Video Lectures on Scalable-Learning as the perfect match to Peer Instruction

m colarieti tosti
School of Technology & Health
Video Lectures on Scalable-Learning as the perfect match to Peer Instruction

m colarieti tosti
School of Technology & Health

David Black Shaffer, UU

Sverker Janson, SICS
Video Lectures on Scalable-Learning as the perfect match to Peer Instruction

David Black Shaffer, UU

Sverker Janson, SICS

Fredrik Lundell
Lars Filipsson
Gunnar Karlsson
Gunnar Tibert
Ulrich Vogt

PI+SL
Peer Instruction why?

1. reasonable to spend lecture time on concepts
2. gives better results (measurable & measured)

Peer Instruction why not?

no lectures!
Mamo’s data clearly shows that videolectures with self-assessment quizzes, followed by student-centred in-class session increase students’ learning:

1. yes, definitely!
2. maybe
3. no way!
Mamo’s data clearly shows that videolectures with self-assessment quizzes, followed by student-centred in-class session increase students’ learning:

1. yes, definitely!
2. maybe
3. no way!
Mamo’s data clearly shows that videolectures with self-assessment quizzes, followed by student-centred in-class session increase students’ learning:

1. yes, definitely!
2. maybe
3. no way!

What are the strengths of this way of running a course?
Mamo, at the end of the course, asked his students the following (answer was anonymous):

I read about ionising radiation in the text book:

1. no, not at all
2. only few parts
3. around 50% of the suggested readings
4. yes, everything suggested

What do you think they answered?
Mamo, at the end of the course, asked his students the following (answer was anonymous):

I read about ionising radiation in the text book:

1. no, not at all
2. only few parts
3. around 50% of the suggested readings
4. yes, everything suggested

What do you think they answered?
Mamo, at the end of the course, asked his students the following (answer was anonymous):

I read about ionising radiation in the text book:

1. no, not at all
2. only few parts
3. around 50% of the suggested readings
4. yes, everything suggested

What do you think they answered?

Is this a problem? If yes, suggestions?
Relative change of students performance
(32 stud 2013: avg 37.2%, 31 stud 2014: avg 43.5%)

- lowest score from 2013 eliminated
- highest score from 2013 eliminated

avg 11.8%
avg 17.5%

score 2014 - score 2013 (%)

- t-value against null hypothesis of 0 difference:
 3.5306 (highest from 2013 eliminated)
 2.7076 (lowest from 2013 eliminated)

NB: the distribution is not Gaussian
(and neither Student’s t-like)!
Relative change of students performance
(32 stud 2013: avg 37.2%, 31 stud 2014: avg 43.5%)

highest score from 2013 eliminated

here is where I expected teaching form to have biggest impact

lowest score from 2013 eliminated

NB: the distribution is not Gaussian
(and neither Student’s t-like)!

t-value against null hypothesis of 0 difference:
3.5306 (highest from 2013 eliminated)
2.7076 (lowest from 2013 eliminated)
Relative change of students performance
(32 stud 2013: avg 37.2%, 31 stud 2014: avg 43.5%)

highest score from 2013 eliminated

here is where I expected teaching form to have biggest impact

lowest score from 2013 eliminated

it seems to have an effect here as well!

NB: the distribution is not Gaussian (and neither Student’s t-like)!

t-value against null hypothesis of 0 difference:
3.5306 (highest from 2013 eliminated)
2.7076 (lowest from 2013 eliminated)
Relative change of students performance
(32 stud 2013: avg 37.2%, 31 stud 2014: avg 43.5%)

highest score from 2013 eliminated

here is where I expected teaching form to have biggest impact

lowest score from 2013 eliminated

it seems to have an effect here as well!

NB: the distribution is not Gaussian (and neither Student’s t-like)!

t-value against null hypothesis of 0 difference:
3.5306 (highest from 2013 eliminated)
2.7076 (lowest from 2013 eliminated)
Is this something we should discuss as if the data were reliable?

1. yes, definitely!
2. maybe
3. no way!
Is this something we should discuss as if the data were reliable?

