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Inledande ord

Detta héfte ar baserat pa en forelédsningsserie jag gav 2010-2011. Varje kapitel
motsvarar en foreldsning, och riktar sig till gymnasieelever som laser kursen
Linjar algebra for gymnasister. I ar bestar kursen av 12 forelasningar, och
inte 16 som var antalet 2010-2011. De fyra foreldsningarna jag har skurit
bort fran den ursprungliga kursen finns med som Appendix.

Forelasningarna ar inspirerade och modellerade efter kurshaftet “Matriser
og Vektorrom” av Dan Laksov.

Under lasaret 2010-2011 hittade eleverna flera fel i forelasningsnotaten,
och speciellt vill jag ndmna Andrian Kimiaei (Norra Real), André Sahlsten
(Farsta Gymnasium) och Omar Wazir (Huddinge Gymnasium). Léasaret 2011
2012 hittade Jacob Lindberg (Kérrtorp), Sebastian Strandh (Ostra Real) och
Ludvig Pucek (Ostra Real) ytterligare fel. Sedan har Robin Saaristo (Brom-
ma) kélhalat min svorska med att rétta hundratals fel i de forsta 6 kapitlen.
I 20132014 satt Hampus Soderstrom i Strangnas och gav min svorska yt-
terligare en kolhalning, och &ven andra grammatiska fel fick pa foten. Jag
mistdnker nu att de sex forsta kapitlen ar nér intil fria fran fel — och om
inte sa innehallt dessa kapitel mer felaktigheter enn korrektheter.

Leta upp flera fel, det ar “ggy” och larorikt.

Lycka till!

Roy Skjelnes
Stockholm, 25:e juni, 2014.

Forord till reviderad upplaga

Infor lasaret 2014-2015 s& har jag gjort en 6versyn av haftet, korrigerat spra-
ket nagot, rattat nagra smarre matematiska fel samt lagt till nagra figurer.

David Rydh
Stockholm, 5:e september, 2014.
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Forelasning 1

Matrisaritmetik

1.1 Matriser

Vi skall definiera ndgot som kallas (2 x 2)-matriser och sedan utveckla arit-
metik pa dessa. Matriserna ar inte tal, men kan nastan behandlas som tal.

Definition 1.1.1. En (2 x 2)-matris A = [CCL d

b] ar fyra reella tal a, b, ¢, d
ordnade i en rektangel.
1.1.2. Nar vi i detta kapitel skriver matris menar vi alltid en (2 x 2)-matris.

Exempel 1.1.3. Exempel pa matriser ar

e )

Definition 1.1.4. Tva matriser A = [Z Z} och B = B ﬂ adderas och

ger en ny matris

A4 B [a—i—oz b—f-ﬂ].

c+vy d+9
Exempel 1.1.5. Viser att A+ B=B+ A.

1.2 Skalarmultiplikation

V1 har att

A+ A= [Za 21)]

2¢ 2d|’

och detta skriver vi som 2A. Vi gor foljande definition.

1



Definition 1.2.1 (Skalarmultiplikation). For varje tal k och varje matris A,
definierar vi matrisen

LA [ka kb].

ke kd

1.2.2. Av definitionen av skalarmultiplikationen far vi att

A+ A4+ A=n-A

n kopior

Vi har ocksa att

0 0
a0 9]

Matrisen som bara bestar av nollor kallas noll-matrisen av uppenbara skal.

Vi skriver 0 = [8 0

] for denna matris. Och vi har

0-A=0.

Notera att 0 i vansterledet ovan ar talet 0, medan 0 i hogerledet ovan ar
noll-matrisen. Vi har ocksa den trevliga identiteten av matriser

A+0=A

—a —b
s
I fortsattningen skriver vi —A for matrisen —1- A. Detta betyder att vi istéllet
for B+ —1 - A skriver B — A. Notera ocksa att vi nu har

Mera notation: vi har

“A— A —A=-—n-A

n kopior

Vidare éar skalarmultiplikation distributiv, dvs

(k+0) A=k -A+(-A
k- (A+B)=k-A+k-B

dar k och ¢ ar tal och A och B ar matriser.

Exempel 1.2.3. Vi kan nu 16sa matrisekvationer pa formen

4X +2A = B,

2



dir A och B ar givna matriser. Vi adderar matrisen —2A pa bada sidor och
far att vansterledet blir

4X +2A — 24 = 4X +0 = 4X,

medan hégerledet blir B—2A. Sedan multiplicerar vi ekvationen med skaléren
1, vilket ger

1
x-ip_ly
1472

1.3 Matrismultiplikation

Vi har definierat addition (och subtraktion) av matriser samt skaldarmulti-
plikation. Vi vill ocksa ha multiplikation: tva matriser skall multipliceras
ihop och ge en matris. Innan vi definierar detta ska vi skriva matriserna lite
annorlunda. En matris

Q21 Q22

A= [Gl,l a1,2]

bestar av tva rader och tva kolumner. Talen i matrisen kallas element och
ar indexerade efter vilken rad och kolumn dessa star placerade i. Exempelvis
har vi att elementet a; 2 ar i rad 1 och kolumn 2.

Definition 1.3.1. Lat A = @11 2 och B = bui biz vara tva matri-
Q21 Q22 b2,1 52,2

ser. Vi definierar produkten AB som matrisen

AB — [01,1 01,21

C21 C22

dar elementen ges av foljande formler

c11 = ap1big + ai2bag
C12 = a11b12 + a1 2022
Ca1 = Q2.1b11 + az9b1

Co2 = Q21b1 2 + a29ba 5.

1.3.2. Ser ni monstret i galenskapen och speciellt hur man kommer ihag
formlerna utan att lara dessa utantill? Om du inte ser monstret be nagon,
gérna mig, att forklara hur man utfér matrismultiplikationen.



Exempel 1.3.3. Vi har att

LAk 2=l D)

Notera att AB inte alltid dr detsamma som BA. Vi har ndmligen att

Bl

vilket inte ar lika med produkten ovan. Vidare har vi att nollmatrisen multi-
plicerad med en godtycklig matris ger nollmatrisen A-0 = 0-A = 0. Notera
att nir vi nu skrev 0- A sa var det en produkt av tva matriser, matrisen A och
nollmatrisen 0. Men nér vi i Avsnitt 1.2.2 anvinde precis samma notation
och skrev 0 - A sa menade vi talet 0 och skalarmultiplikation.

Definition 1.3.4. Vi definierar identitetsmatrisen 1 = [[1) (1)]

1.3.5. Identitetsmatrisen fungerar som talet 1 med avseende pa matrismul-
tiplikation. Vi har namligen att

10 11 A12 _ a1 Aa12

0 1| |az1 a2 as; Q21|
Det vill sdga att 1- A = A for varje matris A. Vi har ocksa att A-1 = A
vilket ldsaren uppmuntras kontrollera. Aterigen s noterar vi att vi anvander
en och samma symbol, namligen 1, for tva olika saker; identitetsmatrisen och

talet 1. Speciellt kan vi med 1- A avse antingen skalarmultiplikation av talet
1 med matrisen A eller identitetsmatrisen multiplicerad med matrisen A.

Sats 1.3.6. Lat A, B och C' vara godtyckliga matriser.
1) Matrismultiplikation dr associativ, det vill siga

(AB)C = A(BO).

2) Matrismultiplikation dr distributiv, det vill siga

(A+ B)C = AC + BC, A(B+C)=AB+ AC.

Bevis. Se Uppgift 1.5. n



Definition 1.3.7. En matris A ar inverterbar om det finns nagon matris B
sadan att
AB=1 och BA=1.

En matris som inte ar inverterbar kallas singular.

Exempel 1.3.8. Matrisen

1 2
=5 3
ar inverterbar. Detta eftersom matrisen
-2 1
3
2 2

har egenskapen att AB = BA =1 (Kolla!).

Exempel 1.3.9. Nollmatrisen ar uppenbarligen singulédr. Ett annat exempel

ar matrisen
1 0
.

Att matrisen A ar singuldr kan man visa pa foljande satt. Antag att A ar

inverterbar. Da finns en matris B = [Z 2] sadan att AB = BA = 1.

Produkten AB éar
1 Offla b |a b
2 0| |ec d|l |2a 2b|°

Om denna produkt skulle vara lika med identitetsmatrisen maste a = 1 och
2a = 0 samt b = 0 och 20 = 1. Detta ar omojligt vilket betyder att matrisen
A inte kan vara inverterbar. Alltsa dr matrisen singulér.

Sats 1.3.10. Om matrisen A dr inverterbar finns enbart en matris B sadan
att AB = BA = 1.

Bevis. Lat B och C vara tva matriser sidana att AB = BA =1 och AC =
CA =1. Viskall visa att B = C. Vi har

B=B-1=B-(AC)=(BA)-C=1-C=C.
vilket var vad vi skulle visa. O]

1.3.11. Om en matris A ar inverterbar kallas matrisen B som ar sadan att
AB = BA =1 for inversen till A. Inversen till A betecknar vi med A~1!.



Exempel 1.3.12. Betrakta nu en matrisekvation AX = B diar A och B ar
givna matriser och X &r den sokta matrisen. Om matrisen A ar inverterbar
kan vi l6sa denna uppgift pa vanligt satt, det vill siga som om det handlade
om vanliga tal. Ekvationen AX = B multiplicerar vi med A, fran vdinster,

och vi far att
1-X=A14AX = A 'B.

Det vill siga X = A7'B.

1.4 Uppgifter

Uppgift 1.1. Berikna matriserna AB, BA och A? nir

1 —1 2 1
_ 3
A—lo 21 och B_Ll 5].

Uppgift 1.2. Lat A = [Z 2] vara en matris dir ad — bc # 0. Definiera

d b
B |adve aabe|_ 1 d —b|
o el ad—bc|—c a

Anvand matrisen B {or att visa att matrisen A ar inverterbar.

matrisen

Uppgift 1.3. Anvand Uppgift 1.2 for att konstruera inversen till matriserna

SRS

Uppgift 1.4. Anvand matriserna i Uppgift 1.3 for att bestimma matrisen
X i foljande tre uttryck

a) AX=B b) XA=B och c¢) AXB=1.

Uppgift 1.5. Betrakta tre godtyckliga matriser A, B och C. Berékna forst
AB och BC, och sedan (AB)C och A(BC'). Om du nu har réknat rétt &r de
tva matriserna lika, det vill siga (AB)C = A(BC), och du har visat forsta
delen av Sats 1.3.6. Du kan gora likadant for att visa distributivitet.



Forelasning 2

Matrisaritmetik 11

Vi definierade forra gangen (2 X 2)-matriser och multiplikation av sadana.
Idag skall vi definiera dessa begrepp mer allméant.

2.1 Matriser

Lat m och n vara tva fixerade positiva heltal. En (m x n)-matris A ar en
ordnad rektangel med m - n tal,

11 Q12 - Q1n

Q21 Q22 - (G2n
A= i

Am,1 Qm2 *° Amn

Lagg maérke till att en (m X m)-matris bestar av m rader och n kolumner.
Talen i matrisen A kallas element och indexeringen av dessa ges av rad och
kolumn. Elementet a;; ar placerad pa rad ¢ och pa kolumn j. En kompakt
notation fér matrisen dr A = (a;;), dr vi inte ens indikerar antalet rader
och kolumner i matrisen. Med storleken av en matris avses antalet rader och
kolumner.

Exempel 2.1.1. Exempel pa matriser ar

1
123, |1
0

N O

Den forsta matrisen &r en (1 x 3)-matris och den andra ar en (3 x 2)-matris.



Definition 2.1.2. Tva matriser A och B av samma storlek adderas element-
vis och ger en ny matris av samma storlek. Om £ ar ett tal, sd definieras
skalarmultiplikationen k- A som matrisen av samma storlek som A, men dér
varje element ar multiplicerad med k.

Exempel 2.1.3. Viser att A+ B= B+ A.

2.1.4. Innan vi definierar matrisprodukten infor vi lite summationsnotation.
Vi anvander symbolen Y for summa och speciellt anviander vi symbolen for
att pa ett kompakt siatt beskriva summering. Om vi har talen aq, ..., a, och
vill summera dessa skriver vi

n

Zai:a1+a2+---+an.

i=1
Lagg marke till att nedre index indikerar var summationen boérjar och évre
index indikerar var summationen slutar.
Exempel 2.1.5. Till exempel skriver vi

7

Zai:a3+a4+a5+a6+a7,
i=3

och
5

> (13 —i)* = 10° + 9% + 8°.
=3

2.2 Matrismultiplikation

Vi har hittills definierat addition (och subtraktion) av matriser samt skalér-
multiplikation. I detta avsnitt definierar vi multiplikation av tva matriser.

Definition 2.2.1. Lat A vara en (m X p)-matris och B en (p X n)-matris.
Vi definierar produkten AB som (m X n)-matrisen med elementen

P
Ci,j - Z ai)kbk7j7
k=1
dir1 <i<mochl1l<j<n.

Exempel 2.2.2. Betrakta matriserna

1 2 3 4
A_[Ol—l 0] och B=

N = O =
— = =



Matrisen A ar (2 x 4) och B ar (4 x 2). Detta betyder att vi kan utfora
produkten

AB =

140+3+8 —1+2+3+4] [12 8
0+0—140 0+1—140|" |=1 0|

men ocksa produkten

1+0 2—-1 3+1 4+0 11 4 4
BA— 0+0 04+1 0—-1 0+0 _ 01 -1 0

140 2+1 3—-1 4+0 13 2 4|

2+0 441 6—-1 840 25 5 8

2.2.3. Nollmatrisen, som ar matrisen dar alla element &r noll, skriver vi
fortfarande 0. Lasaren maste sjélv ha koll pa vilken storlek nollmatrisen har.
For varje positivt heltal n definierar vi identitetsmatrisen 1 som (n X n)-

matrisen
o " ~J 1 om 1=
1=1(0,;) dar ¢, = { 0 om i#j.
Symbolen 0, ; kallas Kroneckers delta. Inversen till en (n x n)-matris A defi-
nieras som (n X n)-matrisen B som har egenskapen att AB = BA = 1, dar
1 betyder identitetsmatrisen av storlek (n x n). Inte alla matriser har invers,

men om en matris A har en invers s& ar denna unik och vi skriver A=! for
denna matris.

Exempel 2.2.4. Betrakta matriserna

1 2 3 —-40 16 9
A=12 5 3 och B=|13 -5 -3]|.
1 0 8 5 =2 -1

Om vi utfér matrismultiplikationen AB korrekt far vi

—40+26+15 16-10—-6 9—-6-3 100
AB=|-80+65+15 32—-25—-6 18—-15—-3| =0 1 0].
—40 + 40 16 — 16 9-8 0 01

Léasaren kan sjilv kontrollera att BA = 1. Detta betyder att B = A~! men
ocksd att A = B~L.

Exempel 2.2.5. Betrakta ekvationssystemet

r+2y+32=4
20+ 05y + 32 =2
T+ 8z =1.



Detta system kan skrivas som matrisekvationen

x 4
A- Yyl = 2 )
z 1
dar A ar matrisen
1 2 3
A=12 5 3]|.
1 0 8
Vi sag i Exempel 2.2.4 att matrisen
—40 16 9
B=|13 -5 -3
5 =2 -1

ar inversen till A, det vill siga B = A~!. Multiplicerar vi matrisekvationen
med A~! fran vinster far vi

x x 4
y = A_lA y — A_l 2 .
z z 1
Vi har vidare att
4 —119
A2 = 39
1 15
Detta betyder att ekvationssystemet har den unika l6sningen x = —119,

y =39 och z = 15.

2.3 Uppgifter

Uppgift 2.1. Berikna matrisprodukten
3 —1

1

01 2 b
3 4

11 1 11

0 0 -2

Uppgift 2.2. Anvind informationen i Exempel 2.2.4 for att 10sa matrisekva-
tionen



Uppgift 2.3. Tva personer ar och dricker tva sorters lask. Den ena personen
konsumerar 15 glas av sort A och 10 glas av sort B. Detta kostar 63 SEK. Den
andra personen konsumerar 25 glas av sort A och 17 glas av sort B, till en
summa av 106 SEK. Hur mycket kostade sort A per glas? Loés denna uppgift
pa foljande sétt: Forst skriver du ekvationerna som kommer fran texten pa
matrisform. Sedan inverterar du den givna (2 x 2)-matrisen (anvand formeln
som gavs i forra forelasningen) och multiplicerar med inversen fran vénster.

Uppgift 2.4. Lat A vara en godtycklig (m x n)-matris och lat 1 vara iden-
titetsmatrisen av ratt storlek. Visa att A-1 = A.

11



Forelasning 3

Avbildningar av planet

3.1 Euklidiska planet

Vi kommer att behandla linjara avbildningar av planet i detalj. Det mer
allménna fallet behandlas i Appendix B.

Definition 3.1.1. Det euklidiska planet ar méngden av alla ordnade par av
reella tal. Denna méngd skriver vi som R?. Med andra ord

R? = {(z,y) |  och y &r reella tal}.

Elementen i R? kallar vi ofta for punkter och vi identifierar punkten (z, %)

med (2 x 1)-matrisen B], en sa kallad kolumnuvektor.

Planet kanner vi oss fortroliga med. Vi skall nu borja titta pa en klass av
avbildningar fran planet till sig sjalvt.

3.2 Matrisavbildningar

Lat A = CCL 2] vara en fixerad (2 x 2)-matris. Vi anvinder denna for att

definiera en avbildning
Ty: R2 — R2

pa foljande satt. Lat (z,y) vara ett godtyckligt element i R?. Vi definierar
Ty(z,y) = (ax + by, cx + dy).

Detta anger vad elementet (z,y) skall skickas till, namligen elementet (ax +
by, cx + dy). Séttet vi anvander matrisen A pa ar som foljer. Vi tar det

12



godtyckliga elementet (z,y) och skriver detta som en (2 x 1)-matris, vilket
sedan multipliceras med matrisen A fran vanster:

= [o o= 0 ] = ) = oo an

Efter matrismultiplikation med A har vi en (2 x 1)-matris, dvs en kolumn-
vektor, vilket vi betraktar som en punkt (ax + by, cx + dy) i planet.

2

Exempel 3.2.1. Lat A = [4 5

1. Denna matris ger avbildningen

T,: R? — R?

som skickar elementet (z,y) till (2o + y,4x + 3y). Speciellt ser vi att (1,0)
skickas till (2,4) och att (0,1) skickas till (1,3). Vidare skickas (1,1) till
(3,7) och (0,0) till (0,0). Det kan nu vara instruktivt att rita upp kvadraten
med horn i punkterna (0,0), (1,0), (0,1) och (1,1) och sedan se vad denna
kvadrat skickas till under avbildningen 7'4.

3.3 Linjaritet

I Exempel 3.2.1 ovan kan vi notera att férsta kolumnen i matrisen A ar ko-
ordinaterna for 7'(1,0) och att andra kolumnen éar koordinaterna till 7°(0, 1).
Dessa tva element kommer att spela en viktig roll i fortsattningen s& vi ger
dessa egna namn.

Definition 3.3.1. Elementet (1,0) skriver vi som e; och elementet (0,1)
skriver vi som es. Dessa tva element kallas standardbasen for R2.

3.3.2. Lat oss aterga till Exempel 3.2.1. Elementet (1,1) = e; + ez och vi
har att T4(1,1) ges som matrismultiplikation med matrisen A fran vénster.

Notera dock att vi har
1 1 0
af=alof el

Med andra ord har vi att Ta(1,1) = Ta(e1) + Ta(ez).

Lemma 3.3.3. Lat A vara en (2 x 2)-matris och betrakta den inducerade
avbildningen Ty : R?* — R2. For varje element (z,y) i R? har vi att

Ta(z,y) = xTs(er) +yTa(es).

13



Bevis. Vi har att (z,y) = (2,0) + (0,y) = - (1,0) + y - (0, 1). Matrismulti-
plikation, som &r distributiv, ger nu

S e e}
Med andra ord Tu(z,y) = 2Ta(e1) + yTa(es). O

Definition 3.3.4. En avbildning f: R? — R? kallas linjir om

flzy) = fler) +y- fles)
for alla element (z,y) i R%

3.3.5. Avbildningar i allménhet kan vara obeskrivligt komplicerade, men
dessa skall vi inte fokusera pa. Vi skall enbart betrakta linjara avbildningar.
En linjar avbildning ar bestamd av sitt varde pa tva element, ndmligen e; och
es. Vi har sett att en matrisavbildning T4, det vill sdga en avbildning som
kommer fran multiplikation med en matris A ar linjar. Detta dr ndmligen
kontentan av Lemma 3.3.3. Det omvanda géller ocksa.

