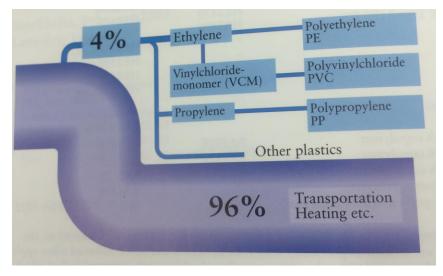
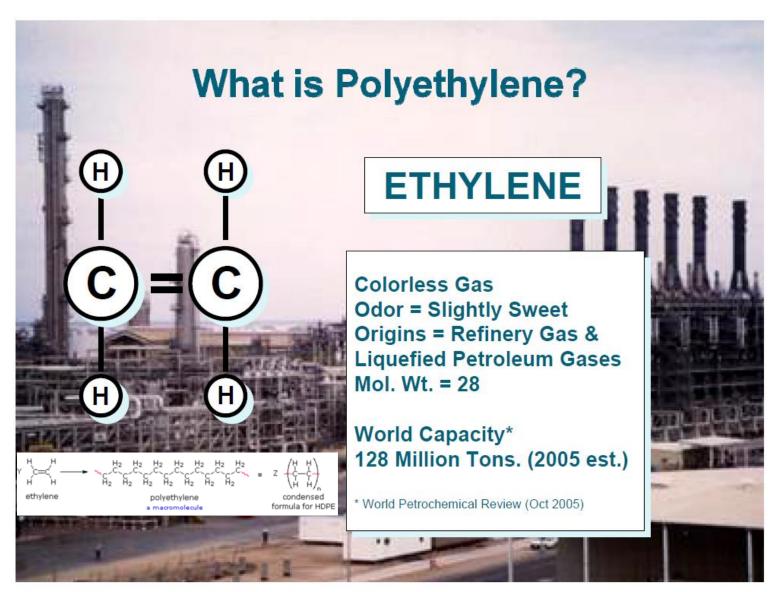
Characterization of Polyethylene Pipes Used in Ground Heat Exchangers

Adib Kalantar

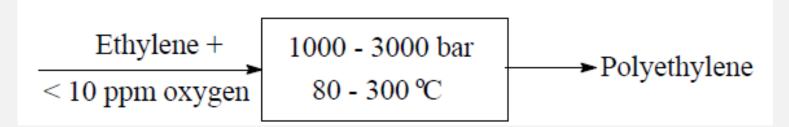
adib.kalantar@muovitech.com

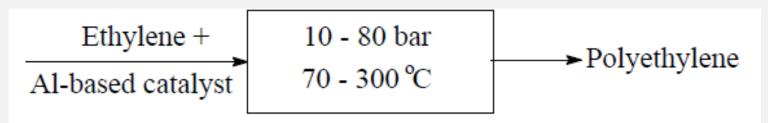

Stockholm KTH 2016 09 15

Introduction


- Bioplastics
- Fossil-fuel plastics
- Biodegradable plastics

Ref.: Palstice pipe for water supply and sewage disposal



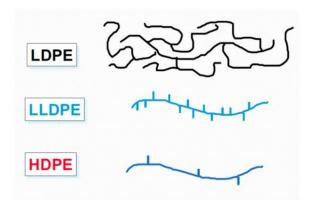


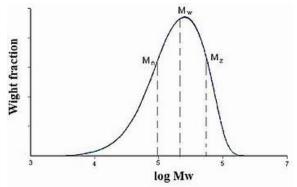
Polyethylene(PE) Structures

In 1932 by ICI

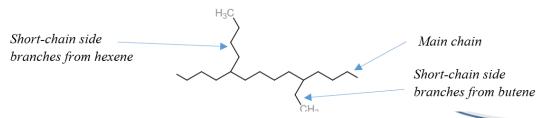
In1952 by Ziegler-Natta

Changing Properties of PE

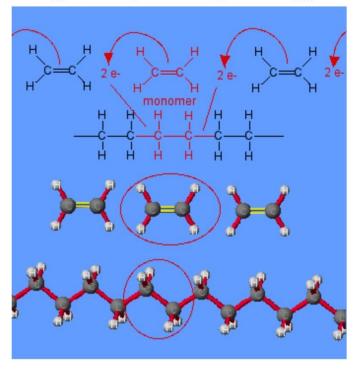

Low density polyethylene (LDPE)
 high temp and high pressure, long side


chains, low density, (eg. Plastic bags) **Properties**: soft, flexible and translucent with a waxy surface and

hydrophobic


High Density Polyethylene
 (HDPE) lower temp and pressure, very few short branches, dispersion forces more effective, high density (eg. plastic bottles)

