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Abstract

In this thesis, I study five different benchmark Gamma-ray bursts and predict the re-
sulting neutrino fluxes for each. I use the multi-shell internal shock model, following a
paper published by Bustamante et al. (2016) [17]. The secondary particle distributions
are calculated with a semi-analytical model instead of using a Monte-Carlo simulation
software, following a procedure outline by Hümmer et al. (2010) [8]. The final all sky
flux predictions are compared to IceCube’s recently published upper limit [4]. Three out
of five Gamma-ray bursts predict neutrino fluxes so high, that they can be discarded by
the IceCube upper limit at a 90 % CL. By varying the energy fractions given to protons,
electrons, and magnetic field, I find that the fluxes can be decreased below the upper
bound.

Sammanfattning

I denna avhandling studerar jag fem olika modell-gammablixtar (eng. Gamma-ray bursts)
och förutsäger det resulterande neutrinoflödet. Jag använder multi-skal interna stöt mod-
ellen, följandes en artikel publicerad av Bustamante et al. (2016) [17]. De resulterande
partikeldistributionerna är framtagna med hjälp av en semi-analytisk modell istället för
via en Monte-Carlo simulation, via en procedur beskriven av Hümmer et al. (2010) [8].
De slutgiltiga förutsägelserna av de himlatäckande flödena jämförs med IceCubes nya
övre gränsvärde [4]. Tre av fem gammablixtar förutsäger neutrinoflöden som är s̊a höga,
att de kan förkastas med hjälp av IceCubes övre gräns med 90 % konfidensintervall.
Genom att variera br̊akdelen energi given till protoner, elektroner och magnetiskt fält,
fann jag att flödena kunde minskas under gränsvärdet.
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Chapter 1

Introduction

The most luminous events that we know of in the entire universe are gamma-ray bursts
(GRBs). GRBs are so energetic that when one occurs, it can briefly outshine its entire
host galaxy. They were first discovered in 1967 by the satellite Vela 4, a satellite launched
by the Americans during the cold war whose mission it was to observe if the Russians
did any illegal nuclear bomb testing. The Vela missions did detect something, but the
data did not match that of a nuclear bombing. What they had recorded was extremely
high energetic photons coming from outer space; the first GRB had been discovered [1].

When these observations were finally revealed to the public, it resulted in a lot of
different ideas and speculations. Since then, much more data has been acquired, which
has greatly increased our understanding. GRBs are an incredible energy release during
a short period of time that we detect as high energy γ-rays, as well as other frequency
radiation. They are fascinating, because they are very diverse in their behavior, and
this has made them very difficult to categorize. In 1993 however, it was shown that
they are bimodal in duration [2]. Less than one fourth of GRBs are short (SGRBs) [3],
defined as shorter than 2 seconds in duration, while the rest are long GRBs (LGRBs)
with duration ranging from 2 seconds up to several hours. It is now firmly believed
that these two types have different physical progenitors, meaning that they are caused
by different phenomenon. LGRBs have been linked to supernovae (SNe) of type Ib/c
where the parent star has collapsed into a black hole, while the SGRBs are believed to
be caused by merging neutron stars with either another neutron star (NS-NS) or with a
black hole (NS-BH), but this is still being debated [3]. Due to LGRBs being both more
common and longer, they have been studied more closely than SGRBs. In this thesis, I
will focus only on LGRB (which will here on out be referred to as simply GRBs), even
though much of the process could be applied to SGRB.

Although GRBs have been studied for several decades now, there is still no general
consensus on a complete physical picture. One of the historically most popular models
has been the internal shock model. While it has several advantages that lead it to its
initial popularity, it also has major problems. One of these problems is that the internal
shock model is predicted to produce a huge flux of neutrinos. So far, this signal has not
been detected and neutrino telescopes such as the IceCube neutrino observatory keep on
lowering the upper limits on neutrino fluxes from GRBs [4].
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1.1 Purpose

The purpose of this thesis, is to make detailed predictions of the neutrino fluxes in the
multi-shell internal shock model for five benchmark GRBs, and to compare these to newly
released IceCube data [4], to see if the predicted fluxes are above or below their upper
limit.

1.2 Outline of the Thesis

The thesis will begin by supplying the reader with necessary background information, so
that what follows is more easily understood. Following the background chapter are two
chapters in which I outline how to obtain a neutrino spectrum from general proton and
photon spectra. This procedure has naturally been divided into two chapters, because
roughly one half of the process lies in obtaining the pion spectra, treated in chapter 3,
while the other half is obtaining the neutrino spectrum from the decaying pions, treated
in chapter 4.

The simulation of the multi-shell GRBs, together with how all results are calculated,
will be described in chapter 5. The results are shown in chapter 6, together with a
discussion section on how the work could be refined. A final conclusion is presented in
chapter 7.

1.3 Author’s Contribution

All plots and figures were made by the author. In the case they have been reproduced
from or inspired by someone else’s work, this is clearly stated. The results obtained, the
making of the simulation and the writing of the thesis are all the author’s own original
work.
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Chapter 2

Background information

This chapter will focus on supplying the reader with some necessary background infor-
mation. The following two sections on the internal shock model and the photosphere of
a GRB only gives some basic information, and I urge the curious reader to look into one
of the many good reviews about GRBs and ongoing research, for instance [3] by Asaf
Pe’er (2016).

2.1 Internal shock model

There is disagreement in the scientific community about several things regarding GRBs.
There is for instance much debate as to what process accelerates the outflows in the jet
to such relativistic speeds. Furthermore, it is unclear how the kinetic energy is converted
into the high energy radiation that we detect. Without caring about the process behind
jet acceleration, (possibly due to magnetohydrodynamic acceleration, [5]), the internal
shock model predicts that it is collisions between different regions in the jet that dissipates
the kinetic energy, which thereafter is radiated away by synchrotron radiation and inverse
Compton emission.

In the initial stages, close to the progenitor, fluctuations will be flattened out by
interactions within the ejecta, but after a certain distance there will be different regions
of the ejecta that are too far apart to influence one another. These regions, called
shells, can have different properties such as different bulk Lorentz factors Γ and different
masses. If the difference in Γ between two subsequent shells is large enough, effective
energy conversion is possible [3].