Sats 3.3.6. Ldt f: R? — R? vara en linjir avbildning. Dd finns en (2% 2)-
matris A sadan att matrisavbildningen T s dr den linjdra avbildningen f. Me-
ra precist har vi att om f(e1) = (a,b) och f(es) = (¢,d) da ges avbildningen

f av matrisen
a ¢
A= [b d].

Bevis. Se uppgifterna. n

3.3.7. Notera att koordinaterna till f(e;) kommer som forsta kolumn, ej
rad, i matrisen A. P4 samma satt dr koordinaterna till f(ey) andra kolumn
1 matrisen.

Exempel 3.3.8. Lit f: R? — R? vara givet som spegling i y-axeln. D&
har vi att

f(z,y) = (—z,y). (3.3.8.1)

Vi ska verifiera att detta ar en linjar avbildning. Vi har att f(e;) = (—1,0),
vilket ocksa kan skrivas f(e;) = —e;. Vi har att f(ey) = (0,1) = ep. Lat nu
(x,y) vara en given punkt i planet. Vi har att

f(@y) = (=2,y) = 2(=1,0) +y(0,1) = - f(ex) +y - f(ea).
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-1 0

0 1] . Det betyder

Alltsa ar avbildningen linjar. Detta ger matrisen A = l

T -1 0} |« -
A . = . = ,
M [ 0 11 M [ y ]
vilket sammanfaller med uttrycket (3.3.8.1).

Exempel 3.3.9. Lat f: R> — R? vara rotation med % radianer (eller om
du vill 60 grader) moturs omkring origo, dvs punkten (0,0). Detta ar en
linjér avbildning, vilket betyder att det finns en matris A sadan att Ty = f.
Om man ritar en tydlig figur ser man att

o0 (w3 03) - (1)

Den triangel som forekommer i denna tankta figur féorekommer ocksa i din
figur nar du beskriver f(es). Du far att

fles) = <— sing,cos 73T) = (—?,;) :

[ 1 _1./3
A=|,2 2 )
Wi

Speciellt betyder detta att f(2,5) har koordinaterna

-l

Definition 3.3.10. Bildrummet till en avbildning f: R*> — R? ar al-
la punkter (yi,y2) som ar pa formen (y;,y2) = f(x1,25) for ndgon punkt
(1, 22).

Detta ger matrisen

3.4 Uppgifter

Uppgift 3.1. Lat f: R? — R? vara rotation med 7 radianer omkring origo
(0,0) men medurs. Avbildningen é&r linjar. Beskriv matrisen A som &r sadan
att f = TA.

Uppgift 3.2. Avbildningen T4: R? — R? ges av matrisen
1 -2
7
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Visa att punkten P = (—1,3) a4r med i bildrummet till avbildningen T4.
Bestam ocksa en punkt () som inte ar med i bildrummet till T'4.

Uppgift 3.3. Visa Sats 3.3.6. Lat f vara en avbildning fran planet till planet
och konstruera matrisen A som Sats 3.3.6 anger. Anvind nu linjariteten for
f till att visa att f(z,y) = Ta(z,y) for alla (z,y) i R?, vilket betyder att
f="Ta.

Uppgift 3.4. Lat T4: R?> — R? vara den linjira avbildning vi far vid
rotation med 6 grader, moturs, omkring origo. Anviand en bra figur och visa
att matrisen A som beskriver avbildningen T4 &r

A=l )
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Forelasning 4

Geometri i planet

Nér du ldser denna text ar det bra om du ritar bilder for att exemplifiera
innehallet.

4.1 Vektorer och ortogonalitet

Det euklidiska planet betecknas med R? och dr méingden av alla ordnade par
av reella tal,

R? = {(a,b) | reella tal a och b}.

Ett element (a,b) i R? kallas ibland for en punkt P = (a,b) och ibland for
en vektor v = (a,b). Aven om det anviinds olika namn for element i planet
ar det viktigt att komma ihag att det alltid handlar om samma begrepp.
Anledningarna till de olika namnen ar mera av psykologisk art. Bland annat
ritar vi en punkt P = (a, b) som en prick i planet, medan en vektor v = (a, b)
ofta ritas som en pil som boérjar i origo och slutar i (a,b). Bade punkter och
vektorer kan betraktas som (2 x 1)-matriser, sa kallade kolumnvektorer. Bara
undantagsvis betraktas punkter och vektorer som (1 x 2)-matriser, sa kallade
radvektorer.

P = (a,b) v = (a,b)
bt . bt
a a
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Definition 4.1.1. Léngden av en vektor v = (a,b) &r definierad som talet
va? 4 b? och vi skriver [|v]| for detta tal.

4.1.2. Det ar klart att det dr Pythagoras sats som ligger till grund for defi-
nitionen ovan. Ritar man upp vektorn v = (a,b) som en pil ser vi att pilens
langd blir hypotenusan i en triangel dar kateterna har langd |a| och |b].

4.1.3. Vi noterar att lingden till en vektor v = (a,b) alltid ar ett icke-
negativt tal, och att den enda vektorn med langd ||v|| = 0 ar noll-vektorn

v =1(0,0).

Definition 4.1.4. Betrakta tva vektorer u = (a,b) och v = (¢,d). Deras
skaldrprodukt &r talet definierat som

(u,v) = ac + bd.
Exempel 4.1.5. Om n = (a,b) &r en vektor har vi att
(n,n) = a® +b* = ||n|].

Lemma 4.1.6. For alla vektorer u, v och w och alla reella tal t har vi att
foljande identiteter gdller

1) (u+v,w) = (u,w) + (v,w)

2) (tu,w) = t{u,w).
Bevis. Se uppgifterna. O

Definition 4.1.7. Tva vektorer uw och v ar wvinkelrdta (och ibland sdger vi
ortogonala) om deras skalarprodukt (u,v) = 0.

Exempel 4.1.8. Betrakta vektorn u = (2,5) och vektorn v = (—10,4).
Dessa tva vektorer ar vinkelrdta ty

(u,v) =2-(—=10)+5-4=0.

4.2 Linjer

Lat P = (py, p2) vara en punkt och v = (¢, d) en vektor skild fran nollvektorn
(0,0). Ritar du in punkterna

P+v, P+2v, P+3v, P—uw, P—i-gv

sa inser du att alla dessa ligger pa linjen som gar genom punkten P och har
riktning v. Vi definierar linjen L, genom punkten P och med riktningsvektor

v, som mangden
L ={P +tv |t ar ett reellt tal}.
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4.2.1. Notera att mangden som en linje L utgoér kan skrivas med en massa
olika riktningsvektorer och olika punkter. Om P’ ar nagon punkt pa linjen
L och vektorn v’ ar nollskild, och sadan att v' = s - v for nagot tal s, da har
vi att

L ={P+tv|reella tal t} = {P' + tv' | reella tal t}.

4.2.2. Med riktningsvektorn v till linjen L fixerad far vi parallella linjer
L' = {Q + tv | reella tal t} till L = {P + tv | reella tal t}, néir vi varierar
punkten som riktningsvektorn utgar ifran.

Exempel 4.2.3. Linjen genom origo och med riktningsvektor v = (3,4) ar
méngden {(3t,4t) | reella tal t}.

4.3 Normallinjer

Lat L vara en given linje i planet. Om v och v" ar tva riktningsvektorer for
linjen L finns det ett tal s sadant att v’ = sv. Speciellt har vi att om en
vektor n = (a,b) &r vinkelrdt med v sa foljer det av Lemma 4.1.6 att n
ocksa dr vinkelrdt med v'. En nollskild vektor n = (a,b) som &ar vinkelrét
med riktningsvektorerna till linjen L kallas en normalvektor till linjen L. En
normallinje N till linjen L, genom en punkt P, ar linjen

N = {P +tn | reella tal t}

dér n = (a,b) # (0,0) ar nagon normalvektor till linjen L.

N

4.4 Ekvation for linjer

En linje i planet kan skrivas som losningarna till en ekvation pa formen
ar + by +c=0,

for nagra tal a, b och ¢, dér a och b inte bada kan vara noll. Detta betyder
att for en given linje L sa finns tal a, b och ¢ sidana att

L ={(z,y) | ax + by + ¢ = 0}.

19



4.4.1. Inte heller ekvationerna ar unika. En linje L som ges av ekvationen
ar + by + ¢ = 0, ges ocksa av ekvationen atx + bty + ct = 0, dar talet t # 0.

Lemma 4.4.2. Ldt en linje L vara given som L = {P + tv | reella tal t},
dir P = (p1,pa) och v = (v1,v2) # (0,0). Lat n = (a,b) vara en nollskild

normalvektor for linjen L. En ekvation for linjen L dr
ar + by +c =0,
dar ¢ = —ap; — bps.

Bevis. Betrakta linjen L = {P + tv | reella tal t}, dar P = (py,p2) och med
riktningsvektor v = (vy,v9). Lat n = (a,b) vara nagon normalvektor till
linjen L och betrakta en godtycklig punkt (z,y) i planet. Differensen

w=(x—p1,y—p2)

ar en vektor. Flyttar vi pilen som representerar vektorn (x —py, y—ps) till att
borja i punkten P sa slutar pilen i (x,y). Denna differensvektor (z—py, y—p2)
ligger pa linjen L om och endast om vektorn ar vinkelrat med normalvektorn
n = (a,b).

(z,y)
w
n
v
P = (p1,p2) L

Vi har att (x —p;, y—po) ar vinkelrdt med normalvektorn n om och endast
om deras skalarprodukt ar noll. Enligt Definition 4.1.4 &r skalarprodukten

<w7n> - <([E — DY _p2)7 (CL, b)> =ar —apy + by - pr =0.

Det vill sdga att en ekvation for linjen L ges som ax + by + ¢ = 0 med
c= —ap; — bps. O

Lemma 4.4.3. Lat L vara en linje som ges som nollstillemdngden till ek-
vationen axr + by + ¢ = 0. Lit P = (p1,p2) vara nagon punkt sadan att
apy + bps = —c. Da ges linjen av

L ={P +t(—b,a) | reella tal t}.
Bevis. Se uppgifterna. n

Exempel 4.4.4. Linjen L = {(3t,4¢) | reella tal ¢} kan ocksa beskrivas som
losningarna till ekvationen —4x + 3y = 0.
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4.5 Avstand fran en punkt till en linje

Lat @ vara en given punkt i planet och L en given linje. For varje punkt P
pa linjen kan vi méta avstandet fran @ till punkten P. Avstandet ges som
langden av vektorn ) — P. Det finns en punkt R pa linjen dar avstandet till
@ ar det minsta, och detta avstand kallar vi avstandet fran @ till linjen L.
Vi vill berdkna detta avstand.

Steg 1 Lat linjen L vara given av ekvationen
ar + by +c=0.

Vi ska berdkna avstandet fran linjen L till punkten @ = (q1,¢2). Vi later
P = (p1, p2) vara nagon punkt pa linjen, det vill sdga att

apy + bps + ¢ = 0. (4.5.0.1)
Lat v vara en riktningsvektor till linjen. Da ar
L = {P +tv | reella tal t}.

Lat vidare n = (a,b) vara en normalvektor till linjen L, det vill sdga en
vektor sadan att (n,v) = 0.

Vi betraktar differensen () — P. Detta ar en vektor som vi kan tanka pa
som en pil som borjar i origo och slutar i koordinaterna ) — P. Denna vektor
kan vi skriva som

Q—-—P=w+u,

dar w = tv och v = sn. Vi har att

Q— P =tv+ sn.
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Steg 2 Avstandet vi forsoker bestamma ér lingden av vektorn s-n. Om vi
nu betraktar skalarprodukten (@) — P,n) sa har vi fran Lemma 4.1.6 att

(Q — P,n) = t{v,n) + s(n,n) =0+ s||n|*

Detta ar en ekvation bestaende av tal. Vektorn n = (a, b) antar vi ar nollskild,
och speciellt har vi att ||n||*> # 0. Darmed har vi ett uttryck for talet

5= ||nl||2<Q _Pn). (4.5.0.2)

Sats 4.5.1. Lat L vara linjen som ges av ekvationen ax + by +c =0 och lat
Q = (q1, q2) vara en godtycklig punkt i planet. Avstandet fran punkten @Q till
linjen L dr

laqy + by + |
Bevis. Vi har ovan (4.5.0.2) sett att avstandet ges som langden av vektorn
sn, dir n = (a,b) och s = == (Q — P,n). Vi har att lingden ||sn|| ir

([

V(@s)? + (bs)? = \/s2(a? + 02) = |s|Va + 02 = |s] - ||n]]. (4.5.1.1)

Vi bestammer nu ett uttryck for beloppet |s| av talet s. Vi anviander Lem-
ma 4.1.6 och far att

(Q—Pn)=(Q,n) = (Pn).

Vi har vidare att (Q,n) = <(q1,qQ), (a, b)> = aq, + bge, och da ocksa att
(P,n) = ap; + bpy. Punkten P &r pa linjen och vi har fran (4.5.0.1) att
(P,n) = —c. Detta ger att

|s| = HJHQRQ - Pn)| = L\aql +bgz — (—c)|.

]2

Anvénder vi nu slutligen (4.5.1.1) ser vi att avstandet fran punkten @ till
linjen L ges av

2|l |agy 4 bgs + |

w2 = Ve

lsnll = |ag: + bas +c"
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4.6 Uppgifter

Uppgift 4.1. Berdkna avstandet fran punkten @ = (1,2) till linjen L som
ges av ekvationen 3x + 4y = 5.

Uppgift 4.2. Anvand definitionen av skaldrprodukt for att visa bada pasta-
endena i Lemma 4.1.6.

Uppgift 4.3. Visa Lemma 4.4.3, till exempel pa foljande satt. Lat L vara
linjen som ges av ekvationen ax + by + ¢ = 0 och lat L' vara linjen

L' ={P +tv |t reellt tal},

dar P och v ar som i Lemmat. For att visa att L = L' maste vi visa att varje
punkt i L’ ar med i L och omvént. Lat ) vara en punkt i L’. Skriv ut vad
detta betyder och kolla att koordinaterna till () satisfierar ekvationen som
bestammer L. D4 har du visat att L' C L. For att visa det omvanda kan du
anvanda Lemma 4.4.2.
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Forelasning 5

Area och determinant

Forra gangen visade vi en formel for avstandet mellan en punkt P = (p,q)
och en linje L. Om linjen L var given som nollstalleméngden till ekvationen
ar + by + ¢ = 0 var avstandet givet av formeln

lap + bg + |

Va? + b2
5.1 Area av parallellogram

Tva punkter P och () i planet bildar tillsammans med origo och punkten
P + @ ett parallellogram. Varje parallellogram bestams av tva hornpunkter
P och . Om P och @ ligger pa samma linje genom origo ger de fyra hornen
inte ett parallellogram i ordets vanliga mening, utan enbart ett linjesegment.
Vi tillater dock sadana sa kallade degenererade fall.

P+Q
P

P+qQ
19, Q@ O/'P/.iQ/

Proposition 5.1.1. Lit P = (p1,p2) och Q = (q1,q2) vara tvd punkter i
planet. Arean av det parallellogram som punkterna P, (), P + Q) och origo
spanner upp ar

P1G2 — p2qu|.

Bevis. Arean ges som bekant av hojden multiplicerad med bredden. Bredden
kan vi bestimma via Pythagoras Sats som ||Q|| = \/¢? + ¢5. Hojden ar precis
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avstandet fran P till linjen L som gar genom origo och ). En ekvation for
linjen L genom () och origo ar

@r —qy =0.
Av Sats 4.5.1 far vi nu att héjden i parallellogrammet ar
|gap1 — q1p2]
JE+a

Multiplicerar vi nu uttrycket for hojd med uttrycket for bredd erhalls det
onskade svaret. [

5.2 Area och avbildningar

Vi har sett att en linjiar avbildning 7: R? — R? ges som matrismultiplika-
tion med en given (2 x 2)-matris A. Vi kommer ihag att matrisens tva kolum-
ner ges av koordinaterna till 7'(1,0) och 7°(0, 1). Om vi later (a,b) = T'(1,0)
och (¢,d) = T(0,1) sa bestimmer matrisen

a c
1=l
avbildningen T'. Determinanten av matrisen A &r talet
det(A) = ad — be, (5.2.0.1)

som vi bekantade oss med i Uppgift 1.2.

Proposition 5.2.1. Ldit T: R? — R? vara en linjdr avbildning, given som
matrismultiplikation med matrisen A. Lit Q vara enhetskvadraten i R? med
horn (0,0), (1,0), (0,1) och (1,1). Bilden av Q2 under avbildningen T dr ett
parallellogram och arean till parallellogrammet T(QY) dr |det(A)].

Bevis. Kvadraten 2 avbildas pa parallellogrammet med horn 7'(1,0) = (a, b)
och T(0,1) = (¢,d). Arean av parallellogrammet ges av Proposition 5.1.1
som beloppet av ad — be, vilket ocksa ar uttrycket for determinanten. O

5.3 Sammansattning

Om T: R? — R? och U: R?* — R? ir tva funktioner frdn planet till
planet, kan vi definiera deras sammanséttning

UoT:R?> — R?
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som &r funktionen vi far genom att forst anvinda 7" och sedan anvinda U.
Med andra ord skickas en godtycklig punkt (z,y) i planet till punkten

(z,y) = T(z,y) = U(T(z,y)).

Lasaren bor lagga notationen pa minnet. Funktionssammansattning lases
fran hoger till vanster. Sammanséttningen U o T betyder att T anvands forst
och sedan U. Sammanséttningen T oU betyder att U anvands forst och sedan
T.

Om funktionerna U och T bada &r linjara ar dessa givna av matriser och
matrismultiplikation.

Lemma 5.3.1. Om matrisen A ger avbildningen T" och matrisen B ger av-
bildningen U ges sammansdttningen U o T av matrisprodukten BA.

Bewvis. Se uppgifterna. O

Exempel 5.3.2. Lat den linjira avbildningen 7': R?> — R? vara given av

matrisen A = . Proposition 5.2.1 ger att arean av parallellogrammet

a c
b d
som enhetskvadraten skickas till under 7" ar |ad — bc|. Antag nu att arean ar
nollskild. Da har vi fran tidigare att matrisen A &r inverterbar och inversen

ges av matrisen
1 d —c
B=—— .
ad — bc [—b a ]

Betrakta nu den linjira avbildningen U: R? — R? som ges av matrisen
B och matrismultiplikation med denna. Av Proposition 5.2.1 foljer att en-
hetskvadraten skickas med U till ett parallellogram med area |det(B)|. Be-
rdknar man determinanten av B far man att

1 1

det(B) = ad —bc det(A)’

Vad hdnder med enhetskvadraten under sammanséttningen U o T7 Forst
har vi en avbildning 7" som skickar enhetskvadraten till ett parallellogram
med hornpunkterna P = (a,b) och Q = (¢,d). Sedan har vi en avbildning
U som skickar enhetskvadraten till ett parallellogram med hérnpunkterna
P = ﬁ(d, —b) och @ = adl_bc(—c, a). Men sammanséttningen ges enligt
Lemma 5.3.1 av matrisprodukten BA. Da B ér inversen till A har vi att BA
ar identitetsmatrisen och det féljer att sammansattningen Uo7 ar identitets-

avbildningen. Med andra ord skickas enhetskvadraten till enhetskvadraten.
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5.4 Singuliara matriser

En matris A vars determinant ar noll kallas singuldr. Hur ser en sadan ut? Lat
A vara given och betrakta den tillhérande linjira avbildningen T4: R? —
R?. Forsta kolumnen i A ges av koordinaterna till T4(1,0) = (a,b). Om
(a,b) = (0,0) ar det klart att determinanten av A &r noll. Antag darfor att
(a,b) # (0,0). Da finns det en unik linje L genom origo och punkten (a,b).
Om punkten 7°(0,1) inte hamnar pa linjen L hamnar enhetskvadraten pa
ett akta parallellogram med nollskild area. Darfér om A skall bli singular sa
maéste punkten 7°(0,1) hamna pa linjen L. Alla punkter pa linjen L ar pa
formen t(a,b), for nagon skaldr t. Med andra ord sa ar andra kolumnen i
matrisen A lika med (ta,tb). Det betyder att de singuliara matriserna ar pa

formen
a ta 0 c
A= [b tb} eller A= [0 d} )

5.5 Uppgifter

Uppgift 5.1. Betrakta den linjira avbildningen 7: R? — R? som ér be-
staimd av 7T'(2,0) = (2,4) och T'(0,5) = (3,—7). Hitta matrisen A som be-
skriver avbildningen T

Uppgift 5.2. Betrakta den linjira avbildningen 7: R? — R? som éar be-
staimd av T'(2,1) = (2,4) och T'(2,3) = (3,—7). Hitta matrisen A som be-
skriver avbildningen 7' (Skriv upp ett ekvationssystem som du loser genom
invertering av en matris).