Properties: rigid, stronger and less blurry than LDPE, slightly flexible, waxy surface and hydrophobic

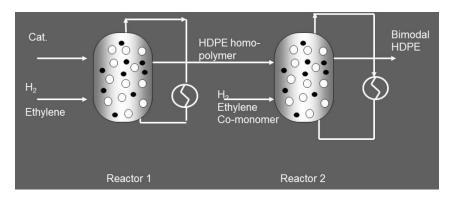

GSHP Convention

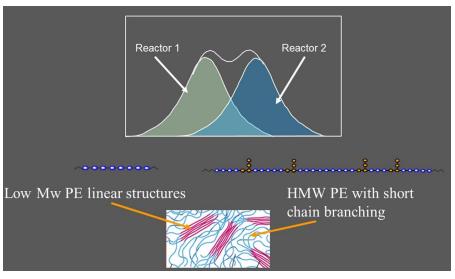
Ethylene & Polyethylene

$$n \begin{bmatrix} H & H \\ | & | \\ C = C \\ | & | \\ H & H \end{bmatrix} \longrightarrow \begin{bmatrix} H & H \\ | & | \\ C - C \\ | & | \\ H & H \end{bmatrix}_{n}$$

PE Pipes Development

Generation	Period	Development	
1st	~1970′ s	LD (PE32, PE40) HD (PE50, PE63)	
2nd	~1980′ s	MD (PE80) ~1990's HD (Unimodal PE80)	
3rd	∼present	MD (Bimodal PE 80) HD(Bimodal PE80, PE100, PE100+)	


In US PE4710 introduced to the market in 2005


- 4 shows physical property, density(>0,947 to 0,955 g/cm³)
- 7 shows performance property, SCG (500 h PENT)
- 10 shows design stress for water (1000 psi)

Bimodal PE Process & Distribution

Source: http://fr.slideshare.net/yogeshdev7/sabic-pe100-andpe100plusmaterialsandpipesho

Advantages of the Bimodal PE

- Low molecular fraction gives:
- ✓ Good processability
- ✓ High stiffness
- ✓ High crystallinity

- High molecular fraction gives:
- ✓ High resistance to slow crack growth

PE Pipe Properties

Characteristic	Standard	PE 80	PE 100
Minimum Required Stress, MRS	EN ISO 9080	8 MPa	10 MPa
Density to 23° C	ISO 1183	0.94 g/cm ³	0.95 g/cm ³
Melt mass- flow rate (MFR)	EN ISO 1133	± 20% RM	± 20% RM
Min. Tensile strength	EN ISO 6259	15 MPa	19
Elongation at break	EN ISO 6259	350 %	350 %
Oxidation induction time - OIT	ISO 11357-6	>20 min	>20 min
Hydrostatic strength 20°C, 100 h	EN ISO 1167	10 MPa	12.4 MPa
Hydrostatic strength 80°C, 165 h	EN ISO 1167	4.6 MPa	5.5 MPa
Hydrostatic strength 80°C, 1000 h	EN ISO 1167	4 MPa	5 MPa
Resistance to slow crack growth e ≤ 5mm – Cone test	ISO 13480	s ≤ 10 mm/day	s ≤ 10 mm/day
Resistance to slow crack growth e > 5 mm – Notch test	EN ISO 13479	SDR 11 - 8 bar	SDR 11 – 9.2 bar
Resistance to rapid crack propagation — Critical pressure Pc	ISO 13477	1.5 MOP	1.5 MOP
Longitudinal reversion	EN ISO 2505	≤ 3%	≤ 3%