As mentioned in the introduction, GRBs are very diverse. This can be seen from the
different light curves in figure 1 in [3]. The light curves seem to come in all different
shapes: some have a quick rise followed by an exponential decay, some have one, two, or
more delta spikes, while yet others have what seems like completely random and chaotic
behavior. To find a model that can mimic all these shapes has proven difficult. Here, the
internal shock model has been successful in reproducing a wide variety of observed shapes.
Because of this, together with a plausible explanation for efficient energy conversion and
other reasons, the internal shock model has long been a favorite amongst scientists as
the main process behind GRBs prompt emission. However, there are several drawbacks.
One of the biggest is that for a GRB to acquire the high efficiency that is observed, the
spread in initial Γ has to be very high, a spread which is difficult to explain with realistic
progenitors [3, 6]. Another large drawback is that the predicted neutrino flux is so high,
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that neutrino telescopes such as IceCube should have picked up a signal by now. This
thesis will focus on the latter of these problems, although the efficiency problem will be
briefly discussed in section 6.2.1.

2.2 Photosphere

Due to the extreme energy outburst in the central engine of a GRB, the temperature is
initially high enough for pair production to occur. In the first phase, photons will interact
strongly with the electrons associated with baryons, and the produced electrons and
positrons; the plasma is optically thick. As the fireball keeps expanding, the temperature
drops and electrons and positrons recombine. At some point in the expansion, the plasma
will become optically thin, which means that the optical depth τ will drop below one
and photons can escape the plasma and reach earth. The radius at which this transition
occurs is called the photospheric radius rph. Of course, the probability for a photon
escaping the plasma is never none-zero, no matter how large τ is, just as a photon
created above the photospheric radius might scatter.The spectra observed at earth is a
superposition of all these photons. In this thesis however, I have used the simplification
to discard all photons created at r < rph, and account for all photons created at r > rph.
The implication of this simplification is discussed in section 6.2.2.

The derivation to find the expression of the photosphere will follow the one in chapter
3.2.5 in [3]. The optical depth in the radial direction is given by

τ =

∫ ∞
r

n′eσTΓ(1− β cos θ)dr′, (2.1)

where n′e is the comoving electron density, σT is the Thomson cross section, Γ is the
bulk Lorentz factor of the outflow, θ is the angle to the line of sight, and β is the
outflow velocity. The integral is over radial distance. When the photons decouple at the
photosphere, the temperature have dropped below the pair production temperature, and
the electron number density will be dominated by electrons associated with protons, i.e.,
n′e ≈ n′p. The number density of protons is given by the mass ejection rate Ṁ divided by
proton mass and volume as

n′p ≈
Ṁ

4πmpr2cΓ
, (2.2)

where the width of the ejecta is the length it reaches per second, which is v′ = vΓ ≈ cΓ.
Inserting the expression above into equation (2.1) and rewriting (1 − β) = (2Γ2)−1 one
gets

τ =
ṀσT

8πmprcΓ2
, (2.3)

after integration and approximating cos θ = 1 (radiation traveling along the line of sight).
The photospheric radius is defined as τ(rph) ≡ 1 and so one gets the expression for the
photospheric radius as

rph =
ṀσT

8πmpcΓ2
. (2.4)
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2.3 Neutrino production chain

In the collisions between the different shells of the outflow, there will be huge amounts of
energy released. This energy will first raise the internal energy of the shell and generate a
magnetic field over the shock. Particles will be accelerated in the created magnetic field
and the excess energy will soon be lost due to the synchrotron cooling of the accelerated
particles. After a collision, there will be high energy protons and photons in abundance in
the shell. In the inevitable high energy photohadronic interactions (interactions between
photons and hadrons), π0, π+, and π− will be produced. Neutrinos are then produced in
the decay chain of the charged pions:

π+ → µ+ + νµ,

µ+ → e+ + νe + ν̄µ,
(2.5)

and

π− → µ− + ν̄µ,

µ− → e− + ν̄e + νµ.
(2.6)

Therefore, to predict the neutrino flux, one first has to obtain the pion distribution. The
neutral pions most common decay is

π0 → 2γ (2.7)

with a branching ratio of 98.8 %, and less then 0.1 % of all π0 decays result in neutrino
production [7]. Therefore, the contribution from neutral pions can safely be neglected in
this work.
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Chapter 3

Pion spectra

The simulation, outlined in chapter 5, will produce proton and photon distributions for
each shell collision in the simulated GRB. In high energy photohadronic interactions, π0,
π+, and π− are produced, and neutrinos are produced in the subsequent decay of the
charged pions. Thus, the scheme will be to first acquire the pion distribution in this
chapter, and thereafter get the neutrino spectra in chapter 4.

Calculating the neutrino spectra from a given proton p and photon γ distribution is
no trivial task. This chapter and the next will describe the procedure in detail. I have
decided not to work in a Monte Carlo simulation program to generate the secondary
particle spectra, but rather use a semi-analytical approach. The advantage of this is that
it gives more insight of the different contributions and what assumptions are viable and
not. It is also much faster than a full scale Monte Carlo simulation.

The procedure is taken from a paper by Hümmer et al. (2010) [8]. In it, they
describe both full scale and simplified methods of obtaining the neutrinos. Their paper
has been followed in detail and when necessary, I indicate which method I have used to
avoid ambiguity. They have in turn followed the code behind a Monte Carlo simulation
software called SOPHIA (Simulations Of Photo Hadronic Interactions in Astrophysics) [9]
developed as a tool for problems involving photohadronic interactions in an astrophysical
setting. Hümmer et al. (2010) have made simplifications to make an analytical approach
possible. The procedure outlined in this chapter is general and can be applied to arbitrary
p and γ distributions.

In this chapter and the next, I will work mainly in the shock rest frame (SRF) as
opposed to the observer frame (OF). However, keep in mind that the resulting neutrino
spectra obtained are in the SRF, and need to be Lorentz boosted into the OF.