Uppgift 5.3. Visa Lemma 5.3.1. Visa forst att sammansattningen U oT" ar
linjar. Visa sedan att sammanséattningen ges av matrisen BA.

Uppgift 5.4. Visa att matrisen A = [
om det(A) # 0.

] ar inverterbar om och endast

a c
b d

Uppgift 5.5. Visa att matrisen A = ar singular om och endast om

a c
b d

ena raden i matrisen ar en multipel av den andra raden.
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Forelasning 6

Losningar till ekvationssystem

6.1 Ekvationer

En linjar ekvation i n variabler z, ..., x, ar en ekvation pa formen
a1 + a2 + -+ apTy = b,

med givna tal aqy,...,a, och b. Ett linjart ekvationssystem i n variabler
x1,...,T, ar ett dndligt antal linjara ekvationer i variablerna x4, ..., z,.

Exempel 6.1.1. Foljande tva linjara ekvationer

2r—y+2z =3
r+2y =0

ar ett ekvationssystem med tre variabler x,y och z. Systemet bestar av tva
ekvationer.

6.1.2. Ett allmant linjart ekvationssystem skriver vi vanligtvis som

1T + a1 2T + -+ a1, = b
a1 + dooxo + -+ agpty, = Dbo
(%) = :
Am,121 + Ay 2X2 + -+ Ampndn = bm

Med detta menas att vi har givna tal a;; for varje 1 < ¢ < m och varje
1 < 5 < n, samt talen bq,...,b,,. Variablerna ar z,...,x, och det ar n
stycken av dessa. Antalet linjiara ekvationer i systemet ar m.

6.1.3. Losningsméngden till ett givet ekvationssystem ar alla ordnade n-
tupler av reella tal (¢,...,t,) som satisfierar alla m ekvationerna som fore-
kommer i ekvationssystemet. Detta betyder att for varje ¢ = 1,...,m har vi
att (t1,...,t,) ar sidan att

ai 1ty + ajoty + - - 4 a;pty, = b;.
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6.1.4. Kom ihag att méngden av alla ordnade n-tupler av reella tal bildar
det euklidiska n-rummet R”. Losningsméngden till ett ekvationssystem i n
variabler blir alltid en delmédngd av R™.

Exempel 6.1.5. Betrakta ater igen ekvationssystemet i Exempel 6.1.1. Den
sista ekvationen ger att x = —2y, vilket insatt i den forsta ekvationen ger
att 2- (—2y) —y + z = 3. Det vill siga att z = 3 + 5y. Losningsméangden till
ekvationssystemet ér alla punkter i R3 pa formen

(=2t,t,3 + 5t)

for godtyckliga tal t.

6.2 Systematisk losning av ekvationssystem

Nér man skall 16sa mera komplexa system &n sadana enkla som i Exem-
pel 6.1.1 lonar det sig att vara mera systematisk. Vi borjar med att observera
tre enkla operationer som inte andrar losningsmangden till ett system.

Radbyte Givet ett ekvationssystem (x). Detta system bestar av m ekva-
tioner som vi kallar rader. Det ar klart att om vi byter plats pa raderna i ett
ekvationssystem sa éndras inte 16sningsméngden.

Multiplikation med ett nollskilt tal Givet ett ekvationssystem (x). Om
vi multiplicerar en rad i ekvationssystemet med ett nollskilt tal ¢ # 0 far vi
ett nytt ekvationssystem. Men det ar klart att losningsmangden inte andrar
sig. Eller?

Addition av en rad till en annan Givet ett ekvationssystem (x). Mul-
tiplicera en given rad ¢ med ett tal ¢ och addera denna nya rad till raden ;.
I det nya ekvationssystemet (') har vi &ndrat enbart rad j, men l16snings-
méngden ar den samma som for ekvationssystemet (*). Denna operation pa
ekvationssystemet ar inte lika uppenbar som de tva foregaende. Notera nu
att raden j i det nya ekvationssystemet &r

(aﬂ —I— cai,l)xl + (0%2 —I— CG@Q)I’Q + s —|— (aj,n + Cai,n)xn = bj + Cbl‘.

Kolla nu (se uppgifterna) att en 16sning (¢4, .. ., t,) till ekvationssystemet (x)
ocksa ar en 16sning till det nya ekvationssystemet (x') och vice versa.
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Elementiara radoperationer Vikan manipulera ett ekvationssystem med
de tre operationerna ovan utan att &ndra losningsméangden. Dessa operationer
kallas elementéra radoperationer.

Exempel 6.2.1. Betrakta ekvationssystemet

rT+3y+z =2
2x 4+ Ty =2 (6.2.1.1)
—r—4y+3z =1.

Vi tar och adderar —2 ganger rad ett till rad tva. Den enda rad som andrar
sig ar rad tva. Ekvationssystemet blir nu

r+3y+z = 2
y— 2z = =2
—r—4y+3z = 1.

Sedan tar vi och adderar 1 ganger rad ett till rad tre. Ekvationssystemet blir
nu

rT+3y+z = 2
y—22 = =2
—y+4z = 3.

Ekvationssystemet har nu variabeln x enbart i den forsta raden. Lat oss nu
ta —3 ganger rad tva och addera till rad ett, och sedan tar vi och adderar 1
ganger rad tva till rad tre. Ekvationssystemet blir

r+7z = 8
y—22z = =2
2z = 1.

Variabeln y forekommer nu enbart i rad tva. Vi multiplicerar rad tre med %,
sedan tar vi 2 ganger rad tre och adderar till rad tva och slutligen —7 ganger
rad tre och adderar till rad 1. Detta ger ekvationssystemet

o= 3
y = —1 (6.2.1.2)
;= L

Notera att vi enbart har anvint elementéra radoperationer pa ekvationssy-
stemet (6.2.1.1). Detta betyder att 16sningsméngden till (6.2.1.1) &r precis
den samma som l6sningsméangden till (6.2.1.2). Men losningsméngden till
(6.2.1.2) ar latt att lasa ut: det ar ndmligen punkten

9 1
(4-13)
2 2
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6.3 Gauss—Jordanelimination

Tillvagagangssattet som anvindes i Exempel 6.2.1 kan appliceras pa alla
ekvationssystem och kallas Gauss—Jordanelimination. Den allménna algorit-
men ar som foljer: Betrakta ett givet ekvationssystem (x). Borja med forsta
kolumnen. Om alla ay1,...,an,1 ar lika med noll, fortsatt till kolumn tva.
Om inte, plocka ut en rad ¢ dér a;; # 0. Byt plats pa rad ett och rad 7. Mul-
tiplicera nu den nya forsta raden med al_j. Detta betyder nu att den forsta
raden ar

/ / /
T+ ay %o + -+ ay = b,

dir @) ; = Zli och b} = abfl. Sedan anvander vi rad ett for att eliminera all
forekomst av x; i de andra raderna. Det vill sdga, multiplicera rad ett med
—ag 1 och addera till rad tva, multiplicera rad ett med —as; och addera till

rad tre, och sa vidare. Ekvationssystemet blir da pa formen

L1+ @y pTs + )T, = Y

/ / _ /

/ / _ /
UpoTo + -+ Gy Ty = by

Nu ar vi klara med variabeln x;. Vi tittar nu pa kolumn tva, men inte pa rad
!/

ett. Vi stryker bort rad ett for ett tag. Om alla siffror a,, ..., a;, 5 ér noll
fortsétter vi till kolumn tre. Om det finns en siffra a; 2 som ér nollskild, byt
plats pa rad tva och rad j, multiplicera rad tva med a;zl. Rad tva blir nu pa

formen
2 " /!
Ty + Ay 303 + -+ Ay, Ty = by,

dér vi hela tiden byter namn pa koefficienterna. Vad koefficienterna ar spelar
inte nagon roll. Nu anvander vi rad tva for att eliminera alla forekomster av
variabeln x, i raderna tre, fyra, ..., m och i rad ett. Detta beskriver Gauss—
Jordaneliminationen, som vi avslutar efter ett dndligt antal steg.

Exempel 6.3.1. Betrakta ekvationssystemet

T+ 2I2+ r3 — 3$4+ 5$5+ Tg =
3[L’1 + 6%2 + 61]3 — 15%4 + 211‘5 + T
21’1 + 4ZE2 + 35(73 — 8[E4 —I— 121‘5 —|— Tg
521 + 10x9 + Txs — 1924 4+ 2925 + 224 = 1

— W N =

Det ar lite trist och jobbigt att ta med alla variabler nar vi utfor Gauss—
Jordaneliminationen. Darfor skippar vi just detta. Systemet ovan skriver vi
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istallet som matrisen’

21 =3 5 1]1
6 6 —15 21 1| 2
4 3 -8 12 1|3
10 7 =19 29 2|11

TN W

Vi utfor de elementara radoperationerna som foljer. Vi har en ledande etta
i forsta raden, forsta kolumnen. Denna anvéinder vi for att eliminera talen i
forsta kolumnen, i raderna tva, tre och fyra. Detta ger

21 -3 5 1|1
3 =6 6 —=2|—-1
1 -2 2 —-1]1
2 -4 4 =3]6

o O O
o O O

Vi ar nu klara med kolumn ett. I kolumn tva finns det enbart noll pa raderna
tva, tre och fyra. Vi fortsitter darfor till kolumn tre. Vi byter plats pa rad
tva och rad tre. Och sedan fixar vi till att det blir noll éver och under den
ledande ettan. Nu borde ni fa fram matrisen

120 -13 210
001 -2 2 —-1|1
000 0 O 1 |—4"
000 0 0 -1/ 4

Vi fortsatter till kolumn fyra, men i raderna tre och fyra finns bara nollor.
Vi fortsatter till kolumn fem, och héar finns det ocksa enbart nollor i raderna
tre och fyra. Vi fortsatter till kolumn sex, och hér har vi en ledande etta. Vi
fixar nollor 6ver och under den ledande ettan i rad tre, och erhaller

120 -1 3 0| 8

001 —-220|-3

000 0 0 1|—-4|"

000 0 O0O0]O
Har terminerar Gauss—Jordanalgoritmen och vi skall nu ldsa av 16snings-
méngden. Vi borjar med den sista ledande ettan, den i rad tre. Rad tre
betyder att x4 = —4. Det finns ingen ledande etta i kolumn fem, vilket bety-
der att x5 = s kan véljas godtyckligt. Likadant kan x4 = t valjas godtyckligt.
I rad tva har vi en ledande etta for kolumn tre; detta betyder

T3 — 2ZL’4 + 2.1‘5 = —-3.

!'Denna matris brukar kallas fér den utékade koefficientmatrisen eller totalmatrisen till
ekvationssystemet.
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Med andra ord géller att x3 = —3 + 2t — 2s. Det finns inga ledande ettor
for kolumn tva och detta betyder att x5 = u ocksa kan valjas godtyckligt.
Slutligen har vi att

T1+ 229 — x4 + 325 = 8.

Detta betyder att 16sningsmangden till ekvationssystemet ar alla punkter i
R® pa formen

(8 =2u+1t—3s,u,—3+ 2t — 2s,t,s,—4),

med godtyckliga tal s,t och wu.

6.4 Uppgifter

Gauss—Jordanelimination &r varken svart att lira sig eller att forsta &ven om
rdkningarna kan bli jobbiga. Om algoritmen é&r oklar, prata med nagon for
att genast fa klarhet kring denna.

Uppgift 6.1. Los ekvationssystemet

20+3y+42 = 2
20+05y+z =
dr+ 10y — 2z = 1.

Uppgift 6.2. Visa att radoperationen som beskrivs som addition av rad till
en annan i Avsnitt 6.2 inte d&ndrar l6sningsmangden.

Uppgift 6.3. Visa att de tre radoperationerna i Avsnitt 6.2 faktiskt enbart
bestar av tva operationer.
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Forelasning 7

Elementara matriser

7.1 Elementara radoperationer och matriser

Vi paminner om att ett ekvationssystem ar ett &ndligt antal linjara ekvationer
i ett andligt antal okanda. Vi skriver ett ekvationssystem som

a1’y +a1pTs + o+ a1, = by
2171 + dooxo + -+ agpty, = bo
(%) .
Am 121 + A 2X2 + -+ Amndn = bm

Losningsméngden till ekvationssystemet (x) ar en delméangd av R™. Det eukli-
diska n-rummet R™ ar méangden av alla ordnade n-tupler av reella tal. Los-
ningsméngden till (x) ar alla ordnade n-tupler (¢y,...,t,) som satisfierar
ekvationerna i ekvationssystemet.

7.1.1. Ekvationssystemen kan losas pa ett systematisk sétt. Den algoritm vi
anviander kallas Gauss—Jordan elimination och anvénder sig av tre elementdra
radoperationer. De elementéra radoperationerna ér att a) multiplicera en rad
med ett nollskilt tal b) byta plats pa tva rader och c¢) addera till en given
rad en multipel av en annan rad.

De elementara radoperationerna andrar inte 16sningsméangden till ekva-
tionssystemet men andrar sjalva ekvationssystemet. Vi anvander elementéra
radoperationer for att fa fram ett ekvationssystem varifran vi latt kan lésa
av 16sningsméangden.

Exempel 7.1.2. Betrakta ekvationssystemet nedan i tre okdnda x,y och z.

Tty = 3
y+2z =1 (7.1.2.1)
20 +y+2 = 2

34



Som brukligt skriver vi upp totalmatrisen till systemet for att inte behéva
skriva upp de okénda varje gang. Totalmatrisen ar

110]3
01 2/1]. (7.1.2.2)
2 1 12

I forsta kolumnen har vi en ledande etta och vi vill astadkomma 0 under
denna ledande etta. Detta ordnar vi om vi adderar —2 ganger den forsta
raden till den tredje raden. Denna operation ger matrisen

1 1 0|3
0 1 2|1 (7.1.2.3)
0 —1 1|—4

Nu ar vi klara med forsta kolumnen och fortsatter med andra kolumnen. Vi
anvander 1 pa plats (2, 2) som ledande etta. Vi skaffar oss noll ovan och under
denna ledande etta i tva steg. Till den tredje raden adderar vi 1 ganger av
rad tva och sedan tar vi och adderar till den forsta raden —1 ganger rad tva.
Detta ger matrisen

10 —2| 2
01 2[1]. (7.1.2.4)
00 3/|-3

Slutligen arbetar vi med den tredje kolumnen. Vi multiplicerar rad tre med
é och skaffar oss en ledande etta. Till den andra raden adderar vi —2 ganger
tredje raden och till den forsta raden adderar vi 2 ganger tredje raden. Detta
ger matrisen

100]0
010 3]. (7.1.2.5)
00 1|-1

Nu kan vi lasa av 16sningsméngden till ekvationssystemet (7.1.2.1) som
(0,3,-1).
Losningsméngden dr en punkt i R3.

7.1.3. En viktig ingrediens i linjér algebra ar matrismultiplikation. Lat

a Qg - any,
A by by --- b,
1 Co e Cn
dy dy --- d,
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vara en given (4 X n) matris och betrakta foljande tre matriser

k000 1000 10k O
0100 0010 0100
B =19 010/ P2=]o 100 Pu®=1lp 019
0001 0001 0001

Lagg marke till att dessa tre matriser &r sma modifikationer av identitetsma-
trisen. Vidare kan alla tre matriserna multipliceras med matrisen A — fran
véanster. Vi erhaller att

kay, kas --- ka,

b by e by
E1<k)A7 c Co Cn !

dy dy - d,

det vill sdga att multiplikation med matrisen Fi(k) blir detsamma som att
multiplicera den forsta raden i matrisen A med talet k. Vi har att

a ag - Ay
. cp Cy - Cn

E2,3A - bl b2 . bn )
dl d2 R dn

det vill saga att multiplikation med matrisen E53 byter plats pa den andra
och tredje raden i matrisen A. Slutligen har vi att

a; +key as+kes oo+ ay, + ke,
B b, by . b,
ELg(k)A - C]. 02 “ e cn )
dy do . d,

det vill siga att multiplikation med matrisen Ej 3(k) tar och adderar k ganger
den tredje raden till den forsta raden.

Definition 7.1.4. De elementdra matriserna ér de foljande (nxn)-matriserna.

a) Givet 1 < i < n och ett nollskilt tal k. Lat E;(k) vara matrisen vi far
genom att byta ut elementet (i,7) i identitetsmatrisen med k.

b) Givet 1 <7 < j < n.Lat E;; vara matrisen vi far genom att byta plats
pa raderna ¢ och 7 i identitetsmatrisen.

c) Givet 1 <i,j <mn,i# joch ett tal k. Lat E; ;j(k) vara matrisen vi far
genom att byta ut elementet (i, 7) i identitetsmatrisen med k.
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Sats 7.1.5. Lat A vara en (n X m)-matris. Att utfora en elementdir radope-
ration pa matrisen A dr detsamma som att multiplicera A fran vdinster med
en (n x n) elementdr matris. Mera precist har vi

a) Att utfora multiplikationen E;(k)A dar att multiplicera rad i av matrisen

A med talet k.

b) Att utfora multiplikationen E; jA dr att byta plats pa raderna i och j i
matrisen A.

c) Att utfora multiplikationen E; ;(k)A dr att till raden i av A addera k
ganger raden j av A.

Bevis. Detta ar en lamplig uppgift (se Uppgift 7.2). O

Exempel 7.1.6. Lat oss aterga till exemplet ovan och ekvationssystemet
(7.1.2.1). Totalmatrisen till systemet ar

A=

N O =

1
1
1

N O
N — W

Den forsta elementéara radoperationen vi gjorde var att till rad 3 addera —2
ganger rad 1. I termer av elementira matriser betyder det att multiplicera
totalmatrisen A med

1 00
E3’1<—2) == 0 1 O
-2 0 1
Vi har att

1
E31(—2)A =10
0

vilket precis dr matrisen (7.1.2.3). For att komma till matrisen (7.1.2.4) gjor-
de vi tva elementira radoperationer. Det forsta vi gjorde var att till den
tredje raden addera 1 génger rad tva och detta motsvarar matrisen E35(1).
Sedan tog vi till den forsta raden —1 ganger rad 2, det vill sdga matrisen
E; 5(—1). Matrisen (7.1.2.4) far vi som produkten

1 =1 0]t 0o o0t 1 0] 3
Eio(—1)E32(1)E5(—2)A=10 1 0[|0 1 0[]0 1 2|1
0 0 1{(0 1 1/|0 —1 1|—4
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Det vi gjorde sedan var att multiplicera med E3(%), sedan multiplicera med
E5 3(—2) och slutligen multiplicerade vi med Ej3(2). Hela exemplet ges av
matrisprodukten

F13(2) Eas(—2) Ey(}) By o(—1) By 2(1) 31 (—2) A (7.1.6.1)

1
3

Notera att det ar viktigt att halla reda pa ordningen i matrisprodukten. Utfor
man produkten (7.1.6.1) sa far man matrisen (7.1.2.5).

7.1.7. En (n x n) matris B ar inversen till matrisen A om AB och BA bada
blir identitetsmatrisen.

Sats 7.1.8. Varje elementdr matris ar inverterbar och inversen till en ele-
mentdr matris dr sjalv en elementar matris. Mera precist har vi att

1) Elementirmatrisen E;(k) har invers E;(}).
2) Elementdrmatrisen E;; har invers E; ;.
3) Elementdirmatrisen E; ;(k) har invers E; j(—k).

