-

ships can be stored.

Fig. 76. Concrete Model CPM

Fig. 75. Concrete Model Evidence

172

Fig. 78. Concrete Model Attribute Relationship

In comparison to the abstract model XSD, no difference was made between internal

and external attribute relationships in the concrete model schema (Fig. 78). The ―At-

tributeRelationship‖ structure was adopted from the ―EntityRelationship‖ setup. In-

stead of ―AttributeRelationships‖, ―EntityRelationships‖ were stored. In addition, the

reference to the abstract model was changed. For an ―AttributeRelationship‖ the ID of

the attribute relationship in the abstract model was saved.

Fig. 77. Concrete Mode Entity Relationship

173

The XSD in which the described models are contained is presented on the following

pages:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace=http://www.ics.kth.se xmlns=http://www.ics.kth.se

 elementFormDefault="qualified">

<xsd:element name="ConcreteModel" type="ConcreteModelType"/>

<xsd:complexType name="ConcreteModelElementType">

 <xsd:sequence>

 <xsd:element minOccurs="1" maxOccurs="1" name="elementName"

 type="xsd:string" />

 <xsd:element minOccurs="1" maxOccurs="1" name="elementId"

 type="xsd:int" />

 <xsd:element name="Tag" type="xsd:string" minOccurs="0"

 maxOccurs="unbounded">

 </xsd:element>

 <xsd:element name="Comment" type="xsd:string" maxOccurs="1"

 minOccurs="0">

 </xsd:element>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ConcreteModelType">

 <xsd:complexContent mixed="false">

 <xsd:extension base="ConcreteModelElementType">

 <xsd:sequence>

 <xsd:element name="Entity" type="EntityType"

 minOccurs="1" maxOccurs="unbounded"/>

 <xsd:element name="EntityRelationship"

 type="RelationshipType" minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="ExternalAttributeRelationship"

 type="AttributeRelationshipType" minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="EntityType">

 <xsd:complexContent mixed="false">

 <xsd:extension base="ConcreteModelElementType">

 <xsd:sequence>

 <xsd:element name="AbstractEntityName" type="xsd:string"

 minOccurs="1" maxOccurs="1"/>

 <xsd:element name="Attribute" type="AttributeType"

 minOccurs="0" maxOccurs="unbounded"/>

 <xsd:element name="InternalAttributeRelationship"

 type="AttributeRelationshipType" minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="XPos" type="xsd:int" minOccurs="1"

 maxOccurs="1"/>

 <xsd:element name="YPos" type="xsd:int" minOccurs="1"

 maxOccurs="1"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="RelationshipType">

 <xsd:complexContent mixed="false">

http://www.ics.kth.se/
http://www.ics.kth.se/

174

 <xsd:extension base="ConcreteModelElementType">

 <xsd:sequence>

 <xsd:element name="OriginEntityId" type="xsd:int"

 minOccurs="1" maxOccurs="1" />

 <xsd:element name="TargetEntityId" type="xsd:int"

 minOccurs="1" maxOccurs="1" />

 <xsd:element name="ExternalAttributeRelationship"

 type="AttributeRelationshipType" minOccurs="0"

 maxOccurs="unbounded" />

 <xsd:element name="AbstractEntityRelationshipId"

 type="xsd:int" minOccurs="1" maxOccurs="1">

 </xsd:element>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="AttributeRelationshipType">

 <xsd:complexContent mixed="false">

 <xsd:extension base="ConcreteModelElementType">

 <xsd:sequence>

 <xsd:element name="AttributeOriginId" type="xsd:int"

 minOccurs="1" maxOccurs="1" />

 <xsd:element name="AttributeTargetId" type="xsd:int"

 minOccurs="1" maxOccurs="1" />

 <xsd:element minOccurs="0" maxOccurs="unbounded"

 name="EntityRelationship" type="RelationshipType" />

 <xsd:element name="AbstractAttributeRelationshipId"

 type="xsd:int" maxOccurs="1" minOccurs="0">

 </xsd:element>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="AttributeType">