1. yes, definitely!
2. maybe
3. no way!
Is this something we should discuss as if the data were reliable?

1. yes, definitely!
2. maybe
3. no way!

Does this disadvantage certain kinds of students?
slides for video
Video Lectures on Scalable-Learning as the perfect match to Peer Instruction

m colarieti tosti
School of Technology & Health
Peer Instruction why?

1. reasonable to spend lecture time on concepts
2. gives better results (measurable & measured)

Peer Instruction why not?

no lectures!
Peer Instruction why?

1. reasonable to spend lecture time on concepts
2. gives better results (measurable & measured)

Peer Instruction why not?

no lectures!

in class

green arrow points to home
Scalable-Learning

- videolecture 5-10 minutes: one concept
- multiple-choice question
 - right answer
 - tracked!
 - wrong answer
 - hints
 - right answer

- videolecture 5-10 minutes: next concept
Question 2
Emission 1.2: optimal emission energy

OCQ | Photons emitted should preferably:

- All leave patient (Correct)
- Some leave, some attenuated (Incorrect)
- All absorbed (Incorrect)

Question 3
Emission 1.2: optimal emission energy

OCQ | Optimal energy for SPE with NaI

- 2 keV - 2 TeV (Incorrect)
- > 511 keV (Incorrect)
- 100 keV - 300 keV (Correct)
- Any energy will do (Incorrect)

Question 4
Emission 1.3: other desirable properties of the source

OCQ | I have a very cheap isotope to sell you. Its half life is 1 s, so it will immediately disappear right after the patient has been scanned. Is it usable?

- Yes! You just need to inject a very high activity. The dose will be the same, since the integrated number of emitted p... (Incorrect)
- I have more isotopes than I can use. But I have a good friend you can sell it to ... (Correct)
start by reviewing this (PI question(s) on this concept)
start by reviewing this (PI question(s) on this concept)

continue with these 2
start by reviewing this
(PI question(s) on this concept)
continue with these 2
no need to spend time on this
next year: review lecture on this

start by reviewing this (PI question(s) on this concept)

continue with these 2

no need to spend time on this
what have i done

• recorded lectures with screen-cast program: ppt-presentation with my voice over

• divided in chunks 3-13 min and added self-assessment quizzes (around 1 every 3 min)
what have i done

• recorded lectures with screen-cast program: ppt-presentation with my voice over

• divided in chunks 3-13 min and added self-assessment quizzes (around 1 every 3 min)

time?
what have i done

• recorded lectures with screen-cast program: ppt-presentation with my voice over

• divided in chunks 3-13 min and added self-assessment quizzes (around 1 every 3 min)

time?

• first lecture module: ~2 weeks

• last lecture module: ~3h
what have i done

• recorded lectures with screen-cast program: ppt-presentation with my voice over
• divided in chunks 3-13 min and added self-assessment quizzes (around 1 every 3 min)
• in-class session prepared to match students needs (individuated through scalable-learning)
Course: Medicinska bildgivande system, HL1202

- Mandatory, 2 year engineering program
- Treats medical imaging with: ultrasound, magnetic resonance, ionising radiation (transmission & emission) + medical photography, optical endoscopy, thermoscopy
- Pre-knowledge for ionising radiation part: 1-variable analysis, Modern Physics
- 35-40 students/year

Ionising Radiation

- TI
- EI
- US
- MRI

2013: no SL
2014: SL
no changes
Comparison of students results on Ion Rad part: 2014 (using Scalable Learning) vs 2013 (no SL)

- **Score (%) on Ionising Radiation, with SL**
 - Avg 43.5%

- **Score (%) on Ionising Radiation, without SL**
 - Avg 37.2%

graphs showing data distribution
Normalisation of data

- 32 students passed the MR-threshold on the 2013 exam, 22 passed the TI-threshold 2014.
- Students’ performance on MR, US and rest (that is total score - score on IonRad) can be used for normalising results of the 2 classes.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>35.2 p (of 66 p)</td>
<td>33.5 p (of 66 p)</td>
</tr>
</tbody>
</table>

Since the results are very close and in favour of the 2013 class, no normalisation is necessary.
extra slides