Bevis. Vi visar forst pastdendet i 1). Lat B vara en elementir matris pa
formen E;(k). D& &r k # 0 och vi kan bilda elementérmatrisen E;(;). Av
Sats 7.1.5 foljer det att EZ(%)B ar att multiplicera rad ¢ av matrisen B med
. Rad ¢ i matrisen B = E;(k) har talet k pa plats i och noll annars. Det ar
nu klart att E;(3)B = 1. Vi har visat att E;(3)E;(k) = 1 for alla nollskilda
k och speciellt ocksd att E;(k)E;(+) = 1. D& har vi visat pastdende 1). Se

k
uppgifterna for 2) och 3). O

Exempel 7.1.9. Betrakta matrisen

1
B =

o

1
1
1

[\]
N O

Denna matris dr den vénstra delen av totalmatrisen i forsta exemplet. Det
foljer av berdkningarna vi gjorde att produkten (7.1.6.1) blir

E173(2>E2’3<—2)E3(

100
%)ELQ(—1)E3,2(1)E3,2(—2)B: 0 1 0].
0 1

0
Lat X = El,g(2)E2’3(—2)E3(%)E172(-1)E3’2(1)E372(—2). Vi ser att XB = 17

det vill sdga att nar vi multiplicerar matrisen B med matrisen X fran vanster
erhaller vi identitetsmatrisen. Vi vill visa att X &r inversen till B och det
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kvarstar att visa att BX = 1. Vi anvander oss av Sats 7.1.8 och multiplicerar
uttrycket ovan med Fj 3(—2) fran vinster. Detta ger

E2,3(—2)E3(%)E172(—1)E3,2(1)E372(—2)B = E13(—2).
Upprepar vi detta far vi slutligen att
B = E55(2)E39(—1)E12(1)E3(3)Ey 5(2) By 5(—2).

Anvander vi nu Sats 7.1.8 och uttrycket for B ovan, ser vi omedelbart att
BX =1.

7.2 Uppgifter

Uppgift 7.1. Anvind enbart matrismultiplikation och elementéra matriser
for att gora Gauss—Jordanelimination pa ekvationssystemet

r+2y+2z = 3
—3r+z = 2
2y —2z = 1.

Uppgift 7.2. Visa Sats 7.1.5.
Uppgift 7.3. Visa pastaendena 2) och 3) i Sats 7.1.8.

Uppgift 7.4. Anvind Gauss—Jordanelimination pa matrisen

o

A:

W N =
ot W
© W

for att konstruera A~L.
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Forelasning 8

Konstruktion av inversmatris

8.1 Reducerad trappstegsform

Vi paminner om Gauss—Jordaneliminationen igen. Om A &dr en matris sa
kan vi utfora Gauss—Jordanelimination pa matrisen. Nar vi ar klara med
Gauss—Jordanelimination har vi en matris R som vi kallar den reducerade
trappstegsformen till matrisen A.

Lemma 8.1.1. Ldit A vara en (n X n)-matris. Dda kommer den reducerade
trappstegsformen R att innehdlla en (r x r)-identitetsmatris som ett block
i sitt vanstra ovre horn (0 < r < n). Om r = n, dd dr den reducerade
trappstegsformen R lika med identitetsmatrisen. Annars, om 0 <r <n —1,
sa dr den reducerade trappstegsformen till A pa formen

1 0 0 biyq1 * :
0 1 0 boyy1 *
R = O O ]_ bT,T+1 *
0 0 0 0 *
: 0 0 *
10 0 0 0 * |
for nagra tal by yy1,. .., by s

Bevis. Lemmat édr en observation som foljer direkt av Gauss—Jordan elimi-
nation. [

Sats 8.1.2. Lat A vara en (n X n)-matris. Foljande pastienden dr ekviva-
lenta.
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1) Det existerar en (n x n)-matris B sadan att BA dr identitetsmatrisen.

2) Den enda (n x 1)-matris som loser ekvationen AX = 0 dr nollmatrisen
X =0.

3) Matrisen A kan skrivas som en produkt av elementdra matriser A =
E,---E,.

Bevis. Vi visar att pastdende 1) implicerar pastaende 2), sedan att 2) impli-
cerar 3) och slutligen att 3) implicerar pastaende 1).

Antag att pastaende 1) géller. Vi vill visa att ekvationen AX = 0 enbart
har den triviala lésningen. Lat darfor X vara en godtycklig l6sning, det vill
sdga en (n x 1)-matris sidan att AX = 0. Av pastdende 1) har vi att det
existerar en matris B sadan att BA = 1. Multiplicera matrisekvation AX =0
med matrisen B fran vanster och vi erhaller att BAX = B0. Vi har att en
matris multiplicerad med 0 ger noll, sa B0 = 0. Eftersom BA = 1 sa ger
detta

X=1X=BA-X=B-0=0,

vilket visar pastaendet 2).

Antag nu att pastaendet 2) géller. Lat R vara den reducerade trappstegs-
formen till A. Detta betyder att det existerar elementéira matriser Fi, ..., Fj
sadana att

F,F,_---FyF1A=R.

Varje elementar matris F' har en invers £ som ocksa ar en elementar matris.
Detta betyder att det finns elementara matriser Fy, ..., Fs sadan att

A=E\Ey-- E,R. (8.1.2.1)

Av Lemma 8.1.1 har vi att det finns ett tal 0 < r < n sadan att R ar
pa formen angivet i lemmat. Om r < n &ar strikt mindre &n n da kan vi
konstruera matrisen ~ _
—b1,r41
—bayp1

o _br,r—i-l
X = 1
0

L O -

Denna matris X ar nollskild och vi ser att RX = 0. Av uttrycket (8.1.2.1)
har vi att ocksd AX = 0. Detta dr dock oméjligt av 2) och foljaktligen
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maste r = n. Detta betyder att den reducerade trappstegsformen R = 1
ar identitetsmatrisen och att A = FE;--- E, ar en produkt av elementéira
matriser. Detta visar att 2) medfor 3).

Antag nu att pastaendet 3) géller. Det vill sdga att A = E; --- Ey, med
elementira matriser Fy,..., E,. Lat B=E;!--- Er'. Vi har att

BA=FE' - E;'E'E\E,---E,.

Eftersom E;'FE; = 1 kan vi byta ut dessa tva matriser med identitetsmatri-
sen. D& ser vi att Fy '1F, = 1, och slutligen att produkten BA = 1. Vi har
nu visat satsen. O

Definition 8.1.3. En (n x n)-matris A kallas inverterbar om det finns en
(n x n)-matris B sadan att BA =1 och AB = 1, dir 1 ar identitetsmatrisen.

Foljdsats 8.1.4. Ldt A vara en (n xn)-matris. Om det existerar en (n xn)-
matris B sadan att BA =1, da har vi ocksa att AB = 1.

Bevis. Om det finns en matris B sadan att BA = 1, da har vi fran satsen

att matrisen A = E; ... E, ar en produkt av elementira matriser. Lat C' =
E7'.--Er'. Vi har att AC = CA = 1. Om vi visar att C = B, da ar vi
klara. Vi har att

B = Bl = B(AC) = (BA)C' = 1C = C.
O

8.1.5. Detta betyder att for att hitta inversen A~! till en matris A sa behéver

vi enbart hitta en vansterinvers: en matris B sadan att BA = 1. Da ar
B=A1

8.2 Konstruktion av invers

Vi skall nu se hur vi kan anvanda vad vi vet for att konstruera inversen. Om
A ar en matris, och R dess reducerade trappstegsform, da har vi ekvationen

FFsy---F1A=R,

for nagra elementéra matriser Iy, ..., Fs. Vi har att matrisen A ar inverter-
bar om och endast om R = 1. Vilket ocksd betyder att A= = F,... F}.
Om vi vid varje elementar radoperation gor precis samma radoperation pa
identitetsmatrisen sa hander féljande. Vi borjar med matriserna A | 1 och
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utfor en radoperation, vilket ger F1 A | Fj. Sedan gor vi nésta radoperation
pa dessa tva matriser. Slutligen har vi

F,Fy - FyA| F,Fy_y--F\.

Om den reducerade trappstegsformen R = F--- F1 A ar identitetsmatrisen,
d& har vi att A~! = F, ... [}, vilket ir matrisen till hoger.

Exempel 8.2.1. Vi skall konstruera inversen till matrisen

1 10
A=12 3 3
35 9

Vi utfor Gauss—Jordanelimination pa matrisen

1 101 00
233|010
35 9]0 0 1

Vi borjar med den ledande ettan i vanster horn. Vi adderar —2 av forsta
raden till andra raden och sedan —3 ganger forsta raden till tredje raden.
Detta ger
1101 00
01 3/-210
0 29|-3 01
I andra raden har vi var ledande etta. Vi tar —1 ganger andra raden och
lagger till forsta raden och adderar —2 ganger andra raden till tredje raden.
Detta ger
10 -3/ 3 —-10
01 3|-2 1 0
00 3|1 -21

Sedan tar vi och adderar 1 ganger tredje raden till forsta raden och adderar
—1 ganger tredje raden till andra raden. Slutligen multiplicerar vi tredje
raden med é Detta ger

o O =
O = O

Matrisen

har egenskapen att (kolla) BA = 1.
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8.3 Uppgifter

Uppgift 8.1. Bestam inversen till matrisen

2 3 5
A=1|7 -1 0
3 =21

Uppgift 8.2. Los matrisekvationen

r1 X2 1 0
Alp w| =] 2 37|,
AR ) —16 -2

dar matrisen A ar den i Uppgift 8.1. Detta kan dven ses som ett ekvations-
system med 6 ekvationer och 6 obekanta.
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Forelasning 9

Determinanten

9.1 Permutationer

Definition 9.1.1. En avbildning f: 7" — U mellan tva méangder 1" och U
ar injektiv om olika element i T' skickas till olika element i U. Med andra ord
sa ar f injektiv om f(x) = f(y) implicerar att = = y.

Exempel 9.1.2. Den naturliga avbildningen fran de naturliga talen N =
{0,1,2,...,} till heltalen Z = {0,£1,+2,...,} ar injektiv. Mer allmént sa
ger varje delmangd 7' C U upphov till en inklusionsavbildning i: 7' — U
som ar injektiv.

Exempel 9.1.3. Betrakta avbildningen f: N — N som skickar z € N
till f(z) = 2x. Denna avbildning &r injektiv da f(x) = 2z = 2y = f(y)
implicerar att = = y.

Exempel 9.1.4. Avbildningen f;: N — N som skickar z till f(z) =z +1
ar injektiv och avbildningen fo: Z — Z som skickar x till f(x) = x + 1 ar
injektiv.

Exempel 9.1.5. Avbildningen g;: N — N som skickar z till g(z) = 22 &r
injektiv. Men go: Z — Z som skickar z till 22 ar inte injektiv. Till exempel
sa ar f(1) = f(—1), det vill sdga = = 1 och x = —1 skickas pa samma tal,
namligen 12 = (—1)? = 1.

Definition 9.1.6. En avbildning f: T — U mellan mangder ar surjektiv
om det for varje element u i U atminstone finns ett element = i T" sadant att

flz) =u.

Exempel 9.1.7. Inklusionsavbildningen i: N — Z é&r inte surjektiv. Till
exempel finns inte talet —1 med i bilden av inklusionsavbildningen. Faktiskt
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sa ér inklusionsavbildningen av en delméngd 7" C U surjektiv endast om
T=U.

Exempel 9.1.8. Bildrummet till en avbildning f: R? — R? har vi tidigare
definierat, se Definition 3.3.10. Att avbildningen ar surjektiv ar ekvivalent
med att bildrummet ar hela planet.

Exempel 9.1.9. Avbildningen “multiplikation med 2” i Exempel 9.1.3 ar
inte surjektiv. Om vi tar ett udda tal v = 2n + 1 sa finns det inget heltal
x sadant att u = f(x). Additionsavbildningen f;: N — N i Exempel 9.1.4
ar inte surjektiv. Talet 0 ar inte i bilden av f;. Men additionsavbildningen
fa: Z — 7Z &r surjektiv.

Exempel 9.1.10. Avbildningarna i Exemplet 9.1.5 &r inte surjektiva. Medan
avbildningen g5: R — R, = {z € R | x > 0} som skickar x till 2? &r
surjektiv.

Definition 9.1.11. En avbildning f: T" — U som é&r bade injektiv och
surjektiv kallar vi en bijektiv avbildning. En bijektiv avbildning identifierar
definitionsmangden 7" med vardemangden U.

Lemma 9.1.12. Lat f: T — T wvara en avbildning ddar T dr en dndlig
mdangd. Da gdller foljande.

1) Om f ar injektiv, da ar f ocksa surjektiv.
2) Om f dr surjektiv, da dar f ocksd injektiv.
Bewvis. Se uppgifterna. n

Definition 9.1.13. Lat n > 1 vara ett fixerat heltal. En permutation av talen
T, = {1,2,...,n} ar en bijektiv avbildning o: T,, — T,,. Méngden av alla
permutationer av talen {1,...,n} skrivs som &,, och kallas den symmetriska
gruppen pa n element.

Exempel 9.1.14. Med n = 1 s bestar 77 = {1} av ett enda element. Det
finns da enbart en avbildning o: {1} — {1}, ndmligen identitetsavbildning-
en. Denna avbildning ar en permutation. Det betyder att &; = {id}.

Exempel 9.1.15. Med n = 2 har vi 75 = {1,2}. Vi har identitetsavbild-
ningen id som ar en permutation och vi har permutationen o; som skickar 1
till 2 och 2 till 1. Det vill sdga avbildningen oy: Ty — Ty ges av oq(1) = 2
och 1(2) = 1. Det finns inga andra permutationer. Alltsa ar &y = {id, oy }.
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9.1.16. En avbildning f: T,, — T,, skriver vi som matrisen

1 2 3 - =
f) f@2) f@ - fln)

Detta betyder helt enkelt att avbildningens vérde i elementet ¢, som ar f(7),
finns att lasa ut under talet 7.

(9.1.16.1)

9.1.17. Notera att denna matris inte har nagot att gora med vara matrisre-
presentationer av linjara avbildningar.

9.1.18. Notera ocksa att avbildningen f: T, — T, é&r bijektiv om och
endast om alla talen {1,...,n} forekommer i rad tva i matrisen (9.1.16.1).

Exempel 9.1.19. Med n = 3 har vi féljande permutationer

a1 23 2 1 3]
CT1 2 3 712711 2 3
1 2 3] 1 2 3]
9237 |1 3 9 9137 |3 9
12 3] 1 2 3
1702 3 1] 2703 1 2

Detta ar alla permutationer av talen {1,2,3} vilket betyder att
63 = {lda 01,27 0-2,37 0-1,37 01, 02}-
Proposition 9.1.20. Antalet element i S, drn!l=1-2-3-...-n.

Bevis. Lat o vara en permutation av talen {1,...,n}. Detta ar en bijektiv
avbildning. Hur kan denna se ut? Det finns n mojliga element som o kan
skicka talet 1 till, namligen alla tal 1, ..., n. Avbildningen ¢ kan inte skicka 2
till o(1) eftersom avbildningen skall vara injektiv. Detta betyder att det finns
n —1 mojliga tal att skicka 2 till, ndmligen alla tal 1, ... n férutom o(1). Pa
samma sitt finns det (n — 2) mojligheter for o att skicka 3 till, namligen alla
tal 1,...,nforutom o(1) och 0(2). Detta ger totalt n-(n—1)-(n—2)-...-3-2:1 =
n! mojliga permutationer. ]

Definition 9.1.21. Lat o vara en permutation av talen {1,...,n}. En in-
version ar ett talpar (i,j) med 1 < i < j < n sadant att o(i) > o(j).

Definition 9.1.22. Lat o vara en permutation av talen {1,...,n}. Tecknet
(signum) till permutationen definierar vi som foljer

. { 1 om antalet inversioner ar jamnt
sign(o) =

—1 om antalet inversioner ar udda.

Vi sdger dven att permutation ar jamn eller udda.
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Exempel 9.1.23. Identitetsavbildningen id pa talen {1,...,n} ar en per-
mutation utan inversioner. Detta betyder att sign(id) = 1.

Exempel 9.1.24. Den symmetriska gruppen G, bestar av identitetspermu-
tationen och permutationen o; som byter om elementen 1 och 2. Permuta-
tionen o; har en inversion och tecknet —1.

Exempel 9.1.25. Elementen i G5 ar listade i Exempel 9.1.19. T fallet med
talen {1, 2, 3} finns det tre talpar som kan ge upphov till inversioner. Dessa ar
(1,2) och (1,3) och (2,3). Vi ldser av fran listan att identitetspermutationen
saknar inversioner, att oy 3 har en inversion, att o 3 har en inversion, att o 3
har tre inversioner och att o; och o, har tva inversioner. Detta betyder att

sign(id) = sign(oy) = sign(o) =1

sign(oy o) = sign(og3) = sign(oy3) = —1.

9.1.26. Vi har nu kommit till ett riktigt monster. Determinanten av en ma-
tris ar en viktig invariant bade inom den linjara algebran saval som inom
andra omraden.

Definition 9.1.27. Lat A = (a;;) vara en (n x n)-matris. Determinanten
av A ar talet

det(A) = Z SIgN(0)a1,0(1) * G2,0(2) * * * Onyo(n)-
UEGn
Exempel 9.1.28. Lat A = (a) vara en (1 x 1)-matris. Vi har att det(A) = a.
Exempel 9.1.29. Lat A = [al’l a1’2]. Vi har da att
Q21 A22
det(A) = Sign(id)amag,g + Sign(al)a1,2a2,1 = Q1,022 — A1202 1.
Lagg marke till att definitionen av determinanten vi ger ovan sammanfaller
med definitionen av determinanten for (2 x 2)-matriser, som vi gav i (5.2.0.1).

Determinanten av en (2 x2)-matris ar produkten av diagonalelementen minus
produkten av antidiagonalelementen.

Exempel 9.1.30. Lat nu A = (q; ;) vara en (3 x 3)-matris. Determinanten
ar

det(A) = Z Sign(U)aLau) ©A2,5(2) * A3,6(3)
ceB3
= sign(id)ay 1az2a3 3 + sign(o1 2)ai 202 1033 + sign(oa 3)ar 1623032
+ sign(oy 3)a 3a2,.2a31 + sign(oy)aq 2a2 3a31 + sign(oa)as 3as,1a32
= (1,1022033 — (1,202103,3 — (1,102,303 2
— Q1,302,2031 + G12023031 + Q1,302,103 2.
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I definitionen av determinanten summerar vi 6ver permutationerna o €
G,,. For varje permutation sa kommer motsvarande term innehalla ett ele-
ment fran varje rad och varje kolumn. Vi har, med o fixerad, att termen ser
ut som

Sign(a)alﬂ(l) . GQ,U(Q) s an,g(n).

Detta betyder att a; ,() dr elementet fran rad 1 och kolumn o(1). Eftersom
o ar en permutation, kommer rad 1 och kolumn o(1) att vara forbrukade.
Elementet ay (2) aterfinns pa rad 2 i matrisen och kolumn ¢(2) dér kolumn

o0(2) #o(1).

Proposition 9.1.31. Lat A vara en évertrianguldr (n x n)-matris, det vill
sdga att a;; =0 om ¢ > j. Dd har vi att
det(A) =a1,1022 " Qpp-

)

Bevis. En overtriangular matris A &r pa formen

0/1,1 &172 PR PR DY al,n
O a/2’2 DEREY DY o .. a2’n
A=
0 0 T 0 p—1n—-1 An—-1n
0 0 - 0 0 .