 <xsd:complexContent mixed="false">

 <xsd:extension base="ConcreteModelElementType">

 <xsd:sequence>

 <xsd:element name="CalculatedValue"

 type="CalculatedValueType" minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="CPM" type="CPMType" minOccurs="1"

 maxOccurs="1"/>

 <xsd:element name="AttributeEvidence"

 type="EvidenceType" minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="CalculatedValueType">

 <xsd:sequence>

 <xsd:element name="State" type="xsd:string" minOccurs="1"

 maxOccurs="1"/>

 <xsd:element name="Value" type="ProbType" minOccurs="1"

 maxOccurs="1"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="CPMType">

 <xsd:sequence>

 <xsd:element name="Row" type="CPMRowType" minOccurs="1"

175

 maxOccurs="unbounded"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="CPMRowType">

 <xsd:sequence>

 <xsd:element name="StateName" type="xsd:string" minOccurs="1"

 maxOccurs="1"/>

 <xsd:element name="Col" type="ProbType" minOccurs="1"

 maxOccurs="unbounded"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="ProbType">

 <xsd:restriction base="xsd:double">

 <xsd:minInclusive value="0"/>

 <xsd:maxInclusive value="1"/>

 </xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="EvidenceType">

 <xsd:complexContent mixed="false">

 <xsd:extension base="ConcreteModelElementType">

 <xsd:sequence>

 <xsd:element name="Source" type="xsd:string"

 minOccurs="1" maxOccurs="1"/>

 <xsd:element name="CPM" type="CPMType" minOccurs="1"

 maxOccurs="1"/>

 <xsd:element name="Statement" type="xsd:string"

 minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

</xsd:schema>

176

Appendix C: Evaluation Table

177

References

1. Architekturwissen, http://www.architektur-wissen.de/etymologie.html ac-

cessed in 02/2009

2. Ben-Gal I.: Bayesian Networks. In: Ruggeri F., Faltin F. & Kenett R. (Eds.),

Encyclopedia of Statistics in Quality and Reliability, John Wiley & Sons

(2007)

3. Boehm, B.W.: A Spiral Model of Software Development and Enhancement.

In: IEEE Computer 21(5), pp. 61--72 (1988)

4. Boekhoudt, C.: The Big Bang Theory of IDEs. In: ACM Press, 1(7):74-82

(2003)

5. Buoy UI Toolkit, http://buoy.sourceforge.net/ accessed in 02/2009

6. BusinessDictionary.Com,

http://www.businessdictionary.com/definition/scenario.html, accessed in

02/2009

7. Castor Features, http://www.castor.org/features.html accessed in 2009

8. Castor, Quick Description, http://www.castor.org/ accessed in 02/2009

9. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures:

Methods and Case Studies. Addison-Wesley, 2001

10. Clinger-Cohen Act of 1996 (formerly called Information Technology Man-

agement Reform Act (ITMRA)), Division E, National Defense Authorization

Act for FY 1996 (P.L. 104-106, February 10, 1996)

11. Daphne Koller's Research Group, Probabilistic Relational Models:

http://dags.stanford.edu/PRMs/ accessed in 02/2009

12. Decision Systems Laboratory Wiki:

http://genie.sis.pitt.edu/wiki/Introduction:_GeNIe accessed in 02/2009

13. Drobik, A.: Enterprise Architecture: The Business Issues and Drivers. Gart-

ner, Inc. (2002)

14. Druzdzel, M., van der Gaag, L.: Building probabilistic networks: Where do

the numbers come from? In: IEEE Transactions on knowledge and data en-

gineering, 12, IEEE, Los Angeles, USA, pp. 289--299 (2000)

http://www.architektur-wissen.de/etymologie.html
http://buoy.sourceforge.net/
http://www.businessdictionary.com/definition/scenario.html
http://www.castor.org/features.html
http://www.castor.org/
http://dags.stanford.edu/PRMs/
http://genie.sis.pitt.edu/wiki/Introduction:_GeNIe

178

15. Eclipse - The Standard Widget Toolkit, http://www.eclipse.org/swt/ accessed

in 02/2009

16. Ekstedt, M.: Enterprise Architecture as a Means for IT Management. unpub-

lished, Department of Industrial Information and Control System, KTH,

Stockholm

17. Fenton, N., Neil, M.: Combining evidence in risk analysis using Bayesian

Networks. In: Safety Critical Systems Club Newsletter 13 (4), pp 8-13 Sept

(2004)