3.1 Interactions considered and chapter outline

High energy photohadronic interactions can create pions through several different interac-
tions. While there are simplifications where one only account for the lowest ∆-resonance
interaction, (see equation (1) in Hummer et al. (2010) [8]) I have decided to use a more
accurate and refined approach to calculate the pion spectra. This makes it possible to
differentiate between neutrinos and antineutrinos and different neutrino flavors in the
end, as well as the possibility to predict the shape of the neutrino distribution. The cost
of this accuracy is transparency and simplicity, and this section will focus on explaining
the procedure as simply as possible.
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The contribution to neutrino production from pp collision will not be considered. Even
though the cross section for pp interaction is larger than for pγ, the density of protons
in the ejecta is so much lower than the photon density, that pγ collisions outnumber pp
collisions by at least two orders of magnitude [10, 11]. Furthermore, I have not included
kaon decay, as its effect on the final peak height of the neutrino fluxes is relatively
small [8].

In sections 3.2 - 3.6, I will derive a formula for pion production, that is general for all
different pion production channels. In section 3.7, I will describe the three production
channels treated in this thesis: resonances, including higher resonances, direct production
(t-channel), and multipion production. The last three sections will focus on each of these
production channels in turn.

3.2 Photon energy in the proton rest frame

The cross sections for all different interactions are more easily expressed as a function of
photon energy the proton rest frame (PRF), εr, while my simulation will generate the
proton and photon energy distributions in the SRF. To proceed, it is therefore necessary
to have an expression for εr in terms of E, the proton energy in the SRF, and ε, the
photon energy in the SRF. This can be obtained using the equality of four-momentum
squared in the SRF and the PRF:

(pp + pγ)
2
SRF = (pp + pγ)

2
PRF. (3.1)

In the SRF, the proton and the photon have four-momenta

pp,SRF = γp

(
mpc,mpvp

)
SRF

, pγ,SRF =

(
ε

c
,
εvγ
c2

)
SRF

,

where mp is proton mass, c is the speed of light in vacuum, and vi is the velocity of
particle i. The sum of their four momenta squared is

(pp + pγ)
2
SRF = p2

p + p2
γ + 2pppγ =

m2
p + 0 + 2

(
γpmpc

ε

c
− γpmpvp ·

εvγ
c2

)
,

(3.2)

which, with vp · vγ = vpc cos θ becomes

(pp + pγ)
2
SRF = m2

p + 2γpmpε (1− βp cos θ) . (3.3)

This should be compared to the four-momenta squared in the PRF:

pp,PRF = (mpc, 0)PRF, pγ,PRF =

(
εr
c
,
εrv̄
′
γ

c2

)
PRF

.

Their sum squared becomes

(pp + pγ)
2
PRF = m2

p + 0 + 2mpεr, (3.4)

Setting equation (3.3) and (3.4) equal yields

2γpmpε (1− βp cos θ) = 2mpεr (3.5)
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which can be solved for εr as

εr = γpε (1− βp cos θ) (3.6)

Finally, putting γp = E/(mpc
2) one gets

εr =
Eε

mpc2
(1− βp cos θ) ≈ Eε

mpc2
(1− cos θ), (3.7)

with βp ≈ 1.

3.3 Pion production rate

As mentioned, pγ interactions can produce pions in several different ways. For each
interaction there are many things that contribute to the production rate. Considering
pions created with final energy Eπ, what factors need to be taken into account? Because
the number of photons is much greater than the number of protons, the number of
available protons Np(E) that can produce a pion of energy Eπ is one limiting factor.
This factor must however be multiplied by a term dnIT

E→Eπ/dEπ, which accounts for the
distribution of pion energies a proton of energy E can produce. In more detail, a proton
with energy E might be able to create a pion in a whole range of energies, where Eπ
is only one possibility. Therefore, only a fraction of the protons with energy E will
actually create pions with energy Eπ, and the term dnIT

E→Eπ/dEπ generates this fraction.
Furthermore, this term accounts for the fact that created pions have lower energies than
their parent protons. The function dnIT

E→Eπ/dEπ is a function of both the parent proton’s
and the daughter pion’s energies. The last factor that contributes is the interaction rate
probability per particle and unit time that a proton with energy E will interact with a
photon and create a pion; if we don’t take this term into account, it would indicate the
number of created pions would equal the number of initial protons, which is obviously
untrue. This term, we denote ΓIT

p→π and it is only a function of proton energy.
Putting these together, the number of pions created per energy and time for a specific

interaction IT is given by

QIT
π (Eπ) =

∫ ∞
Eπ

dENp(E)
dnIT

E→Eπ
dEπ

(E,Eπ) ΓIT
p→π(E), (3.8)

where the integral starts at Eπ, as protons with E < Eπ are assumed to be unable to
create a pion with energy Eπ. This is the pion production rate for interaction IT. To
obtain the total number of pions produced, one has to integrate over time.

Equation (3.8) includes all pion species and gives you no information about the ratios
between the species. Therefore, one needs to include the so called multiplicity M IT

πi , where
i = 0,+,−. The multiplicity accounts for the ratio in which the species are created. For
instance, consider the lowest ∆-resonance

p+ γ → ∆+ →

{
n+ π+ 1/3 of the cases

p+ π0 2/3 of the cases,
(3.9)

where the proton interacts with the photon to create a ∆+ baryon that subsequently
decays in one of the two channels mentioned above. In this case, the reaction can yield a
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π+ or a π0 as end product and the multiplicity M IT
π tells you how likely each branch is.

The multiplicity is in general a function of energy as well, but in this thesis it will be taken
as a constant, but will of course differ for different interaction. Thus, the production rate
of a specific species i of pions is

QIT
πi (Eπ) = M IT

πi Q
IT
π (Eπ), (3.10)

where I have omitted an i as a superscript on Eπ, as the species dependency is completely
covered in M IT

π,i. The total production rate of pions of pion species i is then obtained by
summing over all different interactions:

Qπi(Eπ) =
∑
IT

M IT
πi

∫ ∞
Eπ

dENp(E)
dnIT

E→Eπ
dEπ

(E,Eπ) ΓIT
p→π(E). (3.11)

From this point on, the goal with this chapter is to obtain expression for these quan-
tities, and to do so for each interaction.