Betrakta sedan determinantens definition

det(A) = Z sign (o) a1 o(1) - 42,0(2) * * * Gn,o(n)-

O’GGn

Den nedersta raden i matrisen A bestar ndstan enbart av nollor; faktiskt sa
ar a,; = 0 savida inte ¢ = n. Detta betyder att vi inte behover ta med dessa
termer i determinantuttrycket. Med andra ord har vi att

det(A) = Z SigH(U)al,au) ©A2,5(2) " Qnn,

ocBn

dér &7 &r alla permutationer o av talen {1,...,n}, sidana att o(n) = n.
Vi kollar nu pa den nést sista raden i matrisen A. Vi har att a,_1; = 0 om
inte i = n — 1 eller ¢ = n. Eftersom o € &), fixerar talet n betyder detta att
o(n — 1) # n. Detta innebér att vi kan férenkla ytterligare

det(A) = Z Sign(0>al,o(1) "A205(2) " Un—1,n—1 " Qnn,

n,n—1

ceS,
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diar &1 ir alla permutationer o sddana att o(n) = n, och o(n—1) = n—1.
Nu ar det klart att om vi fortsitter med rad n — 2 och sedan med rad n — 3
och hela vagen upp till forsta raden, sa erhaller vi att

det(A) = > sign(o)ai-ass- - ann,

dar &mn=hel Gr alla permutationer o sidana att o(i) = 4, for alla i =
n,n—1,...,1. Det finns bara en sadan permutation och det ar identitetsper-
mutationen. Denna permutation har tecknet 1 och resultatet ar visat. O

9.2 Uppgifter

Uppgift 9.1. Bestdm determinanten av matrisen

2 3 5
A=|7 -1 0],
3 -2 1

och determinanten av dess invers (inversen har du konstruerat tidigare).
Uppgift 9.2. Visa Lemma 9.1.12.
Uppgift 9.3. Berdkna determinanten av alla elementéra (3 x 3)-matriser.

Uppgift 9.4. Konstruera en bijektiv avbildning f: N — Z.
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Forelasning 10

Egenskaper hos determinanten

10.1 Inversioner

Vi behover etablera en liten sats om tecknet till en viss typ av permutatio-
ner, sa kallade transpositioner. Betrakta méangden av permutationer av talen
{1,...,n}. For varje talpar 1 <4, j < n med i # j har vi permutationen 7
som &r definierad som

p om pFiL,pFj
Tij(p) = i om p=17
J om p = 1.

Denna permutation kallas en transposition. Permutationen 7;; byter helt
enkelt plats pa positionerna ¢ och j och gor i ovrigt ingenting. Vi har helt
klart att 7; ; = 75, och att 7; ;7; ; = id.

Lemma 10.1.1. Fér varje permutation o € &,, och varje transposition T; ;
har vi att

sign(or; ;) = —sign(o).
Bevis. Se uppgifterna. ]

Sats 10.1.2. Ldt A vara en (n X n)-matris. Determinantfunktionen har fol-
jande egenskaper.

1) Om vi multiplicerar en rad i A med ett tal ¢, sa ar determinanten av
denna nya matris ¢ - det(A).

2) Om tvd rader © matrisen A ar lika, sa dr det(A) = 0.
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3) Om varje element i raden p av matrisen A dr pa formen a,y = by, +

Cpi, Jork=1,...n, sd har vi
[ a1 Tt a1n 1 _a1,1 Tt al,n_ _a1,1 T al,n_
det |bp1 +cp1 -+ bpn+cpn| =det |bp1 - bpp|+det [cp1 0 cpn
L an,l Tt an,n _ _an,l Tt an,n_ _an,l e an,n-

Bevis. Lat oss borja med att visa pastaende 1). Lat B = (b; ;) vara matrisen
vi far nar vi multiplicerar rad p av matrisen A med ett tal c. Vi har da att

by =cap; foralla j=1,...nochb; =a;; omi#p, forallaj=1,... n
Detta ger
det(B) = > sign(0)b1o(1) - b20(2) -~ Ono(n)
ogEeG,
= Z Sign(a)alvg(l) U al’*lva(pfl)Capyﬂ(p)ap+1,0'(p+1) e an,o’(n)
ceS,
= cdet(A).

Pastaendet 3) visas pa samma satt och dverlates till lasaren. Det som kvarstar
ar att visa pastaendet 2). Lat rad i och rad j i matrisen A vara lika. Detta

betyder att a; = a;, for alla k = 1,..., n. Betrakta determinanten
det(A) = > sign(o)ai o) -+ Gnom)-
ceGy,

Vi kommer att visa att denna summa &r lika med noll och, mera specifikt,
att varje term forekommer tva ganger men med olika tecken. Fixera en per-
mutation o och betrakta permutationen

o(p) om p#i,p#j
T(p)=1{ o(i) om  p=j
o(j) om p=1.

Da ar @i 0(i) = Aj 7(4) och Aj.o(j) = i), vilket ger att
A1,5(1) " On,o(n) = A17(1) " " An7r(n)-

Vi har vidare att 7 = o7;,; och av Lemma 10.1.1 ser vi att sign(r)
—sign(o). Det ar nu klart att determinanten det(A) = 0.

Ol

Foljdsats 10.1.3. Om vi byter plats pa tva olika rader i en matris A, sa dar
determinanten av denna nya matris — det(A).
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Bevis. Fixera tva tal 1 <i,j5 < n med 7 # j. Betrakta matrisen B vars rad
t och rad j ar

Qi1 + a1 ;2 + Ao *+° Qip + Qjn
De andra raderna i B later vi vara som i A. Av pastaende 2) i satsen ovan
har vi att det(B) = 0. Vi anvander pastaende 3) i satsen ovan pa raden i och
dérefter pa raden j och erhaller att

ay1 ++ Qip a1 - Qinp
Qi1 Qip Qi1 0 Qin
det(B) = det : + det
i1 Qin aj1 o Gjn
1An,1 * Apn 1An,1 * Apn
a1 - Qip i1 - Qinp
aj1 0 Qjn ajr 0 Qjn
+ det : + det
a’l,l DY a/z,n a],l .. a/j,n
_an,l e an,n_ _an,l Tt an,n_

Vi har att vénsterledet det(B) = 0. Av de fyra matriserna som férekommer
i hogerledet ér rad ¢ lika med rad j i den forsta och den fjarde matrisen. Av
pastaende 2) i satsen ovan ar deras determinanter darfor noll. Vi har ddrmed
att determinanten av andra matrisen i hogerledet adderat till determinanten
av tredje matrisen i hogerledet ar lika med noll. Detta visar satsen. ]

Lemma 10.1.4. Ldt E vara en elementdr (n X n)-matris och A en (n x n)-

matris. Da ar
det(EFA) = det(E) det(A).

Bevis. Det finns tre klasser av elementira matriser. Lat E vara en elementar
matris sddan att A byter plats pa raderna i och j i matrisen A. Det vill
saga att ¥ = F; ; med notationen fran forelasning 7. Av Sats 10.1.3 foljer att
det(EA) = —det(A). Da identitetsmatrisen har determinant 1 har vi ocksa
att det(E) = —1. Vi har ddrmed att det(E)det(A) = —det(A) och vi har
visat pastaendet for denna klass av elementéara matriser.

Lat E = E;(k) vara den elementéra matris vi far genom att multiplicera
rad 7 av identitetsmatrisen med talet k& # 0. Av Sats 10.1.2, pastaende 1), har
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vi att det(FA) = kdet(A) och att det(F) = k. Detta visar att det(FA) =
det(FE) det(A) for alla elementéra matriser i denna klassen.

Den sista klassen ar elementdra matriser £ = E; ;(c). Vi har att E; ;(c)A
ger en ny matris dir vi &ndrar rad ¢ av matrisen A genom att addera ¢ ganger
rad j. Fran pastaende 3) i Sats 10.1.2 foljer det att det(E; ;(c)A) = det(A)
och att det(E; j(c)) = 1. Vi har visat satsen. O

Sats 10.1.5 (Fundamentala egenskapen till determinantfunktionen). Lat A

vara en (n X n)-matris. Dd dr matrisen A inverterbar om och endast om
det(A) # 0.

Bewvis. Vi kan skriva matrisen A som en produkt A = E;--- E,R med ele-
mentira matriser Fy, ..., E, och dir R ar den reducerade trappstegsformen
till matrisen A. Av Lemma 10.1.4 foljer det att

det(A) = det(FEy) det(Ey - - - B R) = det(E)) - - - det(E,.) - det(R).

Vi har tidigare visat att en matris A dr inverterbar om och endast om R
ar identitetsmatrisen. Om A ar inverterbar, da har vi att A = F,--- E, ar
en produkt av elementara matriser. Varje elementar matris har en nollskild
determinant och det foljer att det(A) # 0. Ar dédremot matrisen A inte
inverterbar sa ar den reducerade trappstegsformen R inte identitetsmatrisen.
Man berdknar (se uppgift 10.2) att det(R) = 0 och vi har att det(A4) = 0. O

Exempel 10.1.6. For varje tal ¢ betraktar vi ekvationssystemet i tre okdnda
x? y7 z
tx+2y+z = 3
(*) —y = 2
r+y+tz = 1
Vi vill avgora for vilka ¢ ekvationssystemet har en unik 16sning. Vi skriver
om () pa matrisform AX = B, dar

t 2 1 T 3
A=10 -1 0 X =y B=|2].
1 1 ¢ z 1

Systemet (x) har en unik l6sning om och endast om matrisekvationen AX =
B har en unik l6sning. Ekvationen AX = B har en unik l6sning om och
endast om A~! finns (se uppgift 10.3), vilket ar ekvivalent med att det(A) #
0. Vi berdknar determinanten av matrisen A och erhaller att

det(A) =t(—t) +1=—t>+ 1.

Determinanten ar nollskild om ¢ # £1 och systemet (%) har en unik l6sning
om t # +1.
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Sats 10.1.7. Lat A och B vara tvd (n x n)-matriser. Vi har att
det(AB) = det(A) det(B).

Bevis. Vi paminner om att en matris C' ar singular om och endast om det
finns en nollskild vektor X sadan att C X = 0. Vi ser nu att om matrisen B
ar singular da finns en nollskild vektor X sadan att BX = 0. Da éar ocksa
(AB)X = 0 och matrisen AB ar singuldr. Om istéllet A ar singuldr och B &r
inverterbar (icke singular), da pastar vi att matrisen AB ocksa &r singulér.
Vi vet att det finns en nollskild vektor X sddan att AX = 0. Lat W = B~1X,
som ocksa ir nollskild. Vi har d& att ABW = ABB™'X = AX = 0.

Med andra ord har vi att om A eller B ar singuléra da ar ocksa produkten
AB singulér. Av Sats 10.1.5 har vi ddrmed att det(AB) = 0 och att minst en
av faktorerna i det(A) det(B) ar noll. Vi har ddrmed visat satsen nir antingen
A eller B ar singuldr. Det fall som kvarstar ar niar bade A och B ar inverter-
bara. Men da é&r A = E;--- E, och B = Fj--- F, produkter av elementéra
matriser. Av Lemma 10.1.4 foljer det nu att det(AB) = det(A) det(B) och
detta visar satsen. [

Foljdsats 10.1.8. Om matrisen A dr inverterbar har vi att

1

det(47) = G @

Bevis. Vi har att AA~! ar lika med identitetsmatrisen. Determinanten av
identitetsmatrisen ar 1 och av satsen erhaller vi att

det(A)det(A™") = 1.

10.2 Uppgifter

Uppgift 10.1. Visa Lemma 10.1.1. Detta kan goras pa foljande sétt. No-
tera forst att permutationen 7;;,; har en enda inversion och féljaktligen ar
sign(7;;+1) = —1. Dérefter verifierar du att antalet inversioner i o7, ;41 ar ett
mindre eller mera dn antalet inversioner i o. Speciellt har du da visat att

sign(o7;;11) = —sign(o). (10.2.0.1)

Du ar nu klar med transpositioner pa formen 7; ;4. For att behandla god-
tyckliga transpositioner 7;; kan vi anta att j > ¢. Vi skriver j = 7 + p for
nagot tal p > 0. Visa att vi har

Tiji+p = Tii+1 """ Titp—2,i+p—1Ti+p—1i+pTi+p—2,i+p—1 """ Ti+1,i+27Tii+1-
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Kom ihag att ldsa funktionssammanséattning fran hoger. Gor ett litet exem-
pel, p = 3, om det ar svart att forsta likheten ovan. Notera att 7;;, alltsd
kan skrivas som en sammanséittning av 2(p — 1) + 1 stycken transpositioner
pa formen 7; ;1. For att bestimma sign(o7;,;1,) anviander vi nu identiteten
ovan och identiteten (10.2.0.1). Detta ger

2(p—1)+

sign(o7;i4p) = (—1) sign(o).

Uppgift 10.2. Lat A vara en (n x n)-matris och lat R vara dess reducerade
trappstegsform. Antag att R inte ar identitetsmatrisen. Visa att det(R) = 0.

Uppgift 10.3. Forklara varfor matrisekvationen AX = B har en unik 16s-
ning X = A7'B om och endast om inversen A~! finns (Notera att om X och
Y ar tva losningar da ar A(X —Y) = 0 och anvénd sedan Sats 8.1.2).
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Forelasning 11

Markovkedjor

11.1 TIterativ fordelning

Vi skall idag titta pa ett exempel av nagot som kallas Markovkedjor. Ex-
emplet vi tittar pa ar kanske inte helt realistiskt och vi skall senare se mera
realistiska anvindningar. Exemplet nedanfor ar en nedskalad version dar hu-
vudsyftet ar att forklara Markovkedjor.

11.1.1. Vi téanker oss foljande problem. Pa Campus finns det tva pubar A och
B. Det finns 9000 studenter och varje fredag gar alla studenter pa en pub.!
Den forsta fredagen véljer hélften av studenterna pub A och den andra halften
pub B. Men nésta fredag fordelas studenterna efter foljande monster. Hela
60% av studenterna som forra fredagen var pa pub A véljer att ga tillbaka till
pub A och de resterande 40% gar foljaktligen till pub B. Av de som var pa
pub B forra fredagen valjer 80% att ga till pub A. Detta betyder att enbart
20% av studenterna som forra fredagen valde pub B atergar till pub B. Detta
fordelningsmonster upprepas varje fredag. Det enda som betyder nagot for
valet av pub ar vilken pub man besokte forra fredagen.

Vi &r intresserade av att veta hur férdelningen av studenterna ser ut efter
studietiden. Studietiden ar mycket lang som ni sédkerligen vet.

Exempel 11.1.2. Lat oss berdkna fordelningen de forsta fredagarna. Den
forsta fredagen F; ar det 4500 studenter pa varje pub. Vi skriver detta som
en vektor F; = (4500, 4500). Fredagen dérefter har

60 80
4500 - — +4500- — =450-14 =4 1 200 =
500 100 + 4500 100 20 900 + 1600 + 200 = 6300

ITill alla upprérda moralister kan jag tilligga att det enbart serveras alkoholfri lask.
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studenter valt pub A och de resterande 2700 har valt pub B. Pa vektorform
har vi att F, = (6300, 2700). Den tredje fredagen F3 har vi foljande fordelning

Fy = (5940, 3060).

Komponenterna till vektorn Fj var berdknade som foljer

60 80
19700 - — = . 270 - 8 = 594
6300 100—|— 700 100 630 - 6 + 270 - 8 = 5940,

och 9000 — 5940 = 3060.

11.1.3. Vi kommer nu att ge en beskrivning av problemet med hjalp av
matriser och matrismultiplikation. For varje positivt heltal n > 0, lat

Qn
vara vektorn dar a, ar antalet studenter vid pub A, den n:te fredagen, och

dar b, dr antalet studenter vid pub B. Av beskrivningen av problemet har vi
att for varje n > 1 sa ar

6 8
E, = [140 120] F, .. (11.1.3.1)
0 10

Att ekvationen (11.1.3.1) verkligen stammer ser vi om vi utfér matrisproduk-
ten. Vi har att F,_1 = (an_1,b,—1) och detta ger

T tn-11g + bn-135
Den forsta komponenten i produktmatrisen ges av 60% av de som var i pub A
fredagen (n — 1) samt 80% av de som var i pub B. Den andra komponenten i
matrisen ges av 40% av de som var i pub A samt 20% av de som var i pub B.

Detta éar fordelningen fredagen n, med andra ord vektorn F,.

Definition 11.1.4. En (m x m)-matris A = (a;;) ar en stokastisk matris
om foljande tva krav ar uppfyllda.

1) Varje element i matrisen A ar icke-negativt, det vill sdga att a;; > 0
for alla par 1 <i,5 < m.

2) Varje kolumn i matrisen A summerar till 1, det vill siga att >/%, a; ; =
1, for alla 1 < 7 < m.
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Exempel 11.1.5. Matrisen
6 8
a=|1 )
10 10
som vi har fran beskrivning (11.1.3.1) &r en stokastisk matris.

11.1.6. Om vi atergar till problemet med férdelningen av studenter vid pu-
barna A och B har vi att F,, = AF,_; for alla n > 1. Det betyder att
Iy = AF; och att F3 = AF, men ocksa att
F3 - AFQ = A(AFl) = A2F1.
Allmént har vi att
F,=AF, | =AA.-.-AF, = A" 'F,.

Vi ér intresserade av F, nér n blir mycket stor. Lat oss kalla fordelningen
vid slutet av studietiden for F.. Vi har att

F = lim F, = lim (A" 'F).

n—o0 n—o0

11.1.7. Input fran teorin om egenrum. Nar man har last litet mera linjéar
algebra och behéarskar teorin om egenrum, da ar det inte svart att producera
foljande matrisfaktorisering

2 171 o7t 1
A= _ _1 i _52 :
1 1 0 5 3 3

Vi behéver inte nagot om egenrum; vi verifierar bara att vi har matrisfakto-
risering ovan. Lat

Vi berdknar att

2 171 0] [2 —%
PD = 1| = 1
1 —1)l0 -4 |1 ¢
och att 1 1 1 2 1 2 2
2 -17; 1 -k i+
e AR
5 3 3 3 15 3 15

Om man nu férenklar brakuttrycken i matrisen ovan sa ser man att PDQ =
A. Eller hur? Vi har att

2 1 10 1 9 6

3 15 15 15 15 10’
vilket ér elementet a;; i matrisen A och sa vidare.
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11.1.8. En formel for matrisprodukten A”. Vi har sett att matrisen A
kan skrivas som en produkt PDQ. Det betyder att

A" = (PDQ)" = PDQ - PDQ--- PDQ.

Man kan undra hur detta kan hjilpa oss att beridkna A™. Om vi nu tittar
nirmare pa matrisen
2 1

s& ser vi att determinanten dr —3 och alltsd nollskild. Det betyder att P!
existerar och en formel for inversen till (2 x 2)-matriser har vi. Vi ser nu att
Q = P~ Alltsd ér QP = 1 och anvinder vi detta erhéller vi att

A" = PDQ - PDQ--- PDQ = PD"Q.

Slutligen har vi att matrisen D &ar en diagonalmatris och produkter av dia-
gonalmatriser ar enkla att utfora. Vi har att

Lo (1 o]" 1o

o=l 3 -0 @l
Detta ger nu att matrisprodukten A™ blir produkten av tre matriser
b el 4
o @l

2
A" =
1
[ =n" 1 1
12 1] [3 31
- —1)n+ 1 2
1 &Y 3 T3

5TL
[2 410" 2 2D
_ | 3 "3 3" 3 73 5n
1410 1 2(=Dn
L3 3 5n 3 3 5n

Vi har nu beraknat A™ for godtyckliga positiva heltal n.

11.2 Slutfordelningen

Nu har vi berdknat A™ och foérdelningen fredagen Fj, | blir

r _1\n n+1
FEDTTE R - B [4500]
n+l1 — . 1 — n n

1 1y +§(513 4500

B 3000+( 21500 + 3000 + 23000
1500 + S 1) 1500+1500+( D" 3000
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Later vi n > 0 bli mycket stor da blir (1/5™) mycket liten och vi kan bortse
fran dess bidrag. Detta ger att

6000
Foo = [3000] '

Vid slutet av studietiden ar det alltsa, ungefar, 6000 studenter vid pub A,
och 3000 studenter vid pub B.

11.2.1. Utfallsvektorer. Istéillet for att titta pa antalet studenter vid varje
pub, kan man istéllet titta pa andelen studenter. En vektor X = (z1,...,2,,)
i R™ kallas en utfallsvektor om x; > 0, for alla ¢ =1,...,m, och om

x1+x2++xm:1

Exempel 11.2.2. Som exempel kan vi ta férdelningen av studenter till de
tva pubarna A och B. Den forsta fredagen valde hélften pub A och andra
hélften pub B. Detta kan beskrivas med utfallsvektorn F; = (1,1). Och
slutférdelningen F,, gav att 2/3 valde pub A och 1/3 valde pub B. Som
utfallsvektor kan vi skriva Fi, = (3, 3).

Lemma 11.2.3. Lat A vara en stokastisk matris och X en utfallsvektor. Da
ar ocksa AX en utfallsvektor.