18. Fenton, N., Neil, M.: Managing Risk in the Modern World - Applications of

Bayesian Networks. A Knowledge Transfer Report from the London Ma-

thematical Society and the Knowledge Transfer Network for Industrial Ma-

thematics, London Mathematical Society,De Morgan House, 57/58 Russell

Square London WC1B 4HS (2007)

19. Frechet, M.: Les tableaux de correlation dont les marges et des bornes sont

donnees. Annales de l‘Universite de Lyon, Sciences Mathematiques et As-

tronomie, 20:13–31 (1957).

20. GEF Developer FAQ,

http://wiki.eclipse.org/index.php/GEF_Developer_FAQ accessed in 02/2009

21. GEF, http://wiki.eclipse.org/GEF accessed in 02/2009

22. GeNIe & SMILE, http://genie.sis.pitt.edu/ accessed in 02/2009

23. Genie Java Tutorial 1: Creating a Bayesian Network:

http://genie.sis.pitt.edu/wiki/Java_Tutorials:_Tutorial_1:_Creating_a_Bayesi

an_Network accessed in 02/2009

24. Genie SMILE Tutorial 1: Creating a Bayesian Network:

http://genie.sis.pitt.edu/wiki/SMILE_Tutorial_1:_Creating_a_Bayesian_Net

work accessed in 02/2009

25. Getoor, L., Friedman, N., Koller, D., and Pfeffer, A.: Learning Probabilistic

Relational Models. In: Relational Data Mining, S. Dzeroski and N. Lavrac,

Eds, Springer-Verlag (2001)

26. Getoor, L., Friedman, N., Koller, D., and Taskar, B.: Learning probabilistic

models of link structure. In: Journal of Machine Learning Research (2002)

27. Good, I., Card, W.: The diagnostic process with special reference to errors.

In: Method of Information Medicine, 10(176–188) (1971)

28. Groupable Header Example, http://www.java2s.com/Code/Java/Swing-

Components/GroupableGroupHeaderExample.htm accessed in 02/2009

http://www.eclipse.org/swt/
http://wiki.eclipse.org/index.php/GEF_Developer_FAQ
http://wiki.eclipse.org/GEF
http://genie.sis.pitt.edu/
http://genie.sis.pitt.edu/wiki/Java_Tutorials:_Tutorial_1:_Creating_a_Bayesian_Network
http://genie.sis.pitt.edu/wiki/Java_Tutorials:_Tutorial_1:_Creating_a_Bayesian_Network
http://genie.sis.pitt.edu/wiki/SMILE_Tutorial_1:_Creating_a_Bayesian_Network
http://genie.sis.pitt.edu/wiki/SMILE_Tutorial_1:_Creating_a_Bayesian_Network
http://www.java2s.com/Code/Java/Swing-Components/GroupableGroupHeaderExample.htm
http://www.java2s.com/Code/Java/Swing-Components/GroupableGroupHeaderExample.htm

179

29. Heschl, J.: COBIT in Relation to Other International Standards. In: Informa-

tion System Control Journal Volume 4. (2004)

30. Hiirsalmi, M.: Method feasibility Study: BayesianNetworks. In: RE-

SEARCH REPORT TTE1-2000-29. Appendix 5, Page 34 (2000)

31. Holschke, O.: Probabilistic Decision Support for Enterprise Architecture

Management. unpublished, Insititue for Business Informatics, University of

Technology, Berlin (2008)

32. Howard, R.A.: Decision analysis: Practice and promise. In: Management

Science Vol. 34, No. 6, pp. 679-695. (1988)

33. International Organization for Standardization/International Electrotechnical

Commission, Software engineering -- Product quality -- Part 1: Quality mod-

el (2001)

34. Jagt, R. M.: Support for Multiple Cause Diagnosis with Bayesian Networks,

unpublished M.Sc. Thesis, Department of Mediamatics, Information Tech-

nology and Systems, Delft University of Technology, the Netherlands and

Information Sciences Department, University of Pittsburgh, Pitsburgh, PA.