• these will (most probably) not be used
Changes in teaching 2014 vs 2013

2014:
- Pre-recorded video-lectures with self-assessment questions uploaded on Scalable-Learning (SL) (6 modules). These were mandatory to watch with deadline midnight day before corresponding in-class session.
- In-class session designed after results on self-assessment questions, questions by the students, analysis of lecture statistics from SL. In class-session comprehended: short summary (30’), review of self-assessment questions (30’-1h) Peer-Instruction questions (1h-30’)
- Mandatory laboratory exercises on: Ionising radiation detectors, CT and Gamma Camera (each with reports)
- 1 PBL seminar (2 x 2h, 1 week apart) on design of microCT for small animal imaging

2013:
- 6 Classroom lectures: Presentation of material followed by PI-questions and discussion. Usually 3-5 PI-questions per lecture.
- Mandatory laboratory exercises on: Ionising radiation detectors, CT and Gamma Camera (each with reports)
- 1 PBL seminar (2 x 2h, 1 week apart) on liver cancer imaging with PET
Changes in students participation
2014 vs 2013

2014:
- Video-lectures were mandatory, practically all students watched them and completed the self assessment questions.
- 20-25 students showed up for in-class sessions. According to students own assessment on final survey:

![Bar chart showing attendance]

- Laboratories and seminar were also mandatory so participation was close to 100%.

2013:
- 1 week around 20 students were present at lectures. Following week 35-40 students were attending lectures
- Laboratories and seminar were also mandatory so participation was close to 100%.

Caveat: in 2014 course started with ultrasound while in 2013 Transmission was taught first
Outlook

MCQ | In the in-class session Mamo addressed the questions and doubts I had

I should do better than this with SL!!!!

MCQ | The chance that I will watch again some of the lectures on scalable-learning is (1 low - 5 very high)

OCQ | This is what helped me most for understanding the course material (inonising radiation imagin)
Outlook

MCQ | I read about ionising radiation imaging in the text book

| Number of Students (Out Of 42) | Students
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>no, not at all</td>
<td>6</td>
</tr>
<tr>
<td>only few parts</td>
<td>9</td>
</tr>
<tr>
<td>around 50% of the suggested readings</td>
<td>15</td>
</tr>
<tr>
<td>yes, everything suggested</td>
<td>4</td>
</tr>
</tbody>
</table>
F Lundell & L Filipsson

different strategy
Outlook

F Lundell & L Filipsson

different strategy

1. MCQ | I read about ionising radiation imaging in the textbook
 - No, not at all: 12
 - Only few parts: 18
 - Around 50% of the suggested readings: 6
 - Yes, everything suggested: 4

2. MCQ | Before this course, I knew so much about the interaction of radiation with matter
 - Nothing: 4
 - Very little: 12
 - Something: 18
 - Enough: 0
 - A lot: 4

3. MCQ | Now I know so much about the interaction of radiation with matter
 - Nothing: 4
 - Very little: 12
 - Something: 18
 - Enough: 4
 - A lot: 4
Outlook

F Lundell & L Filipsson
different strategy

this is actually not
part of the course
more details: improve lectures!

HOW?!!?!!

- The number of photons emitted by the source right? not the camera?
 0:30-0:40
Tentative analysis

• Video-lectures increase time with teacher ...
• ... and more time is left for discussion during in-class session
• There is a clearer stepwise increase in Bloome's taxonomy for the different activities
• ... but fewer students participated in in-class sessions
• NEW => there's room for improving video-lectures (SL helps!) and in-class sessions

one extra observation

2 students from previous year got access to SL and their scores were 44% & 39%
Re-exam results are better than usual.
Other things to consider (independent of SL)

- Result is still low

- Final is testing “deep” learning, no or very few points are awarded for rote-learning. This seems to pose a great challenge.

- SL seems to improve student’s learning but more has to be done. A goal of an average of around 60% for the class as a whole is reasonable.

- Area of improvement: make student better understand how labs and seminars should be used. Create environment that encourage discussion among students and asking teachers (99% of the questions outside classroom were not on the material)