3.4 Interaction rate probability

The interaction rate probability ΓIT
p→π(E) of a proton is dependent on its reaction partner,

in this case the photon distribution, and the cross section for the interaction σIT. The
cross sections are most easily expressed in the PRF, and it is therefore a function of εr.
But εr is in turn dependent on both E and ε, as well as the angle θ between their momenta
in the SRF; a head on collision results in more available energy than a collision where
the proton and photon have their momenta almost aligned. The interaction probability
rate is therefore a double integral

ΓIT
p→π(E) = c

∫
dε

∫ +1

−1

d cos θ

2
(1− cos θ)× nγ(ε, cos θ)σIT(εr). (3.12)

Please observe that primes are omitted, but that nγ is in the SRF. The term c appears
because the number of photons that the proton could possibly react with in a second is
those within distance c.

For reasons that will soon become apparent, it is easier to rewrite the integral over
cos θ as an integral over εr instead, and this can be easily done. Equation (3.7) gives that


cos θ = −1 → εr = 2Eε

mp

cos θ = 1 → εr = 0

1− cos θ = εrmp
Eε

d cos θ = −mp
Eε
dεr,

(3.13)

where mp is in GeV (factor of c2 left out) and thus∫ +1

−1

d cos θ

2
(1− cos θ) =

1

2

(mp

Eε

)2
∫ 2Eε

mp

0

εr dεr, (3.14)

where the minus sign from the derivative term has been canceled by switching the limits
in the integral.
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If one assumes an isotropic photon distribution in the SRF, then nγ(ε, cos θ) = nγ(ε)
and the interaction rate probability is

ΓIT
p→π(E) = c

∫
dε nγ(ε)×

1

2

(mp

Eε

)2
∫ 2Eε

mp

0

εr dεr σ
IT(εr), (3.15)

3.5 Pion distribution term

The pion distribution term dnIT
E→Eπ/dEπ represents the probability for a pion with energy

Eπ to be created by a proton with energy E. I will make two assumptions. First, in
the SRF the protons have much higher energies than the photons, and therefore the
pion energy can be written as a fraction of the proton energy only, Eπ = χIT(εr)E,
where χIT(εr) is the mean fraction of proton energy received by the pion as a function of
εr. Secondly, I assume the pion distribution to be sufficiently peaked around the mean
energy. In this case, the distribution can be approximated by a delta function

dnIT
E→Eπ
dEπ

(E,Eπ) ' δ
(
Eπ − χIT(εr)E

)
. (3.16)

Although this will be a crucial simplification, the fraction χIT(εr) can be pretty compli-
cated by itself.

3.6 Common to all production channels

The rate of pion production for a specific energy Eπ, is given by inserting equations (3.15)
and (3.16) into equation (3.11)

Qπ(Eπ) =

∫ ∞
Eπ

dE

E
Np(E) · c

∫ ∞
εthmp

2E

dε nγ(ε)×∑
IT

1

2

(mp

Eε

)2
∫ 2Eε

mp

εth

dεr εr σ
IT(εr)M

ITδ

(
Eπ
E
− χIT(εr)

)
,

(3.17)

where the i indicating pion species has been dropped, as the theory is identical for all
species. Observe that a factor of E−1 has appeared in the first integral, because of the
devision by E in the δ-function. Furthermore, the lower limit in the integral over εr is
set to start at the threshold energy εth = 150 MeV below which the cross sections for all
interactions are zero, and the lower limit in the photon integral has been set to match
the lower limit of εr.

The integral over εr above was derived from an integral over interaction angle θ in
section 3.4. Thus, an interpretation for the δ-function in the εr integral is that, for each
value of Eπ, E, and ε that are given, there will be a singular angle θ with which the
proton of incoming energy E could be reduced to a pion with energy Eπ, under the
conservation of linear momentum. This angle is transformed into a unique value in εr.

3.7 Three different production channels

Everything described so far has been general and can be applied to all different interac-
tions. To continue, it is necessary to look at the individual interactions themselves.
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This section will list the three production channels for pions included in this thesis.
These will in turn be divided further into different interactions. The three production
channels are Resonances, Direct production, and Multipion production.

Resonances. Resonances are excited baryon states that often have short lifetimes.
When they decay, they often produce pions. I take into account three different sub-
interactions for resonances, which I will denote R1, R2, and R3.

The first of these, R1, produces one pion through

p+ γ
∆,N−−→ p′ + π, (3.18)

where p′ can be either a proton or a neutron, resulting in the creation of a π0 or a π+

respectively. Here, ∆, N indicates that the reaction occurs through an virtual excited ∆
particle (∆-resonance) or excited nucleon (N -resonance)

The second one, R2, results in two created pions through the decay of a higher
resonance into a pion plus a lower resonance, which in turn decays into a nucleon and a
second pion through the decay chain

p+ γ
∆,N−−→ ∆′ + π, (3.19a)

∆′ → p′ + π′. (3.19b)

The energies of the two created pions will of course be different, and so they have different
values of the fraction χ. It is therefore easier to split the interaction into two parts and
say that the first pion is created through interaction R2a and the second through R2b.

Lastly there is R3, which also creates two pions in total. In this case, the resonance
creates a ρ-meson and a nucleon, and the ρ-meson then decays into two pions:

p+ γ
∆,N−−→ ρ+ p′,

ρ→ π + π′.
(3.20)

Direct production The reactions described in equations (3.18) and (3.19) can also
occur in the t-channel, through the direct exchange of a pion between the proton and the
photon instead of through a virtual baryon resonance. These interactions, I will denote
T1 and T2. The photon can only couple to the charged pions however, so for example
for T1, only the reaction p + γ → n + π+ is possible.