(2002)

35. Jensen, Finn V.: An Introduction to Bayesian Networks. Springer, New

York, NY (1996).

36. JHotDraw as Open-Source Project, http://www.jhotdraw.org/ accessed in

02/2009

37. JHotDraw unstable,

http://sourceforge.net/forum/forum.php?thread_id=2121342&forum_id=398

86 accessed in 02/2009

38. Johansson, E.,Johnson P.: Assessment of Enterprise Information Security -

Estimating the Credibility of the Results. In: Proceeding of the Symposium

on Requirements Engineering for Information Security (SREIS) in the 13th

International IEEE Requirements Engineering Conference, 13 Paris, France

(2005)

39. Johnson P., Lagerström, R., Närman, P, and Simonsson, M., Extended Influ-

ence Diagrams for System Quality Analysis. In: Journal of Software, p.2, III.

Influence Diagramms (2007)

40. Johnson, P., and Ekstedt, M.: Enterprise Architecture - Models and Analyses

for Information Systems Decision Making. Studentlitteratur, Lund (2007)

Chapter 1.3

41. Ibid., Chapter 2

http://www.jhotdraw.org/
http://sourceforge.net/forum/forum.php?thread_id=2121342&forum_id=39886
http://sourceforge.net/forum/forum.php?thread_id=2121342&forum_id=39886

180

42. Ibid., Chapter 3

43. Ibid., Chapter 5

44. Ibid., p. 28ff

45. Johnson, P., Ekstedt, M., Silva E., and Plazaola L.: Using Enterprise Archi-

tecture for CIO Decision-Making: On the imporance of theory. In: Proceed-

ings of the Second Annual Conference on Systems Engineering Research.

(2004)

46. Johnson, P., Johansson, E., Sommestad, T., and Ullberg, J.: A Tool for En-

terprise Architecture Analysis. In: Enterprise Distributed Object Computing

Conference, 2007. EDOC 2007. 11th IEEE International (2007)

47. Johnson, P., Lagerström, R., Närman, P., and Simonsson, M.: Enterprise Ar-

chitecture Analysis with Extended Influence Diagrams. In: Information Sys-

tems Frontiers, Vol.9, Number 2. (2007)

48. Keeney, R., von Winterfeldt, D.: Eliciting Probabilities from Experts in

Complex Technical Problems. In: IEEE Transactions on engineering man-

agement 38, IEEE, pp. 191--201 (1991)

49. Kjaerulff, U.: Reduction of Computational Complexity in Bayesian Net-

works through Removal of Weak Dependences. In: Proceedings of the 10th

Conference on Uncertainty in Artificial Intelligence, pp. 374-382 (1994)

50. Koller, D.: Probabilistic Relational Models. In: Lecture Notes in Computer

Science. Volume 1634/1999, Inductive Logic Programming, Springer Ber-

lin/Heidelberg (1999)

51. Krallmann, H., Schoenherr, M., Trier, M.: Systemanalyse im Unternehmen -

Prozessorientierte Methoden der Wirtschaftsinformatik. Oldenbourg, Mün-

chen/Wien, 5.Auflage (2007)

52. Lahres, B., Rayman, G.: Praxisbuch Objektorientierung - Von den Grundla-

gen zur Umsetzung. Galileo Computing, Bonn (2006)

53. Lange, C., DuBois , B., Chaudron, M., Demeyer, S.: An Experimental Inves-

tigation of UML Modeling Conventions. In: O. Nierstrasz et al. (Eds.): Mo-

DELS 2006, LNCS 4199, pp. 27–41, 2006. Springer-Verlag Berlin Heidel-

berg (2006)

54. Lee, D., and Chu, W.W.: Comparative Analysis of Six XML Schema Lan-

guages. In: ACM SIGMOD Record (2000)

55. Lehtola, T.: Enterprise Architecture Analysis-Development of a Java based

assessment tool, unpublished M.Sc. Thesis, Department of Industrial Infor-

mation and Control System, KTH, Stockholm (2008)

181

56. Lillehagen, F., Karlsen, D.: Enterprise Architectures – Survey of Practices

and Initiatives. In: Proceedings of the First International Conference on Inte-

roperability of Enterprise Software and Applications. Geneva (2006)

57. Losavio, F., Chirinos, L., Lévy, N., and Ramdane-Cherif A.: Quality Charac-

teristics for Software. In: Journal of Object Technology, vol. 2, no. 2, pp.