Bevis. Kan du visa detta? O

Definition 11.2.4. Lat {X;, X, X3,...} vara en sekvens av utfallsvektorer
i R™, dar talet m ar fixerad. Om det finns en stokastisk matris A sddan att
X, = AX, 1, for alla n > 1, da kallas sekvensen {X,},>1 en Markovkedja.

Exempel 11.2.5. Vektorerna F,, = (a,,b,) som anger antalet studenter
vid pub A och pub B, den n:te fredagen éir en sekvens av vektorer i R2.
Sekvensen {F),},>1 dr en Markovkedja da vi har sambandet F,, = AF,
givet i (11.1.3.1) och matrisen A &r en stokastisk matris.

11.3 Oberoende av initialvardet

I exemplet vi har diskuterat i dag borjade vi med initialviardet F; = (%, 3).

Férdelningen vid slutet av studietiden blev Fyo = (2, 1). Det lustiga ar dock
att vi inte behover ldsa av initialvérdet F}; slutfordelningen blir oavsett (2, 3).
Lat Fy = (p,q) vara en godtycklig utfallsvektor. Det betyder att p andel av
studenterna véljer pub A och ¢ andel av studenterna véljer pub B den forsta

fredagen. Vi har att p och ¢ ar icke-negativa tal sadana att p + ¢ = 1.
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Fordelningen vid slutet av studietiden blir

F = lim A" [p]

n—oo q

Nu berdknar vi A"F; och sétter sedan (1/5)" lika med noll. Detta ger

Fo— gt ae| 5o ra)|
- 3P+ 34 3(0+q)

Vi har att p+ ¢ = 1 och det foljer att F,, = (%, %) Vi far samma slutresultat
F, oberoende av initialviardet till utfallsvektorn Fj.

11.3.1. Ibland, som i exemplet ovan, beror inte slutresultatet I, pa initial-
vardet. Dock finns det exempel pa stokastiska matriser dar slutresultatet be-
ror av initialvardet och det finns stokastiska matriser dar det inte finns nagot
slutvérde alls. Kan du konstruera sadana exempel? Konstruera en stokastisk
(2 x 2)-matris A sadan att X, = lim,_,, A" X; beror pa vilken utfallsvektor
X1 man borjar med. Lite svarare ar att hitta en stokastisk matris B sadan
att X = lim,,_,o. B"X; inte finns. Prova!
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Forelesning 12

Google og
informasjonssortering

Nettet! som vi alle kjenner til er en enorm hop av hjemmesider inneholdende
all mulig tenkelig og utenkelig informasjon. Det er en fantastisk folelse & ha
tilgang til all den informasjon som finnes pa nettet. Kt umiddelbart problem
som dykker opp er hvordan man skal finne relevant informasjon. Vi skal her
beskrive hvordan sgkmotoren Google finner nalen i hgystakken.

12.1 Nettet

Internett bestar av hjemmesider. Hver hjemmeside har en unik adresse, og si-
dene inneholder tekst samt pekere (linker) til andre hjemmesider. En nettleser
gjor det mulig & apne og lese en hjemmeside, og problemet som sgkmotorene
skal hjelpe oss med er a sortere ut hjemmesidene som er relevante for en gitt
sokning.

For a forsta kompleksiteten i problemet gjeldende informasjonssorteringen
er det verdt a merke seg fglgende. Nettet er veldig stort, og faktisk er det
vanskelig & bestemme antallet hjemmesider. Et estimat gjort januar 2004 (se
[2]) indikererer at det dengang fantes 10 milliarder hjemmesider som i snitt
inneholdt 500 KB informasjon. Vidre har vi at nettet er dynamisk. Ikke bare
dukker det opp kontinuerlig nye hjemmesider, men gamle sider endres ved at
ny tekst og nye pekere legges til.

Blakopi Fgr man begynner a sortere informasjonen, sa tar man fgrst en
slags blakopi av nettet. Sma avanserte program (sakalte webcrawlers) sg-
ker opp nettets hjemmesider, leser av informasjonen og fglger opp pekerne

!Detta kapitel har jag inte hunnit éversitta till svenska, eventuelt svorska.
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for a finne fler hjemmesider. Siden nettet hele tiden endrer seg blir disse
programmene aldri avsluttede, men gar til stadighet gjennom eksisterende
hjemmesider. Det tar omtrent (se [1]) tre hele uker for & sgke gjennom net-
tet!

Informasjonen som disse programmene henter blir lagret i en stor in-
dekseringsfil. T indekseringsfilen lagres alle typer av ord som blir funnet pa
hjemmesiden, samt informasjon om hvilke hjemmesider som inneholder de
respektive ordene. Om vi tenker oss hjemmesidene nummererte som 1,2, ...,
da kan en del av indekseringsfilen se ut som

e matrimonium 8§, 24
e matrise 3, 11, 15, 879, 1000032
e matrose 6, 11, 3059.

Dette betyr at ordet “matrise” forekommer pa hjemmesidene nummerert som
3,11, 15, 879 og 1000032, mens hjemmeside 11 inneholdt bade termen matrise
og matrose. Denne indekseringsfilen er selvsagt enorm da alle typer av ord,
innefor alle tenkelige sprak forekommer. Aret 2003 var denne indekseringsfilen
omkring 4 milliarder stor og Google hadde en maskinpark bestaende av 15000
datamaskiner for a lagre indekseringsfilen. Men, poenget er at selv om denne
filen er stor sa tar det ikke langt tid for en datamaskin & sgke igjennom en
slik liste.

12.2 Rangering

Nar vi bruker en sgkmotor sa skriver vi inn en tekst eller bare et ord som
beskriver vart interesse. Deretter vil sgkmotoren liste opp alle hjemmesider
som inneholder var sgkte tekst. Disse hjemmesider blir listet etter en gitt
rangering, der hjemmeside med hgyest rang kommer fgrst. Grunnen til at de
fleste av oss bruker sgkmotoren Google er fordi den har en rangering som vi
opplever som fornuftig; de mest relevante sidene kommer fgrst.

For eksempel, om du gjor et sgk pa ordet “matrise” sa for du ikke bare 5
treff som eksemplet vart over indikerer, men hele 175 000 treff. Det tar Google
cirka 0.2 sekunder for & bestemme en ordnet liste av de 175 000 hjemmesider
som inneholder ordet matrise, og hgyest opp kommer Wikipedia. Hvordan er
dette mulig?

Popularitetsrangering Et menneske kan fort avgjgre hvorvidt en hjemme-
side virker relevant eller ikke, men en spgkmotor har ingen kvalitativ forstaelse
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av tekst. I prinisippet kan et program bare telle hvor mange ganger et gitt
ord forekommer.

I tiden fgr soekmotoren Google var det vanlig & rangere hjemmesidene
etter hvor mange pekere en side hadde, en sakalt popularitetsrangering. En
hjemmeside som hadde mange pekere til seg matte veere viktig siden mange
eiere av hjemmesider hadde lagt til en peker dit. En annen rangering som
var brukt telte kun hvor mange ganger et gitt ord forekom pa siden. Her
tenkte man seg at en viktig side ville anvende det gitte ordet flere ganger.
Popularitetsrangeringen gir en bedre rangering enn a kun telle antallet fore-
komster av et ord per side, men popularitetsrangeringen er lett & manipulere.
For & fremheve sin side under denne rangeringen lager man en million nye
hjemmesider som inneholder en peker til sin side. Man skal ikke glemme at
det finnes mange kommersielle aktgrer ute pa nettet som er veldig interesser-
te i a fa sine sider synlige. En god og fornuftig rangering ma veere vanskelig
a manipulere.

Blant annet ryktes det om at en av pre-Google tidens store sgkemotorer,
Alta Vista, ikke ville returnerer sin egen hjemmesiden som den viktigste nar
man sgkte pa “Alta Vista”. Et beskrivende eksempel pa at rangeringsordnin-
gen ikke fungerte.

PageRank For a rangere hjemmesider skapte Sergey Brin og Larry Page
en rangering som siden 1998 har dominert markedet for sgkmotorer. A gjgre
et nettsgk med en sgkmotor heter idag simpelthen a google.

Selv grunnideen som vi skal beskrive er enkel. Hver peker til en hjemme-
side P skal vi tenke pa som et rekommendasjonsbrev for P. En hjemmeside
med mange rekommendasjonsbrev bgr i utgangspunktet veere mere viktig en
en hjemmeside med fa rekommendasjonsbrev. Men, som vi indikerte over er
dette alene ikke nok for a gi en god rangering. Vi skal ogsa ta hensyn til
hvem som sender rekommendasjonsbrevene, dvs. hvilke sider som peker til
hjemmesiden P.

Eksempel 12.2.1. Vi tenker oss personer som sgker jobb. Deres rekommen-
dasjonsbrev vil veere avgjgrende for rangeringen av de sgkende, og i dette
eksemplet tenker vi oss at de ikke har noen andre merittlister. Her kan vi
tenke oss at en sgker X har 1000 rekommendasjonsbrev, mens en annen sgker
Y har et brev. Om jobben for eksempel handlet om IT og programmering
og Y har rekommendasjonsbrev fra Bill Gates, da er det rimelig & rangere Y
fgr X, til tross for det store antallet rekommendasjonsbrev X har. Et rekom-
mendasjonsbrev fra Bill Gates vil regnes som viktig. Men om det viste seg at
en person som regnes som viktig, skriver veldig mange rekommendasjonsbrev
da blir dennes brev med en gang mindre viktige.
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Matematisk formalisering La oss gjgre om ideen i Eksempel 12.2.1 til
en matematisk modell for rangering av hjemmesider. Vi tenker oss at nettets
hjemmesider er nummererte som Py, P, ... P,. Vi leser av antallet pekere |P;|
fra hjemmeside P;; denne informasjonen har vi ogsa lagret pa indekserings-
filen. Viktigheten, eller rangen, til hjemmeside P; skriver vi som r(F;) og er
enna et ubestemt tall. Basert pa eksemplet med rekommendasjonsbrev vil vi
at rangen til en hjemmeside P skal baseres pa pekere fra andre hjemmesi-
der til hjemmeside P. Pekerne tenker vi pa som rekommendasjonsbrev. Hver
hjemmeside @) som peker til hjemmesiden P har selv en viktighet, dvs rang.
Rangen til hjemmesiden () skal vekte pekeren, men vi vil ogsa ta hensyn til
hvorvidt hjemmesiden () har mange pekerer til andre hjemmesider. Dette gir
at rangen til en hjemmeside P; skal tilfredstille ligningen

r(F;)
1Bl

r(B)=>_

gt

(12.2.1.1)

der vi summerer over alle hjemmesider j +— ¢ som peker til hjemmesiden P;.
Rangen til P; bestemmes som summen av rangen av innpekende hjemmesider
delt pa deres totale antall pekere.?

Det er verdt & bemerket at rangen 7(P) til en hjemmeside er enn sé lenge
en ubestemte verdi. Vi har kun satt opp ligningssystemet (12.2.1.1) som vi
onsker skal bestemme rangeringsvektoren. Det er ingenting som garanterer
at ligningssystemet har, ikke trivielle, lgsninger.

Hyperlinkmatrisen Vi vil na vise hvordan vi lgser PageRank ligningen
(12.2.1.1). Vi lar P, P, ..., P, veere hjemmesidene, og vi lar |P;| veere an-
tallet pekere fra hjemmeside P;. Vi teller antallet pekere fra P; til P; som
maksimalt en. Vi konstruerer deretter hyperlinkmatrisen H som er en (nxmn)-
matrise, og der koeffisient (i, j) er
Ho_ { |1£7 om hjemmeside j peker til hjemmeside i,
I 0 ellers.

Merk at definisjonen av hyperlinkmatrisen H bare gir mening hvis alle hjemme-
sidene Py, Ps, ..., P, har pekere. Vi vil av tekniske grunner ikke her ta med
hjemmesider som ikke har pekere.

Vi merker oss at hyperlinkmatrisen konstrueres baseres kun pa informa-
sjon som sgkmotorene kan lese av.

20m du er interessert i & se en gitt hjemmesides pagerank, ihvertfall tilnsermelsesvis,
kan du besgke www.seochat.com/seo-tools/pagerank-lookup/.
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Eksempel 12.2.2. Betrakt fglgende mikro-nett bestaende av fire hjemme-
sider 1,2,3 och 4. Disse hjemmesidene har pekere som pilene i diagrammet
nedenfor indikerer. Hjemmeside 1 har en peker til hjemmeside 3, og hjemme-

side 3 har en peker til hjemmeside 4. Hjemmeside 4 har en peker til hjemme-
side 1 og hjemmeside 2, mens hjemmeside 2 har en peker til de andre tre.
Vi har at |Py| = 1, || = 3,|Ps| = 1 og |Py| = 2. Ligningssystemet som gir
rangeringen av de forskjellige hjemmesidene blir dermed

r(P) | r(Py)

P p—y
7”( 1) 3 + 9
P,
r(Py) = T(24)
r(P:
r(Ps) =r(P) + (32)
r(P:
Py =" o)
Hyperlinkmatrisen til dette eksemplet blir
0801
— 2
=1 500
0 3 10

Det er ingen tilfeldighet at kolonnene summerer opp til verdien 1.
Proposisjon 12.2.3. Hyperlinkmatrisen H er en stokastisk matrise.

Bevis. Vi har at alle koeffisientene i H er ikke-negative, og ma kun verifiere
at kolonne elementene summerer til 1. Vi har, for fiksert j, at koeffisient H, ; i
hyperlinkmatrisen er null hvis hjemmeside j ikke peker til hjemmeside ¢. Og,

per definisjon vil det finnes ngyaktig | P;| nullskilte koeffisienter H; ; = ‘?1_',
J

slik at
1
Hij=) m7=1 -

n ‘Pj|
=1 a=1 ’Pj|

)
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Rangeringsvektoren La n veere antallet hjemmesider, ogla X = (z1,...,z,)
veere en vektor i R™. Vi merker oss PageRank ligningen (12.2.1.1) er ingeting
annet enn i’te rad i matriseproduket HX. Med andre ord har vi

HX = X.

Rangeringsvektoren som vi sgker skal veere en vektor R = (ry,re, ..., 1)
med positive koeffisienter r; > 0, som satisfierer HR = R. Vi kan anta at
koeffisientene summerer opp til 1, slik at R er en utfallsvektor. Koeffesient
r; 1 rangeringsvektoren vil gi rangen til hjemmeside P;. Den koeffisient som
er stgrst peker ut den hjemmesiden som rangerest hgyest, og som anses mest
viktig.

Vi har enna ikke funnet en slik rangeringsvektor. Vi vet engang ikke hvor-
vidt det finnes lgsninger, eller om det finnes om de er unike. For & garantere
lgsninger til systemet introduserer vi en ubestemt skalaer A, og betrakter

HX = )\X.

En vektor X som tilfredstiller ligningen HX = AX kalles en egenvektor
til H, med egenverdi \.

Proposisjon 12.2.4. La X wvere en vektor slik at HX = AX for et gitt
tall \. Anta at koeffisientene til X = (xq,...,x,) er slik at summen ikke
summerer opp til null, >°1 ; x; # 0. Da er egenverdien \ = 1.

Bevis. Av Proposisjon 12.2.3 har vi H er en stokastisk matrisen. Det fglger
at koordinatene til X summerer opp til samme verdi som koordinatene til
HX.Lar =",z Av ligningen HX = AX far vi ved & summere opp
koordinaterne til de to matrisene at r = Ar. Ved antagelsen er r # 0, og det
fglger derav at A = 1. n

Proposisjonen ovenfor gir i prinsippet eksistens av rangeringsvektorer.
Egenvektorer vil det alltid finnes, og det eneste vi mener med i prinsippet er
kravet om at koordinatene summerer opp til et tall forskjellig fra null.

Eksempel 12.2.5. La oss ga tilbake til mikronettet diskutert i Eksem-
pel 12.2.2. Vi satte der opp hyperlinkmatrisen, og vi vil her finne range-
ringsvektoren. Ligningssystemet HX = X skriver vi som (I, — H)X =0, og
dette blir

g v e 8
I
(@)



Gauss—Jordan eliminasjon gir trappeformen

Wl
O T |0 | —

oo o -
o~ oo
|

1
0
0

o

Lgsninger til dette systemet er w = ¢, z = %t, Yy = %t, r = %t, med ¢ et
villkarlig tall. Kravet om at vektoren ogsa skal veere en utfallsvektor gir
2 1 5 4+3+5+6

Sttt =t-

3t=1
3 2 6 6 ’

og det unike utfallet (%, %, %, %) Dette gir at hjemmeside P, er den viktigste,
P den nest viktigste. Mens hjemmeside P, er den minst viktige.

12.3 Iterering

Diagonaliseringstrikset vi gjorde for & finne det stabile utfallet i eksempel med
studentpuben (Forelesning 11) er helt umulig & applisere til hyperlinkmatri-
sen. A konstruere en diagonaliseringsmatrise, og dets invers, krever mange
beregninger. Stgrrelsen til hyperlinkmatrisen gjor at kompleksiteten i disse
beregningene blir uoverkommelige. Det man gjor, og som gjores veldig raskt,
er a tilneerme utfallsvektoren X med iterasjoner. La X; veere en vilkarlig
utfallsvektor. Da vil X,,.;1 = H™X; veere en approksimasjon til X, og det
viser seg at omtrent 50 iterasjoner er nok. Dvs, med n = 50 sa far vi en
rangeringsvektor X5; som er en god nok tilnsermelse for at vi brukere skal
oppleve sgkmotoren som god, om ikke utmerket.

12.3.1. Det er klart at vi i beskrivelsen av sgkmotoren Google gir en grov
skisse av hvordan den fungerer. Sgkmotoren inneholder blant annet en hel
del finere delrutiner hvor blant annet nettsurferens klikkinger registreres og
siden brukes for & bestemme rangeringen. Vidre sa er hyperlinkmatrisen H
sa stor at flere praktiske problemer ma overvinnes for i det hele tatt skrive
opp denne, for & ikke nevne hvordan man skal kunne foreta 50 iterasjoner.

En annen ting man kan merke seg er at rangeringsvektoren som sgkmo-
toren Google produserer gir en absolutt rangering. Rangeringen bestemmes
kun av pekere, og ikke av innehold. Dette har visse uheldige konsekvenser.
For eksempel, en hgyt rangert side kanskje inneholder mye av interesse om
et spesifikt tema, men har null interesse for en som vil lese om matriser. Om
denne hgyt rangerte siden skulle inneholde ordet “matrise” da ville denne
sannsynlig komme fgrst ved sgk pa dette ord.
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Appendix A

Ortogonal dekomposition

A.1 Avstandsformeln

Det vi anvande for att héarleda formeln for avstandet mellan en punkt @ i
planet och en linje L, Sats 4.5.1, var foljande observation. Lat n = (a,b) vara
en (nollskild) normalvektor till linjen L och antag nu att linjen L gar genom
origo. Varje vektor X = (z,y) kan skrivas som en summa

X =tv+ sn,

déar v ar en riktningsvektor till linjen L, och s och ¢ ar skalarer. Vektorerna v
och n ar vinkelrata och vi sager att vi har gjort en ortogonal dekomposition
av X. Langden av vektorn sn var precis avstandet.

Lat oss gora detta en gang till. Vi har en ortogonal dekomposition av
vektor X pa formen
X =w+ sn,

dir w = tv ar nagon vektor i linjen och s ar nagot tal. Vektorn w som é&r i
linjen L skriver vi som

w =proj, (X) =X —sn

och kallas projektionen av X ned pa linjen L. Nar vi tar skalarprodukten
med n far vi
(X,n) =0+ s|n|? (A.1.0.1)
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vilket leder oss till avstandsformeln. Nu anvander vi enbart att talet s be-
stams av uttrycket (A.1.0.1). Detta betyder att

(X, n)

_ . n
In]?

proj;,(X)=X—-s-n=X (A.1.0.2)

A.1.1. Notera att vi inte har anvint att L ar en linje, men enbart att n ar
en normalvektor till L. Vi dterkommer till detta i hogre dimensioner.

Exempel A.1.2. Betrakta linjen L som ges av ekvationen —3x + 4y = 0.
En normalvektor till linjen 4&r n = (—3,4). Den ortogonala projektionen av
punkten (1,2) ges av uttrycket (A.1.0.2) som

((1,2),(-3,4))

proj.(1,2) = (1,2) —

(—3,4) é(& 6).