Multipion production For higher values of εr, i.e., when there is more available en-
ergy, multipion production becomes the most important production channel. It is called
multipion production because at high enough energies (εr > 0.5 GeV) QCD fragmenta-
tion becomes possible, creating jets of particles. This leads to several pions being created
in each pγ interaction. There will be many interactions considered in this category, as
explained in section 3.10 regarding multipion production.

For both direct production and multipion production, I will use approximative models.
Why, and how these look will be described in their respective sections.

3.8 Resonances

The resonances are dealt with following chapter 3 in Hümmer et al. (2010) [8]. This is
their most detailed approach for calculating resonances. It is the only one of the three
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production channels that will be dealt with in such detail, the other two will be done
using a simplified model in each case.

In pγ-interactions several different resonances are possible, depending on the incoming
particles energies. In this thesis we will take into account nine different ∆- and N -
resonances, listed in Hümmer et al. (2010) table 2 [8].

Cross sections for photohadronic resonances, given in µbarn below, are described by
the Breit-Wigner formula. For the spin J , the nominal mass M and the width Γ of the
resonance, it takes the expression

σIT
BW =

s

(2mpεr)2

4π(2J + 1)Bγ Bout sΓ2

(s−M2)2 + sΓ2

= BIT
out

s

ε2r

σIT
0 (ΓIT)2s

(s− (M IT)2)2 + (ΓIT)2s
,

(3.21)

where
√
s is the total CMF energy available, related to εr as

s(εr) = m2
p + 2mpεr. (3.22)

the vector BIT
out contains the fractions for each interaction R1, R2, and R3. (As an

example, for the lowest resonance ∆(1332) that can only interact through R1, BIT
out =

[1, 0, 0]). The values of BIT
out, σ

IT
0 , ΓIT, and M IT are given constants, listed for each of

the nine resonances in Hümmer et al. (2010) table 2 [8]. To account for phase-space
reduction near the threshold, equation (3.21) has to be multiplied by a function Rth:

RIT
th =


0 if εr ≤ εITth ,
εr−εITth
wIT if εITth < εr < wIT + εITth ,

1 if εr ≥ wIT + εITth ,

(3.23)

with εITth and wIT also listed in Hümmer et al. (2010) table 2 [8]. Thus, the cross section
used for the resonances are

σIT
R = RIT

th · σIT
BW. (3.24)

The cross sections for the nine different resonances and how they vary with energy can
be seen in figure 3.1.

The function χIT that appears in the delta function in equation (3.17) gives the
fraction of the proton energy received by the pion. It is completely determined by the
kinematics of the specific interaction and a derivation can be found in section 3.2 in [8].
The fraction χIT for the different interactions are

Interaction R1:

χ1(εr) =
2mpεr +m2

π

4mpεr + 2m2
p

(1 + βCM
π cos θπ) (3.25)

Interaction R2a:

χ2a(εr) =
2mpεr +m2

p −m2
∆ +m2

π

4mpεr + 2m2
p

(1 + βCM
π cos θπ) (3.26)
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Figure 3.1: Cross sections as function of εr for the nine different resonances. The green lines
corresponds to ∆-resonances and the blue to N -resonances. The red line is the total. Figure

reproduced from Hümmer et al. (2010) [8].

Interaction R2b:

χ2b(εr) =
1

2

2mpεr +m2
p −m2

π +m2
∆

4mpεr + 2m2
p

·
m2

∆ −m2
p +m2

π

2m2
∆

(1 + βCM
∆ cos θ∆) (3.27)

Interaction R3:

χ3(εr) =
1

2

2mpεr +m2
ρ

4mpεr + 2m2
p

(1 + βCM
∆ cos θ∆), (3.28)

where the superscripts of χ refers to the different interactions given in equations (3.18),
(3.19), and (3.20) respectively. The other terms are: mi, the mass of particle i with
∆ = ∆(1232), βCM

i , the speed of particle i in the center of mass frame (CMF), and θi,
the angle of emission for particle i. Note that all masses are given in GeV, and that both
mρ and mp appears in χ3(εr).

All resonances have to first approximation 〈cos θi〉 ' 0, which simplifies the equations
for χIT. With this simplification, once can find εr = εITr,0 that satisfy

Eπ
E
− χIT(εr) = 0. (3.29)

From the properties of the Dirac δ-function we know that if the δ-function has a function
g(x) as its argument, the following relation holds:

δ(g(x)) =
∑
x0

δ(x− x0)

|g′(x0)|
, (3.30)

where the sum is taken over all zeros of g(x), i.e., g(x0) = 0, and |g′(x0)| is the absolute
value of the derivative evaluated at x0. Labeling gIT(εr) = Eπ/E−χIT, the derivatives can

15



be computed from equations (3.25) - (3.28). Although rewriting it in the form requires
computing the derivatives as well, one gains the great advantage of not having to evaluate
the integral over εr.

Inserting the different expressions for χ given in equations (3.25) - (3.28) and putting
cos θπ = 0, the zeros of gIT(εr) are the following:

Interaction R1

ε1r,0 =
m2
πE − 2m2

pEπ

4mpEπ − 2mpE
. (3.31)

Interaction R2a

ε2a
r,0 =

E(m2
p +m2

π −m2
∆)− 2m2

pEπ

4mpEπ − 2mpE
. (3.32)

Interaction R2b

ε2b
r,0 =

a · E(m2
p +m2

π −m2
∆)− 2m2

pEπ

4mpEπ − 2mpE · a
, (3.33)

where a =
m2

∆−m
2
p+m2

π

2m2
∆

.

Interaction R3

ε3r,0 =
m2
ρE − 4m2

pEπ

8mpEπ − 2mpE
. (3.34)

The derivatives can also be computed from equations (3.25)-(3.28):

Interaction R1

g′ 1(εr) = −
m2
p −m2

π

mp(2εr +mp)2
. (3.35)

Interaction R2a

g′ 2a(εr) = − m2
∆ −m2

π

mp(2εr +mp)2
. (3.36)

Interaction R2b

g′ 2b(εr) = − m2
π −m2

∆

mp(2εr +mp)2
· a, (3.37)

where a =
m2

∆−m
2
p+m2

π

2m2
∆

.