133-150. (2003)

58. Ludewig, J.: Modelle im Software Engineering – eine Einführung und Kritik.

In: Modellierung 2002, Tutzing (2002) Chapter 5.2

59. MacLean, A., Young, R., Bellotti, V., Moran, T.: Questions, Options, and

Criteria: Elements of Design Space Analysis. In: Human-Computer Interac-

tion 6 (3 & 4) (1991)

60. Malveau, R.: Bridging the Gap: Business and Software Architecture, Part 2.

(2004), Cutter Consortium, www.cutter.com/research/2004/edge040203.html

accessed in 2004

61. Marakas, G. M.: Decision support systems in the twenty-first century. Upper

Saddle River, N.J., Prentice Hall (1999)

62. Medvidovic, N., Rosenblum, D., Taylor, R.: A Language and Environment

for Architecture-Based Software Development and Evolution. Proceedings

of the 21st International Conference on Software Engineering (1999)

63. Mengenshoel, O.J., and Wilkins, D.: Abstraction and aggregation in belief

networks. In AAAI97 Workshop on Abstractions, Decisions and Uncertain-

ty. (1997)

64. Meyer, B. Object-Oriented Software Construction, Second Edition. Part B-3

―Modularity‖, Prentice Hall Professional Technical Reference. ISE Inc., San-

ta Barbara, (1997)

65. Mintzberg, H.: The structure of organizations: A Synthesis of the Research.

Prentice-Hall, Englewood Cliffs, N.J. (1979)

66. Namespaces in XML 1.0 (Second Edition), http://www.w3.org/TR/REC-

xml-names/#ns-using accessed in 02/2009

67. Närman P. et al.: Data Collection Prioritization for System Quality Analysis.

In: Proceedings of the 2nd International Workshop System Quality and

Maintainability (SQM), Elsevier, Athens (2008)

68. Närman, P., Johnson, P., and Nordstrom L.: Enterprise Architecture: A

Framework Supporting System Quality Analysis. In: Enterprise Distributed

Object Computing Conference, 2007. 11th IEEE International Volume , Is-

sue , 15-19 Oct. Page(s):130 - 130 (2007)

http://www.cutter.com/research/2004/edge040203.html
http://www.w3.org/TR/REC-xml-names/#ns-using
http://www.w3.org/TR/REC-xml-names/#ns-using

182

69. NetBeans architecture summary, http://bits.netbeans.org/dev/javadoc/org-

netbeans-api-visual/architecture-summary.html accessed in 02/2009

70. NetBeans IDE 6.5 Download page, http://www.netbeans.org/downloads/ ac-

cessed in 02/2009

71. NetBeans Partner Program, http://www.netbeans.org/community/partners/

accessed in 02/2009

72. NetBeans Press Release, http://www.netbeans.org/about/press/12.html ac-

cessed in 02/2009

73. NetBeans Visual Library Documentation,

http://bits.netbeans.org/dev/javadoc/org-netbeans-api-

visual/org/netbeans/api/visual/widget/doc-

files/documentation.html#Installation accessed in 02/2009

74. NetBeans Visual Library Routing Issue,

http://wiki.netbeans.org/GraphLibraryOrthogonalRoutingEnhancementsAPI

Review accessed in 02/2009

75. NetBeans Visual Library, http://graph.netbeans.org/ accessed in 02/2009

76. NetBeans, Guided Tour of Subversion,

http://www.netbeans.org/kb/60/ide/subversion.html accessed in 02/2009

77. OMG Unified Modeling Language (OMG UML), Infrastructure, V2.1.2,

http://www.omg.org/spec/UML/2.1.2/ accessed in 02/2009

78. Online Etymology Dictionary,

http://www.etymonline.com/index.php?term=enterprise accessed in 02/2009

79. Pearl, J., Russel S.: Bayesian networks. Report (R-277), November 2000, In:

Handbook of Brain Theory and Neural Networks, Arbib M (ed). MIT Press:

Cambridge, MA (2001)

80. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausi-

ble Inference. Morgan Kaufmann, San Mateo, CA. (1988)

81. Pepper, P.: Programmieren lernen. Springer-Verlag (2nd Edition), Berlin,

Page 382 (2006)

82. Pereira, C.M., Sousa, P.: A method to define an Enterprise Architecture us-

ing the Zachman Framework. In: Proceedings of the 2004 ACM symposium

on Applied computing. ACM, Nicosia (2004)

83. Pin-Shan Chen, P.: The Entity-Relationship Model — Toward a Unified

View of Data. In: ACM Transactions on Database Systems, 1(1):9-36,

March (1976)

http://bits.netbeans.org/dev/javadoc/org-netbeans-api-visual/architecture-summary.html
http://bits.netbeans.org/dev/javadoc/org-netbeans-api-visual/architecture-summary.html
http://www.netbeans.org/downloads/
http://www.netbeans.org/community/partners/
http://www.netbeans.org/about/press/12.html
http://bits.netbeans.org/dev/javadoc/org-netbeans-api-visual/org/netbeans/api/visual/widget/doc-files/documentation.html#Installation
http://bits.netbeans.org/dev/javadoc/org-netbeans-api-visual/org/netbeans/api/visual/widget/doc-files/documentation.html#Installation
http://bits.netbeans.org/dev/javadoc/org-netbeans-api-visual/org/netbeans/api/visual/widget/doc-files/documentation.html#Installation
http://wiki.netbeans.org/GraphLibraryOrthogonalRoutingEnhancementsAPIReview
http://wiki.netbeans.org/GraphLibraryOrthogonalRoutingEnhancementsAPIReview
http://graph.netbeans.org/
http://www.netbeans.org/kb/60/ide/subversion.html
http://www.omg.org/spec/UML/2.1.2/
http://www.etymonline.com/index.php?term=enterprise

183

84. Qidan, C.: PRM-based multi-relational association rule mining. In: Theses,

Dissertations, and other Required Graduate Degree Essays (2007)

85. Qt Jambi Reference Documentation, http://doc.trolltech.com/qtjambi-

4.4/html/com/trolltech/qt/qtjambi-index.html accessed in 02/2009

86. Qualiware, http://www.qualiwareinc.com/ accessed in 02/2009

87. Rubinstein, A.: Modeling Bounded Rationality. The MIT Press, Cambridge,

Massachusetts (1998)

88. Schoenherr, M.: Towards a common terminology in the discipline of Enter-

prise Architecture. In: proceedings of the International Conference on Ser-

vice Oriented Computing (ICSOC) 2008, Sydney, Australia, to be published

in Springer 2009

89. Schuster, N., Zimmermann, O., Pautasso, C.: ADkwik: Web 2.0 Collabora-

tion System for Architectural Decision Engineering. In: Proceedings of the

Nineteenth International Conference on Software Engineering & Knowledge

Engineering (SEKE 2007), KSI (2007)

90. Shannon, C. E.: A mathematical theory of communication. In: Bell System

Tech. J., 27:379–423, 623–656 (1948)

91. Simonsson, M., and Johnson, P.: The IT organization modeling and assess-

ment tool: Correlating IT governance maturity with the effect of IT. In: Pro-

ceedings of the 41st Hawaii International Conference on System Sciences

(2008)

92. Sommerville, I.: Software Engineering. Edition: 8, Addison-Wesley, Long-

man (2007)

93. Spiegelhalter, David J., Knill-Jones, Robin P.: Statistical and knowledge-

based approaches to clinical decision-support systems, with an application in

gastroenterology. In: Journal of the Royal Statistical Society, 147, Part 1: pp.

35-–77 (1984)

94. Stachowiak, H.: Allgemeine Modelltheorie. Springer-Verlag, Wien etc.

(1973)

95. Stensmo, M., Sejnowski J. Terrence.: A mixture model diagnosis system. In:

Technical Report Series, INC-9401, San Diego (1994)

96. Sun Java AWT API,

http://java.sun.com/j2se/1.4.2/docs/api/java/awt/package-summary.html ac-

cessed in 02/2009

http://doc.trolltech.com/qtjambi-4.4/html/com/trolltech/qt/qtjambi-index.html
http://doc.trolltech.com/qtjambi-4.4/html/com/trolltech/qt/qtjambi-index.html
http://www.qualiwareinc.com/
http://java.sun.com/j2se/1.4.2/docs/api/java/awt/package-summary.html

184

97. Sun Java Swing API,

http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/package-summary.html

accessed in 02/2009

98. Svahnberg, M., Wohlin, C., Lundberg, L., Mattsson, M.: A Quality-Driven

Decision Support Method for Identifying Software Architecture Candidates.