25

Proposition A.1.3. Lat L vara en linje i planet som gar gemom origo.
Avbildningen T': R?* — R? som skickar en godtycklig punkt X till proj; (X)
ar en linjir avbildning. Om n = (a,b) dr en nollskild normalvektor till L da
ges T av matrismultiplikation med matrisen

1 >  —ab
A_a2+b2[—ab GQ]'

Beuvis. Linjariteten till avbildningen T f6ljer av uttrycket (A.1.0.2) och defi-

nitionen av skalarprodukt. For att bestimma matrisen A berdknar vi 7'(1,0)
och T(0,1). Vi har

1

T(1,0) = (1,0) - prSyr

a
762(@7 b) = (b*, —ab),

a? +

vilket ger den forsta kolumnen i A. En liknande berdkning for 7°(0, 1) ger den
andra kolumnen. O
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Exempel A.1.4. Betrakta linjen L som ges av —3x + 4y = 0. Projektionen
ned pa linjen L ges som matrismultiplikation med

16 12
__ |25 25
A_FJ.

25 25

Speciellt har vi att punkten (1,2) skickas till
1 40 30 8 6
s []-(52)-(2)
proj.(1,2) M 25’ 25 55

A.2 Spegling

Lat L vara en linje genom origo. For varje punkt X har vi en ortogonal de-
komposition X = w+ sn, dar n ar nagon nollskild normalvektor till linjen L.
Speglingen i linjen L ar avbildningen T': R? — R? som skickar X till

T(X) = proj(X) — sn

=w —sn
= (X —sn)—sn
=X — 2sn.

Proposition A.2.1. Lat L vara en linje som gar genom origo och betrakta
avbildningen T: R?> — R2? som ges som spegling i linjen L. Avbildningen T
ar en linjdar avbildning och vi har att

(X, n)

7|2

T(X)=X-2
Speciellt har vi att avbildningen ges av matrismultiplikation med matrisen

1 b —a®> —2ab
a2 42 ’

—2ab  a* —1?
dar n = (a,b) dr ndgon nollskild normalvektor till linjen L.

Bevis. Av definitionen samt linjariteten till projektionen foljer det att speg-
lingen ar linjir. Av definitionen av projektionen (A.1.0.2) har vi att

proj(X) = X — sn,
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vilket ger att T'(X) = X — 2sn. Talet s har vi traffat pa tidigare och denna

bestams av (A.1.0.1) som
(X, n)

I
Dérmed har vi visat det andra pastaendet i propositionen. Slutligen for att
bestdmma matrisen A anvander vi uttrycket for 7(X), som vi precis har
visat, pa vektorerna X = (1,0) och X = (0,1). Detta ger de tva kolumnerna
i matrisen A. O

Exempel A.2.2. Betrakta igen linjen L som ges av ekvationen —3x+4y = 0.
Speglingen i linjen L ges av matrisen

117 24
A=% l24 —7] '
Punkten (1,2) skickas under speglingen till punkten (32, 2) = (&, 2).

A.3 Uppgifter

Uppgift A.1. Betrakta linjen L som ges av ekvationen 2z — 5y = 0. Bestam
matrisen som representerar speglingen i linjen L och matrisen som represen-
terar projektionen i linjen L.

Uppgift A.2. Betrakta linjen L som ges av 2z — 5y = 0 och linjen N
som ges av 3r + 7y = (0. Bestdm matrisrepresentationen till avbildningen
T:R? — R%nir T ar

a) avbildningen som forst speglar i linjen L och sedan speglar i linjen N.

o

avbildningen som forst speglar i linjen NV och sedan i linjen L.

)
c¢) avbildningen som forst speglar i linjen N och sedan i linjen N (uh!).
)

Q.

avbildningen som forst speglar i linjen N och sedan tar projektionen
ned pa linjen L.
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e) avbildningen som forst tar projektionen ned pé linjen N och sedan
speglar i linjen L.

f) avbildningen som forst tar projektionen ned pé linjen N och sedan
projektionen ned pa linjen L (uhu!).

Uppgift A.3. I beviset av Proposition A.1.3 skrev jag "En liknande berak-
ning for 7°(0,1) ger den andra kolumnen.” och i beviset av Proposition A.2.1
skrev jag ”...anvander vi uttrycket for T'(X), som vi precis har visat, pa vek-
torerna X = (1,0) och X(0,1). Detta ger de tva kolumnerna i matrisen A”.
Gor dessa detaljer som jag utelamnade.

Uppgift A.4. Bestam koordinaterna till 7'(2, 3) dar T" ar de sex olika avbild-
ningarna i Uppgift A.2. Rita, for varje T, en bild som bekraftar rimligheten
i ditt svar.
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Appendix B

Linjara avbildningar

B.1 Avbildningar

B.1.1. Vi har att det euklidiska n-rummet R™ ar méngden av alla ordnade
reella tal

R" ={(xy,...,2,) | reellatal z;, i=1,...,n}.

Elementen z = (z1,...,x,) i R"™ kallas for punkter eller vektorer.

En avbildning f: R™ — R™ ér en tillordning som till varje punkt z =
(x1,...,2,) 1 R™ anger en punkt f(z) i R™. Avbildningar kallas ocksa for
funktioner.

Exempel B.1.2. Ett exempel pd en avbildning f: R'*! — R!7 &r av-
bildningen som skickar x = (z1,...,2101) till dess 17 férsta komponenter:

f(l’) = (.Z'l, Ce ,1'17).

Exempel B.1.3. Ett annat exempel pa en avbildning f: R'%' — R ar
avbildningen som skickar (x1,...,2101) till punkten (1,0,...,0,17).

B.1.4. Matrisavbildningar. De avbildningar vi ar intresserade av kommer
fran matriser. Lat A = (a; ;) vara en (m x n)-matris. Som brukligt skriver
vi element i R"™ som (n x 1)-matriser, dvs kolumnvektorer. Matrisen A ger
genom matrismultiplikation en avbildning T4: R™ — R™. Avbildningen
skickar en vektor z = (z1,...,x,) till

1 a1,1%1 + -+ a1 Ty
A-| 1| =

T 101 + -+ A nTn
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Detta skall tolkas som att x = (1, ..., z,) skickas till
Ta(x) = (1101 + @120+ -+ Q10T - o, G101 F Q22 + -+ -+ Ay Ty).

Notera att matrisen har storlek (m X n) och att avbildningen géar fran R"”
till R™.
Exempel B.1.5. Betrakta matrisen
1 2 -4 —4
A=12 4 0 O
23 2 1

Detta ger en avbildning T4: R* — R? som skickar (z,y, z,w) till
12 —4 —4] |7
24 0 oY
23 2 1] |
Skriver vi ut detta far vi att avbildningen skickar (z,y, z,w) till
(x 4+ 2y — 4z — 4w, 2z + 4y, 2z + 3y + 2z + w).
Speciellt har vi att vektorn (1,0, 1, —1) skickas till (1,2, 3).
Definition B.1.6. En avbildning f: R" — R™ ar linjdr om
flav +bw) = af(v) + bf(w),
for alla tal a och b och alla vektorer v och w i R".
B.1.7. Notera att en vektor v = (vq,...,v,) i R" kan skrivas som
V = V161 + V€ + - - - + Upnty,

dar e; = (0,...,0,1,0,...,0) ar vektorn med 1 pa i:te komponent, och noll
pa alla de andra komponenterna. Om avbildningen f &r linjar har vi att

fv) =wvif(er) +vaf(ex) + -+ vnfen). (B.1.7.1)

Detta ar en ekvivalent beskrivning av linjaritet som vi anviande i Defini-
tion 3.3.4.

Lemma B.1.8. Lat f: R" — R™ wvara en avbildning. Att avbildningen dr
linjdr ar ekvivalent med att avbildningen satisfierar (B.1.7.1) for alla vektorer

v i R"™.
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Beuvis. Se uppgifterna. n

Exempel B.1.9. Visa att avbildningen i Exempel B.1.2 ar linjar och att
avbildningen i Exempel B.1.3 inte ar linjar.

Notera ocksa att en linjér avbildning dr bestamd av sin verkan pa vekto-
rerna ey, ..., e,. Om vi kidnner f(ey),..., f(e,) da kan vi anvinda (B.1.7.1)
for att bestamma f(v) for godtyckliga vektorer v i R™.

Lemma B.1.10. Lat f: R" — R™ wara en linjdr avbildning. Lat A vara
(m X n) matrisen

A=fler) -+ flen)],

ddr kolumn i dr vektorn f(e;) 1 R™, fori=1,...,n. Da har vi att f = Ty,
dvs den linjdra avbildningen f ges av multiplikation med matrisen A.

Bewvis. Se uppgifterna. n

Exempel B.1.11. Lat T4: R* — R?3 vara den linjira avbildning som ges
av matrisen A i Exempel B.1.5. Vi har att vektorn e3 = (0,0, 1,0) skickas
till T4(es) = (—4,0,2), vilket &r kolumn 3 i matrisen A.

B.2 Bildrum

Givet en matris A later vi T4: R® — R™ vara den tillhérande linjira

avbildning. Fixera en vektor b = (by,...,b,) i R™. Vi vill bestdimma vilka
vektorer z = (z1,...,x,) i R" som skickas till b under avbildningen T, det
vill séga
TA(I‘) =b.

Skriver vi ut detta erhaller vi

1 a1,1%1 + -+ A1 uTn by

Ta(x)=A-| 1| = : =
T Am,121 +-+ AmnTn bm

For att dessa tva matriser skall vara lika maste de vara lika elementvis. Detta
ger oss ekvationssystemet

1171 + a12T2 + - Faipr, = by
a1 + dooxo + -+ agpnty, = bo
Qm, 121 + Am, 222 + -+ Amnln = bm'

Detta vet vi hur vi loser.
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Exempel B.2.1. Lit T4: R* — R? vara den linjira avbildningen vi far
fran matrisen A i Exempel B.1.5. Lat b = (by, be, b3) vara en fixerad, men
godtycklig, vektor i R®. Vi skall nu bestimma alla vektorer (z,y, z,w) i R*
som skickas till b under avbildningen T4. Vi har att Ta(x,y,z,w) = b ger
ekvationssystemet
r+2y—4dy —4dw = b
2 + 4y = by
2 +3y+22+w = bs.

Vi skriver ekvationssystemet som

1 2 —4 —4|b
24 0 0 |b
23 2 1 |b

och detta loser vi med Gauss—Jordanelimination. Vi tar och adderar —2 gang-
er forsta raden till andra och tredje raden. Detta ger

1 2 —4 —4| b
0 0 8 8 |by—2b
0 —1 10 9 |bs—2b

Vi byter plats pa andra och tredje raden och multiplicerar den nya andra
raden med —1. Sedan adderar vi —2 ganger andra raden till forsta raden.
Detta borde ge

1 0 16 14 | —3b; + 2b3

0 1 —10 —9| 2b; —bs

00 8 8 by — 2Dy
Slutligen delar vi tredje raden med 8, multiplicerar med —16 och adderar till

forsta raden och multiplicerar med 10 och adderar till andra raden. Detta
ger

1 00 —2| by —2by+2by
010 1 |—2b+42by—0bs
001 1 sba — 3D

Detta betyder att

w=1t, dart ar ett godtyckligt reellt tal,

1 1
gbg — Zbl —t,
1 5
y= —ibl—Fsz—bS—t,

z =

$:b1—2bg+253+2t.
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For fixerad b = (by, by, b3) har vi att de vektorer (x,y,2,w) i R? som skickas
till b via avbildningen T4 ar
1 5 1 1
(by — 2bg + 2b3 + 2t, —=by + —by — bg — t, —by — —by — t, 1), (B.2.1.1)
2 4 8 4
med godtyckliga t. Vi verifierar att detta ar korrekt genom att ta en punkt
a i R* som ir pa formen ovan (B.2.1.1) och berikna vad avbildningen T4
skickar den:

o 4 bllg 2625;; 2b3b+ 2tt
4 0 0 _511b+ Zfb_ 31&_

3.2 1 g2

: t

[ by — 20y + 203 + 2t + 2(—5b1 + 2by — by — t) — 4(§by — 301 — 1) — 4t
= 2(by — 2by + 2b3 + 2t) + 4(—2by + 2by — by — 1)

2(by — 2by + 2b3 + 2t) + 3(—5b1 + 2bo — by — ) + 2(5by — Tb1 — ) + ¢
-

= |by

b3

TA(CL) =

N DN =

Exempel B.2.2. Vi atergar till Exempel B.2.1 ovan. Notera att om vi later

1 ) 1 1
P - (bl - 2b2 + 2b3, —§b1 + Zbg - bg, gbg - Zbl, O)

s& dr detta en fixerad punkt i R* och v = (2, —1,—1,1) ér en fixerad vektor
i R*. Méngden (B.2.1.1) kan vi skriva som

P+t-v,

med godtyckliga reella tal t. Med andra ord beskriver detta en linje i R*.
For varje vald punkt b = (by, by, b3) finns det en linje i R* som kollapsar till
denna fixerade punkt under avbildningen Ty.

B.3 Uppgifter

Uppgift B.1. Visa Lemma B.1.8.

Uppgift B.2. Visa Lemma B.1.10.
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Appendix C

Komplexa tal

C.1 Representation av tal

C.1.1. De reella talen betecknas ofta med symbolen R. Vi kommer inte att
definiera de reella talen har, men vi noterar att for varje par av reella tal a
och b sa ar aven a + b och ab reella tal. Med andra ord &r méngden R sluten
under addition och multiplikation. Vidare har vi att till varje tal a finns det
ett tal —a saddant att a + (—a) = 0 och till varje nollskilt tal a # 0 finns talet
a~! sddant att aa~! = 1.

C.2 Reella talen som matriser

Vi boérjar med att presentera de reella talen pa ett lite annorlunda séatt.
Varje tal a kan skrivas som a - 1, och nu kommer vi med 1 mena (2 x 2)-
identitetsmatrisen. Vi skriver

_.1__10_a0
@=a =4y 117 o al

Att skriva reella tal som en speciell klass av (2 x 2)-matriser skall vi snart se
ar ett smart drag. Notera forst att addition och multiplikation av matriser
ar kompatibel med den vanliga additionen och multiplikationen av reella tal.

Med detta menas foljande. Om a ar ett reellt tal, later vi T, = a - l(l) (1)] . Vi

har d& att
Ta + Tb = Ta+b och TaTb = Tab‘

Detta betyder att vi verkligen kan betrakta de reella talen som diagonalma-
triser med ett och samma diagonalelement.
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C.2.1. Betrakta nu alla (2 x 2)-matriser pa formen

C= {la _b] | reella tal a och b} :
b a

Delméngden av sadana matriser skriver vi som C. Notera att nollmatrisen
0 och identitetsmatrisen 1 finns med i méngden C. Och, med b = 0, har
vi ocksa alla reella tal inuti méngden C. Vi kontrollerar nu att mangden ar
sluten under addition och multiplikation. Lat Z och W vara tva godtyckliga
element i mangden C. Vi har att

a —b c —d
Z—[b a] och W—[d c]

for nagra reella tal a, b, ¢ och d. Vi har att

B _latc —(b+4d)
Z+W—W+Z—[b+d ot c ] (C.2.1.1)
ac—bd —ad— bc
Z'W:W'Z:[ad—i—bc ac—bd]' (C.2.1.2)

Vi har att Z+W och Z-W &r matriser pa den speciella formen som kravs for
att vara med i mangden C. Observera dven att for matriser i C blir matris-
produkten kommutativ (hérligt!). Méngden C é&r sluten under addition och
multiplikation. Hur ar det med de andra egenskaperna for tal. Uppenbarligen
har vi att for varje matris Z att Z + (—Z) = 0. Hur &r det med Z~'7?

Sats C.2.2. Ldt Z vara ett nollskilt element i C. Dd finns det en matris Z—*
i C sddan att ZZ~' = 1. Mera precist, om

z=[s

dd har vi determinanten det(Z) = a® + b*. Om Z # 0, dd dr determinanten
nollskild och vi har inversen

_a _ __=b_

a2+b2 a2+b2
Bevis. Vi har att det(Z) = a® +b*. Determinanten ér noll om och endast om
a = 0 och b = 0. Med andra ord &ar determinanten nollskild om och endast
om Z # 0. Vi har tidigare visat att en matris &r inverterbar om och endast
om determinanten ar nollskild och formeln for inverser for (2 x 2)-matriser
ger slutligen satsen. O
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C.2.3. De tre forsta egenskaperna: att mangden ar sluten under addition,
sluten under multiplikation och att varje matris Z har en additiv invers —Z;
géller inte bara for méngden C. Dessa tre egenskaper galler ocksa for mang-
den av alla (2 x 2)-matriser, for att ta ett exempel. Det ar egenskapen att
varje matris Z # 0 har en multiplikativ invers som kréver att vi maste be-
trakta en delmangd.

C.2.4. Komplexa talen. Vi kallar méngden C av matriser definierad ovan,
for de komplexa talen. Termen komplex kan man diskutera, men anledningen
att vi kallar elementen i C for tal &r att dessa matriser har alla egenskaper vi
forvantar att tal skall ha. Speciellt har vi den trevliga egenskapen att varje
nollskilt tal Z # 0 har en multiplikativ invers Z .

Notera att det finns komplexa tal som inte ér reella, det vill sdga det finns
matriser i C som inte ar pa formen a - 1. Ett exempel ar talet

0 —1
o [0 . 024

Detta talet betecknar vi med symbolen €2 och det kallas ibland for den ima-
ginara enheten. Notera att

0 = [_1 O] (C.2.4.2)

vilket betyder att % = —1.

Exempel C.2.5. Lat oss losa nagra ekvationer inom talen C. Vi borjar med
ekvationen

X2 =5.

Notera nu att den okdnda X &r alla matriser inom méngden C sadana att
X? ar lika med matrisen 5 - 1, matrisen med talet 5 pa diagonalen. Lat X
vara en godtycklig matris i mangden C. Vi har

dar x och y ar okanda reella tal. Vi far att

2 2
9 |t =y 2y
X —[ 2$y 1’2—’3/2]7

vilket skall vara lika med matrisen
5 0
Y.
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Detta ger, elementvis, att 22 — y? = 5 och —2xy = 0. Den andra ekvationen
ger att antingen ar x = 0 eller sa &r y = 0. Insatter vi x = 0 i den forsta
ekvationen far vi —y? = 5, vilket saknar 16sning. Insatter vi istillet y = 0 i
den forsta ekvationen far vi 22 = 5, vilket har lésningarna £+/5. Vi har nu
visat att ekvationen X? = 5 har 16sningarna X = —v/5 och X = +/5. Inget
ovanligt med andra ord.

Exempel C.2.6. Betrakta ekvationen X? = —4i C. Lat X = B _xyl vara

en okand matris som ovan. Vi soker 16sningar till

2 2
s |z —y —2xy o —4 0
X _[ 21y $2—y21_ 4_[0 —4]'

Vi jamfor elementen och erhdller att 22 — y?> = —4 och —2zy = 0. Insétter
vi x = 0 i den forsta ekvationen far vi —y? = —4, vilket ger y = £2. Insitter
vi y = 01 den forsta ekvationen far vi 22 = —4 och denna saknar 16sning. Vi
har visat att ekvationen X2 = —4 har l6sningarna

X =-20 och X =20,

dar Q ar matrisen (C.2.4.1). Har ser vi att vissa ekvationer, som X? = —4,
som saknar l6sning i R, har 16sning i C.

C.3 Komplexa talen som talplanet

Det reella talplanet R? dr méngden av alla ordnade talpar z = (a,b). Till
varje element z = (a,b) i talplanet kan vi tillordna matrisen Z = Z _ab
b a
i C ger det ordnade talparet z = (a,b). Detta betyder att vi kan identifiera

méngden C med méngden R2.

C och omvéant. Den forsta kolumnen till en godtycklig matris Z = [a _b]

C.3.1. Notera att under den givna identifikationen av de komplexa talen
med talplanet, identifieras de reella talen med z-axeln. Vi kallar darfor z-
axeln for den reella axeln. Talet € identifieras med talparet w = (0, 1) och
y-axeln kallas den imaginédra axeln.