Interaction R3

g′ 3(εr) = −1

2

m2
p −m2

ρ

mp(2εr +mp)2
. (3.38)

With the cross section in equation (3.1), the δ-function written as in equation (3.30),
and the expressions for εITr,0 and g′ IT given above, the contribution from resonances is
calculated using equation (3.17).

3.9 Direct production

The cross section for direct production is of course different from those of the resonances
(see figure 3.2 for the energy dependence of the cross sections for the different production
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Figure 3.2: Energy dependence of σ for the different production channels. All interactions
for each production channel have been summed to create the plot. Figure reproduced from

Hümmer et al. (2010) [8].

channels). The cross sections for direct production are taken from SOPHIA [9] as

σT1(εr) = Θ(εr − 0.152)

[
92.7 Pl(εr, 0.152, 0.25, 2) +

40 exp

(
−(εr − 0.29)2

0.002

)
− 15 exp

(
−(εr − 0.37)2

0.002

)] (3.39)

with

Pl(εr, εth, εmax, α) =

0 if εr ≤ εth,(
εr−εth
εmax−εth

)α(εmax/εth−1) (
εr
εmax

)−αεmax/εth
else,

(3.40)

where Θ(εr−0.152) is the Heaviside step function. This has been added by me (i.e. does
not appear in the documentation for SOPHIA) to assure that the cross section goes to
zero for small energies. For T2, the cross section is simply given by

σT2(εr) = 37.7 Pl(εr, 0.4, 0.6, 2). (3.41)

The method described for resonances in the previous section can unfortunately not
be used for direct production. The problem with this approach arrises in the expression
for χ. For resonances, 〈cos θi〉 ≈ 0 is a good approximation; all created pions travel
more or less in the same direction as their parent proton in the CMF. This makes the
resulting pion energy distribution more peaked around the mean value. However, this is
not the case for direct production, as can be seen in figure 14 in [8]. The angle can to a

17



first approximation be approximated with 〈cos θi〉 ≈ −1, but it is not very accurate. For
direct production, resulting pions travel in a wider range of angles, resulting in a wide
spread of final energies. The spread means that the approximation with a δ-function
yielding a single value of χ no longer is justified. A more precise description involves
the probability distribution of the Mandelstam variable t; the procedure is outlined in
Appendix A in Hümmer et al. (2010) [8]. I have instead adapted their simplified model,
that they outline in section 4.3. The approach is to approximate χ by different constants
depending on the energy εr, and in that way make a step function that mimics the
continuous function acquired using the more refined approach.

Returning to equation (3.17), one sees that for a constant χ, that is χ 6= χ(εr), the
δ-function can instead be used to eliminate the integral over E. After some reshuffling
in the δ-function, Qπ instead takes the form

Qπ(Eπ) =

∫ ∞
Eπ

dE Np(E) · c
∫ ∞
εthmp

2E

dε nγ(ε)×∑
IT

1

2

(mp

Eε

)2 M IT

χIT

∫ 2Eε
mp

εth

dεr εr σ
IT(εr)δ

(
Eπ
χIT
− E

)
.

(3.42)

Evaluating the integral over E with the δ-function, one obtains

Qπ(Eπ) =Np

(
Eπ
χIT

)
· c
∫ ∞
εthmpχ

IT

2Eπ

dε nγ(ε)×

∑
IT

1

2

(
mpχ

IT

εEπ

)2
M IT

χIT

∫ 2εEπ
mpχIT

εth

dεr εr σ
IT(εr),

(3.43)

as long as Eπ/χ
IT is within the proton energy integral limits.

The integral over εr is tricky. It is approximated by a polynomial f IT as

f IT

(
2Eε

mp

)
=


0 2Eε

mp
< εITmin

I IT
(

2Eε
mp

)
− I IT

(
εITmin

)
εITmin ≤ 2Eε

mp
< εITmax

I IT
(
εITmax

)
− I IT

(
2Eε
mp

)
2Eε
mp
≥ εITmax,

(3.44)

where, with x = log10(2Eε
mp

1
GeV

)

IT1

(
2Eε

mp

)
=



0 2Eε
mp

< 0.17 GeV

35.9533 + 84.0859x+ 110.765x2 +

102.728x3 + 40.4699x4 0.17 GeV ≤ 2Eε
mp

< 0.96 GeV

30.2004 + 40.5478x+ 2.03074x2−
0.387884x3 + 0.025044x4 2Eε

mp
≥ 0.96 GeV,

(3.45)
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and

IT2

(
2Eε

mp

)
=


0 2Eε

mp
< 0.4 GeV

−3.4083 + 16.2864 mp
2Eε

+

40.7160 ln
(

2Eε
mp

)
2Eε
mp
≥ 0.4 GeV.

(3.46)

The direct production is split up into three different interactions for production channel
T1: one for low values of εr, one for intermediate values, and one for high values. T2 is
split into four interactions: three for the first created pion and one for the second. The
values of εITmin and εITmax needed to calculate f IT, together with χIT, and the multiplicities
for the seven different interactions can all be found in table 5 in Hümmer et al. (2010) [8].

The contribution from direct production is then calculated as

Qπ(Eπ) = Np

(
Eπ
χIT

)
· c
∫ ∞
εthmpχ

IT

2Eπ

dε nγ(ε) ×
∑
IT

1

2

(
mpχ

IT

εEπ

)2
M IT

χIT
f IT

(
2Eε

mp

)
. (3.47)

3.10 Multipion production

The cross section for multipion production is given by summing the two following con-
tributions

σMulti-−1(εr) = 80.3 Qf (εr, 0.5, 0.1)s−0.34, (3.48)

and

σMulti-−2(εr) =

{
0 εr ≤ 0.85[
1− exp

(
− εr−0.85

0.69

)]
× (29.3 s−0.34 + 59.3 s0.095) εr > 0.85,

(3.49)

where s is given in equation (3.22). The cross sections are given in µbarn and εr in GeV.
The function Qf is given by [9]

Qf (εr, εth, w) =


0 εr ≤ εth
εr−εth
w

εth < εr < εth + w

1 εr ≥ εth + w.