In: International Journal of Software Engineering and Knowledge Manage-

ment 13(5) (2003)

99. Swing Application Framework, Class "View",

https://appframework.dev.java.net/nonav/javadoc/AppFramework-

1.03/org/jdesktop/application/View.html accessed in 02/2009

100. Swing Application Framework, Issue 58,

https://appframework.dev.java.net/issues/show_bug.cgi?id=58 accessed in

02/2009

101. SwingWT, http://swingwt.sourceforge.net/ accessed in 02/2009

102. Telelogic System Architect,

http://www.telelogic.com/products/systemarchitect/ accessed in 02/2009

103. The XML FAQ, http://xml.silmaril.ie/authors/dtds/ accessed in 02/2009

104. Thomas, D., interviewed by Bill Venners (2003-10-10): Orthogonality and

the DRY Principle. http://www.artima.com/intv/dryP.html accessed in

02/2009

105. Tyree, J., and Akerman, A.: Architecture Decisions: Demystifying Architec-

ture. In: Capital One Financial, IEEE (2005)

106. Vaughan-Nichols, S. J.: The Battle over the Universal Java IDE. In: IEEE

Computer, Volume 36 Issue 4. pp. 21 - 23. ACM Press (2003)

107. Wellman, M.P., Liu, C.: State-space abstraction for anytime evaluation of

probabilistic networks. In: Proceedings of the Tenth Conference on Uncer-

tainty in Artificial Intelligence (1994)

108. Würthinger, T.: Visualization of Program Dependence Graphs. unpublished

M.Sc. Thesis, Institute for System Software, Johannes Kepler University,

Linz (2007)

109. XML Editors Review,

http://www.cmsreview.com/XML/Editors/index.2.en.html accessed in

02/2009

110. XML Schema Requirements, http://www.w3.org/TR/1999/NOTE-xml-

schema-req-19990215#Purpose accessed in 02/2009

http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/package-summary.html
https://appframework.dev.java.net/nonav/javadoc/AppFramework-1.03/org/jdesktop/application/View.html
https://appframework.dev.java.net/nonav/javadoc/AppFramework-1.03/org/jdesktop/application/View.html
https://appframework.dev.java.net/issues/show_bug.cgi?id=58
http://swingwt.sourceforge.net/
http://www.telelogic.com/products/systemarchitect/
http://xml.silmaril.ie/authors/dtds/
http://www.artima.com/intv/dryP.html
http://www.cmsreview.com/XML/Editors/index.2.en.html
http://www.w3.org/TR/1999/NOTE-xml-schema-req-19990215#Purpose
http://www.w3.org/TR/1999/NOTE-xml-schema-req-19990215#Purpose

185

111. Younes, H.Y.: Current tools for assisting intelligent agents in realtime deci-

sion making. unpublished M.Sc. Thesis, Department of Industrial Informa-

tion and Control System, KTH, Stockholm, Chapter 3.4.1, Page 16 ff (1998)

112. Zachman, J.A.: A Framework for Information Systems Architecture. IBM

Systems Journal, 26: pp. 276--292 (1987)

113. Zaval Light-Weight Visual Component Library (GUI Designer Package),

http://lwvcl.com/gdp.php accessed in 02/2009

114. Zimmermann, O., et al.: Reusable architectural decision models for enter-

prise application development. In: Quality of Software Architecture (QoSA),

Boston, USA (2007)

http://lwvcl.com/gdp.php

	Zusammenfassung
	Acknowledgements
	Table of Contents
	Figures
	Tables
	Abbreviations
	PART I – Introduction
	Abstract
	Motivation
	Chapter Overview