C.3.2. Addition och multiplikation av talpar. Vi har att C ar tal och
speciellt kan vi addera och multiplicera tal. Detta betyder att vi nu ocksa
kan addera och multiplicera element i R?. Lat z = (a,b) och w = (¢, d) vara
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tva element i talplanet. For att addera och multiplicera dessa maste vi forst
betrakta dessa som element Z och W i C. Sedan adderar och multiplicerar
vi Z och W och far Z + W och ZW. Dessa tva nya matriser Z + W och ZW
identifieras med tva talpar, och vi erhaller addition och multiplikation av z
och w.

Lemma C.3.3. Lat z = (a,b) och w = (¢, d) vara tvd talpar. Den inducerade
additionen fran C ger komponentvis addition

z4+w = (a,b) + (¢,d) = (a + ¢, b+ d).
Den inducerade multiplikationen ges av formeln
z-w=(a,b) - (¢,d) = (ac — bd,ad + bc).

Bevis. Additionsformeln foljer fran (C.2.1.1) och multiplikationen foljer fran
(C.2.1.2). 0

Exempel C.3.4. Betrakta talparet w = (0,1) som motsvarar matrisen (2.
Formeln ger att w? = (0,1)? = (—1,0), vilket vi redan visste frin berikning-
arna i C.2.4. Ett annat exempel ar produkten

0,1)-(=1,1)=(0—1,0—1) = (=1, —1).

C.4 Geometrisk tolkning av produkt

Vi kommer nu att tolka produkten zw av tva talpar z och w geometriskt.
Vi borjar med att beskriva ett talpar z = (a, b) i poldra koordinater. Vinklar
méts i radianer, moturs, och fran den positiva horisontella xz-axeln. Avstandet

b Z = (a,b)

<

fran origo till (a,b) ges av Pythagoras Sats som r = v/a? + b%. Om (a, b) #
(0,0) finns det en unik vinkel ¢ € [0, 27) sidan att

rcos(¢) =a och rsin(p) =b.

Detta betyder att varje talpar z = (a,b) kan beskrivas med ett avstand r och
en vinkel ¢. Talparet (0,0) har avstandet noll och vinkeln noll. Sambandet
ges av z = (a,b) = (rcos(p), rsin(p)).
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C.4.1. Rotationsmatrisen. Om vi skriver ett talpar z = (a,b) i poldra
koordinater med avstand r och vinkel ¢, har vi z = (r cos(p), rsin(p)). Detta
betyder att matrisen Z som motsvarar talparet z ges av

rcos(p) —rsin(p)
rsin(yp)  rcos(p)

Notera nu att Z ar rT,, dir T, ar matrisen som representerar den linjara
avbildning som beskriver en rotation med ¢ grader, moturs omkring origo.
Jamfor med Uppgift 3.4.

Exempel C.4.2. Positiva reella tal a har avstandet a = |a| och vinkeln &r
noll. Negativa tal a har avstandet |a| och vinkeln ar 7. Till exempel har vi
talparet

(=5,0) = (5cos(m), 5sin(m)).

Talparet w = (0,1) har avstandet 1 och vinkeln &r 7/2. Detta betyder att
talparet som motsvarar € ges som (1 cos(7/2), 1sin(r/2)).

Lemma C.4.3. Lat z = (r cos(p),rsin(p)) och w = (scos(?), ssin(¥)) vara
tva talpar. Multiplikationen zw ges av talparet

(rscos(p + 1), rssin(p + 19)).

Bevis. Lat Z och W vara matriserna som motsvarar punkterna z och w. Da

ar

rcos(p) —r sin(go)] B [s cos(¥) —ssin(v)

. W = )

rsin(p)  rcos(p) |’ ssin(d¥) s cos()
Vi berédknar nu produkten ZW. Vi har att Z = 7T, och W = sTy, dar T,
ar rotationsmatrisen med vinkel . Vi har tidigare visat att sammansattning
av tva linjiara avbildningar ges av produktmatrisen. Detta betyder att rotera
forst med 9 radianer, och déarefter rotera med ¢ radianer, ges av matrispro-
dukten T,,T. Men, att forst rotera med 9 och dérefter med ¢, ar att rotera
med totalt ¥ + ¢ radianer. Det vill sédga att

cos(p+ 1) —sin(p + 9)

Toly =Toro = sin(p +9)  cos(o+ 9)

Detta ger nu att ZW = 1T sTy = rsT, 1y, vilket vi skulle visa. O

C.4.4. Notera nu att vi geometriskt forstar hur produkten zw gar till. Vi
multiplicerar avstandet r till z = (a,b) med avstandet s till w = (¢, d), och
far avstandet rs till zw. Vinkeln till z adderas till vinkeln till w och ger
vinkeln till zw.
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Lemma C.4.5. Om z = (rcos(p),rsin(y)) dr nollskild, da ges inversen

som
1 1

—1 o - . T .
27 = (7“ cos(—y), . sin( (p)) :
Beuvis. Pastaendet foljer fran Lemma C.4.3 och det faktum att (1,0) =
(1cos(0),1sin(0)) ar identitetselementet. O

Exempel C.4.6. Betrakta talparet z = (1,1). Vi vill berdkna 2", for olika
heltal n > 0. I polira koordinater har vi att z har avstandet v/2 och vinkeln
ar m/4. Detta ger att

2" = <\/§n cos(mn/4), V2" sin(ﬂn/ll)) :
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Appendix D

PS3 och krypteringsmissar

D.1 Kryptering

Vi skall! idag titta lite pa kryptering, och mera specifikt hur elliptiska kurvor
anvands i kryptering, sa kallad ECDSA. Vi skall ocksa se ett aktuellt exempel
pa hur detta inte skall anvandas.

D.1.1. Vi har féljande problem. En anvindare A kontaktar en nétsida V.
Anvéndaren vill spela ett spel som nétsidan N har producerat, och néitsidan
vill kontrollera att anvidndaren A har betalat sin licens for att spela. Pro-
blemet ar att en hacker H overvakar och ldser av all informationsutvéxling
mellan A och N. Sa om A visar fram ett kvitto, da kommer sédkerligen hac-
kern H att kopiera kvittot. Pa sadant satt kan hackern H fa mojlighet att
spela utan att ha betalat licens, och detta tycker inte N om.

D.1.2. Losningen som anviands pa problemet ovan ar att anvindaren A kryp-
terar sitt kvitto pa ett sdtt som nédtsidan N kan verifiera, men som hackern H
inte kan dekryptera.

Det finns flera olika satt att kryptera. Ett av de vanligaste ar att anvinda
par av stora primtal som krypteringsnycklar, sa kallad RSA-kryptering. Ett
annat sitt dr att anvinda elliptiska kurvor, som i ECDSA.

D.2 Elliptisk kurva

En elliptisk kurva ar nollstalleméngden till en ekvation pa formen
E={(z,y) € R* | y* = 2° + ax + b},

déar a och b ar givna tal. Har &r en typisk bild av en elliptisk kurva:

1Jag sjilv lirde om detta av en kollega som, kanske, heter Joel Andersson
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N

D.2.1. Konjugering. Vi observerar att om P = (p, ¢) ar en punkt pa kurvan
E d& dr ocksd punkten (p,—q) en punkt pd kurvan E. Vi har att ¢ =
p?+ap+b=(—q)?, vilket betyder att kurvan dr symmetrisk om z-axeln. Vi
kommer att anvinda detta nedan och infér darfor notationen P for konjugatet
till punkten P. Vi har alltsd att om P = (p,q) dd ar P = (p, —q).

D.2.2. Addition av punkt. Vi tinker oss nu att den elliptiska kurva F
ar given. Vi kommer nu att gora foljande geometriska konstruktion, och for
denna anvander vi oss av den typiska bilden ovan. Lat P, och P, vara tva
punkter pa kurvan E. Vi kan dra linjen L(P;, P») genom P; och P,. Denna
linje L(Py, P,) skir kurvan i en tredje punkt? ' om inte P, och P, ligger
pa samma vertikala linje. Vi later ) vara punkten som vi far om vi tar och
skiar kurvan E med en vertikal linje genom @Q’, det vill siga att Q = Q.
Se figuren nedan. Fina illustrativa figurer finns aven under lianken http:
//en.wikipedia.org/wiki/Elliptic_curve.

D.2.3. Tangentlinjen. Om P, = P, avser vi med linjen L(P;, P;) genom
punkten P, = P, tangentlinjen till kurvan E i punkten P;.

D.2.4. Oandlighetspunkt. Konstruktionen ovan fungerar dock inte om
punkterna P; och P, ligger pa samma vertikala linje, vilket betyder att
P, = P,. For att bota detta problem skall vi forestélla oss att kurvan E
har en punkt i oandligheten. Denna punkt kallar vi O. Vi skall tanka pa de
vertikala linjerna som meridianer pa sfiaren; dessa linjer ar parallella, men
anda sa mots linjerna i nordpolen. Och faktisk sa mots de parallella vertika-
la linjerna ocksa i sydpolen, men pa den elliptiska kurvan E &ar sydpol och
nordpol en och samma punkt O. Darfér later vi O = O.

?Detta giller egentligen endast om vi tillter 16sningar med kompleza koordinater. Att
det alltid finns en 16sning beror pa att skdrningen mellan en linje och den elliptiska kurvan
beskrivs av en tredjegradsekvation i en variabel. En sidan ekvation har alltid 3 komplexa
l6sningar.
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Y y
M L(Py, Py)
3 Q P=p,

L(P, Py)

Vi later Ep vara den elliptiska kurvan E union odndlighetspunkten O. Vi
definierar addition av punkterna till Ep pa det sdattet som vi angav i D.2.2.
Detta ger en avbildning Fp x Eo — Fo, som skickar ett par av punkter P,
och P, pa Fp till punkten P, & P,.

Exempel D.2.5. Lat P, och P, vara tva punkter pa kurvan E. Vi har att
P& P, =@, diar () ges som konjugering av punkten )’ som i sin tur ges av
skdrningen av kurvan E och linjen L(Py, P;) genom Py och P;.

Exempel D.2.6. Lat P vara en punkt pa kurvan F. Vi skall bestdmma P ®
O. Linjen L(P,O) genom P och oandlighetspunkten O ges av den vertikala
linjen genom P. Linjen L(P,O) skir kurvan FE punkten P’ dar P’ = P. Vi
har att P’ = P = P. Detta betyder att

PO =P

Vi ser att addition med punkten O till en annan punkt P inte gor nagot. Sym-
bolen O for oéndlighetspunkten har inget med forsta bokstaven i oandlighet,
men refererar till begreppet noll.

D.2.7. Notera att for att erhalla P & O = P var det nodvandigt att vi i
definitionen av addition tog konjugatet av punkten @' vilken ges som skér-
ningen av linjen L(P;, P,) med kurvan E, och inte punkten @' som kunde
tyckas mera naturligt.

Exempel D.2.8. Additionen av punkter D.2.2 ar sapass naturlig att foljande
egenskap haller
(Pl@PQ)@P3:P1@(P2@P3)7

for alla punkter Py, P och P3 pa kurvan. Vi kan med andra ord slopa pa-
renteserna vid addition av punkter.
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Exempel D.2.9. Vi har uppenbarligen att P,® P, = P,@® P, for alla punkter
P och P, pa den elliptiska kurvan.

Exempel D.2.10. Lat P vara en punkt pd kurvan £, och 1at P vara punkten
som ligger pa kurvan E och under samma vertikala linje som P. Vi har
av konstruktion att linjen L(P, P) ar den vertikala linjen och denna linje
skéir kurvan E i odndlighetspunkten O, dvs L(P, P) skér inte kurvan E men
kurvan Eo. Eftersom O = O erhéller vi att

PaP=0.

Med andra ord dr P den additiva inversen till P.

D.3 Gruppen till en elliptisk kurva

Det vi har indikerat med exemplen ovan ar att punkterna pa den elliptiska
kurvan Fop med additionen @ ar en grupp, en kommutativ grupp. I ECDSA
anvinder man gruppstrukturen pa den elliptiska kurvan for krypteringen.

D.4 Primtalskroppar

Vi har givit den elliptiska kurvan £ som en kurva i planet R2. I den verkliga
varlden vill man gora situationen lite mer “dndlig”. Det betyder att koordina-
terna till punkter P pa kurvan E inte tillats vara alla reella tal, men enbart
element i en éndlig primtalskropp.

Om p ar ett givet primtal sa bestar primtalskroppen av heltalen F, =
{0,1,...,p—1}. Addition och multiplikation sker modulo restklasserna. Sub-
traktion fungerar, och da p ar ett primtal kommer dven division att fungera.

Primtalen kan i praktiken vara mycket stora, men for att fa en kansla for
primtalskroppar kan man titta pa sma primtal.

Exempel D.4.1. Primtalskroppen F5 bestar av elementen {0, 1,2, 3,4}. Ad-
dition sker modulo restklasserna, sa t ex ar 3 + 4 lika med 2. Subtraktion
sker pa samma satt. Om vi vill 16sa ekvationen 34+ z = 2 i F5 sa subtraherar
vi 3 fran bada sidor och erhaller

r=2-3=—1.

Talet —1 finns inte med i mangden F5, men lédgger vi till 5 far vi 4. Detta
betyder att 2 — 3 = 4, vilket ocksa ar losningen till ekvationen 3 + x = 2.
Multiplikation sker ocksa modulo restklasser. Vi har att 4-4 =1 da 16 =
3-5+41. Detta betyder ocksa att 4 = i i F5. Vi har att 2-3 = 1 vilket betyder
att?):%ochattQ:%.
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D.4.2. Vi tar for givet att om P; och P, dr punkter pa en elliptisk kurva
E och koordinaterna till P, och P, bada ligger i en primtalskropp F,, da
kommer aven punkten ) = P, @ P, att ha koordinater i primtalskroppen F,,.
Speciellt har vi att punkterna pa den elliptiska kurvan Fp med koordinater
i primtalskroppen F,, bildar en grupp.

Om k ar ett heltal och P ar en punkt sa definierar vi

k-P=P&P®---®P.

k kopior

Observera att dven om P ar en punkt med koordinater i F,, s& ar inte nod-
vandigtvis p - P = 0. Det finns dock oftast (om kurven inte ar en sa kallad
supersinguldr kurva) punkter P sadana att p- P = 0. For en sidan punkt
tilldter vi aven att £k &r ett element i primtalskroppen F,, betraktat som ett
heltal. Da &r namligen (k1 + ko) - P = k1 - P @ ky - P dér vi berdknar ky + ko
iF,.

D.4.3. Notera att om k ar ett nollskilt tal i primtalskroppen da &r ocksa %
ett heltal/element i primtalskroppen.

D.5 Krypteringsalgoritmen

Anvéndaren A har vid betalningen av licensen till niatsidan N blivit tillde-
lad en elliptisk kurva F, en primtalskropp F, en punkt P pa den elliptiska
kurvan, och en krypteringsnyckel c. Krypteringsnyckeln ¢ ar ett tal i prim-
talskroppen F,. Denna information ar inte tillgénglig for andra.

Nar anvindaren A kontaktar natsidan N utfors foljande berdkningar av
anvandaren A.

Steg 1

Forst berdknas, av anviandaren A, punkten ¢ - P = @) pa kurvan E. Denna
punkt kallas den offentliga nyckeln, och skickas till natsidan N. Med hjalp
av punkten () identifierar natsidan N vilken anvindare det handlar om. Det
vill sdga vilken kurva E, vilken punkt P, och vilken krypteringsnyckel ¢ som
anvandaren borde ha.

Steg 2

Anvéandaren A skickar ett medelande till natsidan N, typ “jag vill spela”.
Detta meddelandet blir omgjord till ett tal e. Hur denna funktion fungerar ar
inte sa viktig. Det som &r viktig ar att talet e &ndras med meddelandet. Man
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kan tédnka sig att meddelandet “jag vill spela” ocksa innehéller information
om klockslag mm, sadan att ndr anvidndaren A vill spela dagen efter sa
kommer meddelandet e att vara ett annat.

Steg 3

En godtycklig, men stor, konstant k i primtalskroppen F,, véljes, och anvan-
daren A berdknar k- P. Vi later r vara xz-koordinaten till punkten k- P =

(r,r9).

Steg 4

e+tcr

Vi berdknar talet s = <% i primtalskroppen F,,.

Informationsutvaxlingen

Informationen som anvindaren A skickar till ndtsidan N ar alltsd punkten
(), meddelandet e, och signaturen (r,s). Denna information kan avlisas av
en tredje part, hackern H. Men, denna information kan inte ateranvindas.

Verifieringsalgoritmen

Nér anviandaren A kontaktar ndtsidan N kommer det besked om offentlig
nyckel ), meddelandet e och slutligen bifogas signaturen (r, s). Den offentliga
nyckeln identifierar vem den tédnkta anvindaren borde vara, och slutligen
kontrollerar nétsidan N signaturen. Kontrollen gors pa foljande sétt.

Beriakning av punkten R

Nétsidan beraknar punkten
R = € P& r . Q
5 5

Detta ar mojligt da nétsiden N fran punkten () vet punkten P, och talen
e, och s skickades med kontakten fran A.

Verifiering

Nu skall natsidan verifiera att signaturen ar korrekt, och detta gors genom att

kontrollera att x-koordinaten till punkten R &r det forsta talet r i signaturen

som anvandaren A skickade. Vi har namligen att s = e*%, och detta ger

k
= 'P . .
R e—l—cr(e Or-Q)
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Vi har vidare att Q) = c¢- P, vilket ger att

k
R = (e+cr)-P=k-P.
e+cr

Det var precis k - P som A berdknade for att bestamma 7.

D.6 Felaktig implementering

Néar Playstation 3 (PS3) lanserades 2006/2007 var den betraktad som att
inneha en mycket saker kryptering. PS3 anvandes sig av kryptering via el-
liptiska kurvor. Men, i december 2010 blev maskinernas krypteringskoder
tillgangliga. Hackers lyckades bryta koden och det hela baserades pa att PS3
hade implementerad krypteringskoden fel.

Nar PS3 gav ut licenser till anvandare sa var det meningen att varje
anvandare fick en programvara som hade en krypteringsalgoritm enligt ovan.
Skillnaden var dock i Steg 3 dar man istéllet for att slumpa ett godtyckligt
tal k£ varje gang man kontaktade natsidan /N, anvinde sig av ett och samma
tal k.

Betrakta en och samma anvindare A. Denna kontaktar natsidan N med

ett meddelande e; och en signatur (r, s;). Dessa tre tal fangar hackern H

(e1tcry)

——, som vi ocksd kan skriva som

upp. Vi har ekvationen s; =
s1k —ric=e;.

Talen e, r; och s; har vi, men inte de tva okédnda k£ och c. Ni kan ténka pa
detta som en linje i ett plan dér de tva okdnda ér k och c.

Men, dagen efter skickar anviandaren A ett nytt meddelande till natsi-
dan N. Hackern H fangar nu upp talet e; och signaturen (rs, se). Nu far vi
en linje till, ndmligen

Sok — roc = €9.
Nu har vi ett ekvationssystem i tva okédnda k och ¢ som vi kan losa. Ekva-
tionssystemet skriver vi upp som matrisekvationen

S1 —T k !
se —ro| |lc|  lea|”
Inversen till matrisen till vinster ar

1 —T2
—81T9 + 1182 | —S2 S1
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Detta ger nu att

k o 1 —To€1 + T1€2
c|  risy— siry | —S2e1 + s1€2]
Speciellt har vi att den hemliga krypteringsnyckeln till anvindaren A &r

51€2 — S2€1

1S9 — S1T2 ’
Notera ocksa att om k édr konstant da blir ; = ro. Detta betyder att

S1€9 — 5261

r1(s2 —s1)°
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Appendix E
INTEX

E.1 Att skriva matematisk text

Vi borjade forelasningen med KTEX programmering. I sin enkelhet ser ett
KETEX-dokument ut sa hér:

\documentclass{article}

\begin{document}
Hér kommer din text.

\end{document}

Filen sparas som namn.tex, och kompileras sedan med kommandot

> pdflatex namn.tex

som skapar filen namn.pdf. Forsok garna gora ett enkelt dokument i I¥TEX.
Haftet The Not So Short Introduction to KTEX 2¢finns under

http://tobi.oetiker.ch/lshort/lshort.pdf

och ér vad jag sjalv anvinder. Mojligen ar det forsta stéllet att borja pa
hemsidan

http://www.latex-project.org/intro.html

Detta ar inte svart att lara sig, och ni kommer att ha stor anvindning for
detta i framtiden. Lycka till.
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