(3.50)

As can be seen in figure 3.2, the cross section for multipion production completely dom-
inates for all energies above a few GeVs.

Similarly to the direct production channel, the approximation with a δ-function for
the resulting pion energies is not good enough and one is therefore left with equation
(3.43). Once more, I will use a simplified model to approximate the εr integral, this
time following the technique described in section 4.4.2 in [8]. The multipion production
channel is split into fourteen different interactions with different threshold energies εITmin

and εITmax, different values for χIT and M IT, as well as different constant cross sections
σIT. The reason for splitting it up into so many parts, is because the multiplicities M IT

change with εr; the more available energy, the more pions will be created in the QCD
fragmentation. These will receive a smaller portion of the parent proton energy, so χ will
decrease with increasing εr.
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Figure 3.3: The different production channels contribution to the final π+-distribution. It is
clear that all channels are important to correctly predict the shape. Figure reproduced from

Hümmer et al. (2010) [8].

The εr integral is in this case replaced with the function

f IT

(
2Eε

mp

)
=



0 2Eε
mp

< εITmin

σIT

[(
2Eε
mp

)2

−
(
εITmin

)2
]

εITmin ≤ 2Eε
mp

< εITmax

σIT

[(
εITmax

)2

−
(
εITmin

)2
]

2Eε
mp
≥ εITmax,

(3.51)

where all relevant quantities are given in table 6 in Hümmer et al. (2010) [8]. Inserting
equation (3.51) into equation (3.47) yields the contribution from multipion production.

Figure 3.3 depicts the contributions from the different production channels to the re-
sulting π+-distribution. Proton and photon distributions are from the GRB benchmark
in Hümmer et al. (2010), described in Appendix C in [8]. From the figure it is evident
that all production channels contribute. At the lowest energies, the direct production
channel dominates. Then there is a constant increase where direct production and reso-
nance contributions are roughly equal, and for energies εr ≥ 5 GeV multipion production
dominates.
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Chapter 4

Neutrino spectra

In this chapter, I will outline the procedure of obtaining the neutrino distribution from
a known pion distribution. Section 4.1 explains the synchrotron cooling experienced
by the charged pions and muons before their decay. Section 4.2 generates the neutrino
distribution from the synchrotron cooled distributions and finally, section 4.3 deals with
the phenomenon of neutrino oscillations and how it will effect the measurements. While
the last chapter was general, this chapter is set in an astrophysical setting, where present
magnetic fields and neutrino oscillations need to be taken into account.

4.1 Synchrotron cooling

The final neutrino distribution will be obtained by pion and muon decays as described
in the decay chains in equations (2.5) and (2.6). However, the decayed particles will not
have the same energy distribution as the initial particles, as they will have had time to
cool through synchrotron cooling before their decay. Both charged pions and muons will
be subjected to synchrotron cooling, and this section will derive an expression for the
decay distribution Ndec as a function of the initial distribution N . The derivation will
be general, and therefore valid for both particle species.

I will start by formulating the particle continuity equation. This equation has three
terms: One term associated with synchrotron cooling of particles, one sink term asso-
ciated with decay, and one term associated with particles escaping the shell. I assume
that the magnetic field is only present in the shell, and so particles will not experience
cooling once they escape the shell. The continuity equation is

∂N(E, t)

∂t
=

∂

∂E

[
N(E, t)

(
dE

dt

)sync]
− N(E, t)

γτ0

− N(E, t)

tesc

, (4.1)

which should be solved for N(E, t). This can be done using the method of characteristics.
Introduce a common variable s, and rewrite N(E(s), t(s)). Using the chain rule, one
obtains

∂N

∂s
=
∂N

∂E

dE

ds
+
∂N

∂t

dt

ds
, (4.2)

which becomes

−∂N
∂s

+
∂N

∂E

dE

ds
+
∂N

∂t

dt

ds
= 0. (4.3)
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By rewriting equation (4.1) in a similar fashion

∂N

∂t
− ∂

∂E

[
N

(
dE

dt

)sync]
+

N

γτ0

+
N

tesc

= 0, (4.4)

one can directly compare coefficients between equations (4.3) and (4.4) to determine

dt

ds
= 1 (4.5a)

dE

ds
= −

(
dE

dt

)sync

(4.5b)

∂N

∂s
= N

∂

∂E

(
dE

dt

)sync

− N

γτ0

− N

tesc

. (4.5c)

The first is trivially solved as
t = s. (4.6)

For an isotropic distribution of charged particles, synchrotron cooling is given by(
dE

dt

)sync

= −4

3
σγ,P cβ

2γ2UB, (4.7)

where σγ,P is the cross section for scattering of a parent particle with a photon, and UB
is the magnetic energy density. Rewriting γ = E/(mc2), equation (4.7) becomes(

dE

dt

)sync

= −αE2 (4.8)

where α = 4
3

σγ,P β
2UB

m2c3
. Equation (4.5b) can now be solved. Separation of variables yields

dE

E2
= αds. (4.9)

Integrating and solving for E gives

E =
1

1
E0

+ αs
(4.10)

where E0 is initial energy. Moving on to equation (4.5c), one gets

∂N

∂s
=N

∂

∂E
(−αE2)− Nmc2

Eτ0

− N

tesc

=

−

[
2αN

1
E0

+ αs
+
Nmc2

τ0

(
1

E0

+ αs

)
+

N

tesc

]
.

(4.11)

Separating variables once again and integrating gives

ln(N) = −2 ln

(
1

E0

+ αs

)
− mc2

τ0

(
s

E0

+
αs2

2

)
− s

tesc
+ C̃, (4.12)
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where C̃ is an integration constant. After recalling that s = t, this can be solved as

N = C

(
1

E0

+ αt

)−2

exp

(
−mc

2

τ0

( t

E0

+
αt2

2

)
− t

tesc

)
, (4.13)

where C = exp C̃. Requiring N = N0 for t = 0, one finds C = N0/E
2
0 . Finally, the

particle decay distribution Ndec is given by time integrating the sink term and the escape
term:

Ndec(E, t) =

∫ ∞
0

[
N(E, t)mc2

Eτ0

+
N(E, t)

tesc

]
dt. (4.14)

The minus signs do not appear in the equation above, as the decay and escape terms are
not sink terms, but source terms for Ndec.