	PART II – Theory and Concept
	Definitions
	Enterprise Architecture
	Models
	Scenario

	Information System Decision Making
	Decision Making within Enterprise Architectures
	Information System Goals

	Enterprise Architecture Analysis
	Method for Enterprise Architecture Analysis
	Probabilistic Influences and Uncertainty
	Mathematical Modeling using Bayesian Networks
	Introduction into Bayesian Networks
	Explanation of Bayesian Networks
	Complexity Reduction in Bayesian Networks
	Probabilistic Relational Models

	Abstract Model
	Evidence Collection
	Concrete Model
	Further Considerations
	Data Collection Prioritization
	Alternative

	Concept of a Prototype
	Chosen Platform
	SMILE and GeNIe
	Structural Modeling, Inference, and Learning Engine (SMILE)
	Graphical Network Interface GeNIe

	XSD (XML Schema)
	Castor
	Features
	Castor in EAT
	Usage Workflow

	Evaluation of Graph Libraries and Frameworks
	Motivation
	The Candidates
	NetBeans Visual Library
	QtJambi
	JHotDraw
	Graphical Editing Framework

	The Criteria
	Evaluation and Result
	NetBeans Visual Library
	QtJambi
	JHotDraw
	Graphical Editing Framework
	Overall

	Chosen IDE – NetBeans
	IDE
	NetBeans IDE
	Why NetBeans IDE?
	Getting Started with EAT and NetBeans IDE 6.1

	NetBeans Visual Library
	The Architecture
	Capabilities
	Widget
	ConnectionWidget
	LayerWidget
	Scene
	WidgetAction
	High-Level Capabilities
	Visual Library in EAT

	XSD and Model Structure
	Motivation - The Intended Way of Use
	The Need of Two Separate Models
	Use of General Model with Given Problems
	Development of a Completely New Model
	Staying with Current Model and Separating Code
	Staying with Current Model, Enforcing Code Reuse
	Conclusion/Final Decision

	Models
	Abstract Model
	Concrete Model

	Architecture
	Interaction Design
	Design Alternatives
	Final Design
	Data Structure
	Management Classes
	Connection of Data Structure and Management Class (Entity & Attribute)
	Tools
	Concrete and Abstract Modeler

	Additional Architectural Decisions
	Inheritance Hierarchy of Widgets
	Construction of an Entity Widget
	Construction of an EntityRelationshipWidget
	Construction of an AbstractMultiplicityWidget
	Construction of an AbstractExternalAttributeRelationshipWidget

	PART III – The Enterprise Architecture Tool
	Implementation
	Package and Class Structure
	Package Structure
	Class Structure

	Abstract Modeler
	Package Structure
	Class Structure
	User Interface

	Concrete Modeler
	Package Structure
	Class Structure
	User Interface
	Calculation

	Challenges
	Cyclic Dependencies in XSD
	Property File Management
	Wrong JFrame When Using Multiple Views
	Order of Actions
	Deselecting an Expandable Widget
	Router Issue
	Path Algorithms

	Usage Example
	Abstract Modeler
	Concrete Modeler

	Extension Guide
	Use Cases and Their Used Classes
	Add Tag
	Delete Tag
	Filter (Configuration)
	Filter (Execution)
	Open (Load) of an Existing Model
	New Model
	Save Model
	Save Model (“Save As” Usage)
	Calculate Concrete Models
	Add EntityRelationshipWidget
	Add AttributeRelationshipWidget in the Abstract Modeler
	Add AttributeRelationshipWidget in the Concrete Modeler
	Add Entity in the Abstract Modeler
	Add Entity in the Concrete Modeler
	Delete Entity
	Add Attribute
	Edit Attribute
	Delete Attribute

	How to extend X
	Saving the Position of an Abstract Entity Relationship Widget’s Children
	The situation:
	The problem:
	The idea:
	An approach to a solution:

	Extending the Undo-Redo Functionality
	The situation:
	The problem:
	An approach to a solution:

	Further Ideas
	Abstract Modeler and Concrete Modeler Additions
	Model and GUI Enhancements
	Interface improvements

	Discussion and Conclusion
	Appendix A: Calculation
	Appendix B: XSD
	Appendix C: Evaluation Table
	References