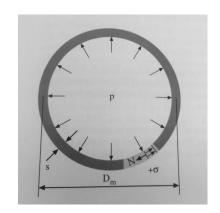
Internal Hydrostatic Pressure

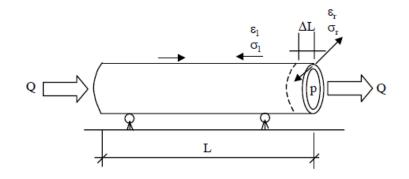
Hoop stress:

$$\sigma_r = \frac{p}{2}(SDR - 1)$$

(e.g.: P = 3 bar, hoop stress would be 2,4 MPa for a collector 40*2,4mm)

Longitudinal stress:

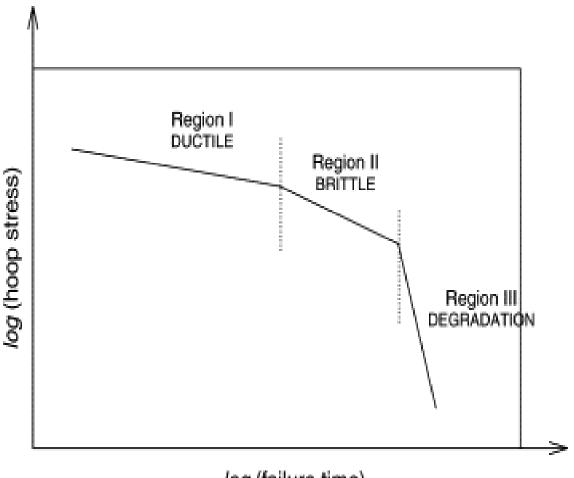

$$\sigma_{lmax} = \frac{v \cdot p}{2} (SDR - 1)$$


Note: the hoop stress shall not be exceeded the desgin stress for a given PE pipe

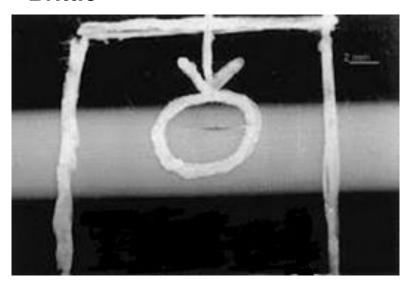
$$\sigma_s = \frac{\text{MRS}}{C}$$

Maximum operating pressure:

$$MOP = \frac{20 \times MRS}{C \times (SDR - 1)}$$



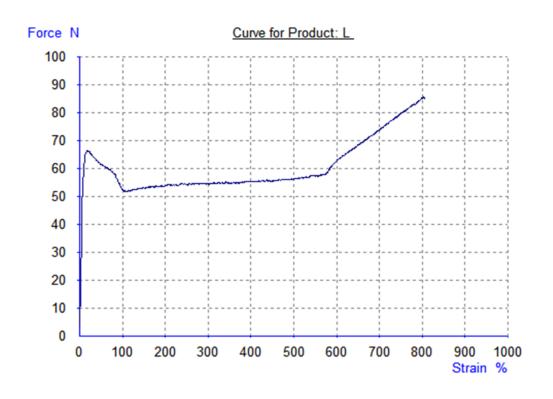
Temperature-Time-Pressure


log (failure time)

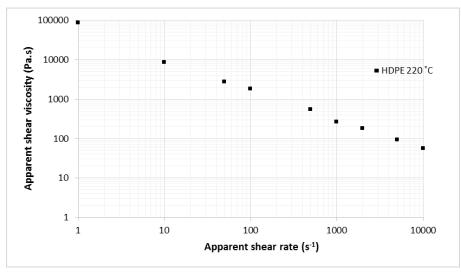
Failures Behaviour

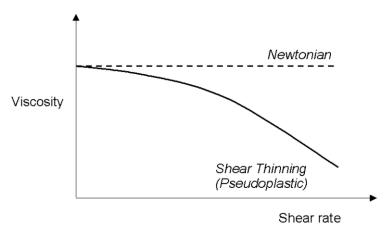
Brittle

Ductile


MuoviTech

Rapid crack propagation in 315 mm SDR 17 PE80 pipe


Mechanical Properties of PE



Rehological Properties of PE Melt

Summery

- PE pipe characteristics:
- A very wide range of material
- Light in weight & very flexible
- Good chemical & corrosion resistance
- Has long life
- Can be easily joined by mechanical fittings & welding methods
- It is needed dedicated standards for GSHP applications
- More research activities in post-polymerization

For further information and questions contact us: adib.kalantar@muovitech.com

Thank you!