The scattering cross section is defined as

σγ,P =
8π

3

q4
P

m2
P c

4
, (4.15)

where qP is the parent particle charge. When |qP | = |qe| as it is for parent pions and
muons, the only thing that differs between σγ,P and the ordinary Thomson cross section
for electron-photon scattering σT, is the mass. Thus, the cross section can be expressed
as

σγ,P =
m2
e

m2
P

σT, (4.16)

and with σT = 6.6525 · 10−25 cm2 [12], σγ,P can easily be determined for both pions and
muons.

The effect of synchrotron cooling on the π+ distribution previously shown in figure
3.3, can be seen in figure 4.1. In the figure, the decay distribution Ndec

π+ is shown with
thicker lines and the distribution before cooling Nπ+ is shown for comparison with thinner
lines. It is evident that the higher energy spectrum is much more effected than the lower
energy spectrum, this is of course due to synchrotron cooling being proportional to E2

(see equation (4.8)).
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Figure 4.1: The effect of synchrotron cooling. The thin lines depict the initial distribution
Nπ+ and the thick lines show the particle decay distribution Ndec

π+ . The figure was obtained
with a magnetic field energy density UB = 1012 GeVcm−3 and tesc = Γl/c = 0.5 s.

4.2 Neutrino distribution

The resulting neutrino spectra from the pion, and subsequently muon decays, are calcu-
lated as in section 4 in Lipari et al. (2007) [13]. The distribution of daughter particle b
obtained through the decay of parent particle a is

Nb(Eb) =

∫ ∞
Eb

dEaN
dec
a (Ea)

dnEa→Eb
dEb

(4.17)

where Ndec
a is obtained through the method outlined in the previous section. There is

no time dependence, as Ndec
a already is time integrated. The equation above can be

applied to both cooled π± and µ±. The term dnEa→Eb/dEb tells you what energies Eb
the daughter particle can receive from parent particle energy Ea, and looking back at
equation (3.16), I rewrite this term as

dnEa→Eb
dEb

(Ea, Eb) =
1

Ea
FEa→Eb

(
Eb
Ea

)
, (4.18)

where FEa→Eb is a scaling function. For π±, this is a two body decay problem and the
neutrino energy scaling function is quite easily determined as

FEπ+→Eνµ (x) = FEπ−→Eνµ (x) =
1

1− rπ
Θ(1− rπ − x), (4.19)

where Θ(x) is the Heaviside step function and rπ = m2
µ/m

2
π.

In the scaling function for muons, it is necessary to account for the helicity of the
created muons, because the second decay is helicity dependent. Whether the muon is
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left- or right-handed will affect the final flavor ratios. The scaling functions are

FEπ+→Eµ+
R

(x) = FEπ−→Eµ−
L

(x) =
rπ(1− x)

x(1− rπ)2
Θ(x− rπ)

FEπ+→Eµ+
L

(x) = FEπ−→Eµ−
R

(x) =
x− rπ

x(1− rπ)2
Θ(x− rπ).

(4.20)

The scaling functions for the neutrinos created in the second decay are

FEµ+→Eνµ (x, h) =FEµ−→Eνµ (x, −h) =(
5

3
− 3x2 4x3

3

)
+ h

(
−1

3
+ 3x2 − 8x3

3

)
FEµ+→Eνe (x, h) =FEµ−→Eνe (x, −h) =

(2− 6x2 + 4x3) + h(2− 12x+ 18x2 − 8x3),

(4.21)

where h accounts for the helicity: h = 1 for right-handed muons and h = −1 for left-
handed ones. Inserting these into equation (4.17), together with the synchrotron cooled
decay distributions of muons Ndec

µ , gives the distribution of neutrinos created in the
second decay. Summing up the neutrinos produced in the pion decay and the subsequent
muon decay gives the total neutrino production.

4.3 Neutrino oscillations

The phenomenon that a neutrino originally created as one flavor, has a non-zero proba-
bility of being detected as another flavor after propagation, is called neutrino oscillation.
Neutrino oscillation arises because there is mass difference between the neutrinos. A
neutrino of flavor α can be written as a superposition of mass states as

|να〉 =
∑
i

Uαi |νi〉 (4.22)

where Uαi is a unitary matrix and |νi〉 are the different mass eigenstates. In the case of
three neutrino flavors and three mass eigenstates, this becomes

|νe〉

|νµ〉

|ντ 〉

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



|ν1〉

|ν2〉

|ν3〉

 .
The probability that a neutrino of flavor α will be detected as a neutrino with flavor β
is, in the three flavor case, given by

Pα→β = δαβ − 4
∑
k>j

Re(U∗α,kUβ,kUα,jU
∗
β,j) sin2

(
∆m2

kjL

4E

)
+

2
∑
k>j

Im(U∗α,kUβ,kUα,jU
∗
β,j) sin2

(
∆m2

kjL

2E

)
,

(4.23)
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where Uα,k refers to the {α, k} element of the U matrix given above, ∆mkj is the mass
difference between mass state k and j, L is the length the neutrino has propagated and
E is the neutrino energy [14,15].

In the assumption where one mass difference is much greater than the other, say
∆m2

12 << ∆m2
13, the expression simplifies significantly, and the flavor changing proba-

bility can be written

Pα→β = sin2(2θ12) sin2

(
∆m2

kjL

4E

)
. (4.24)

This is called quasi-two neutrino oscillations, as the expression is the same as if there
had only been two neutrino flavors [14]. As the GRBs distance to earth is arbitrary, and
the final result will be an all sky flux, the second argument is equally likely to take any
multiple value in the [0, 2π] range. I therefore take the average of the second sin-factor,
which for sin2(x) is simply 1/2. With

sin2 θ12 = 0.31,

at 1σ confidence level [16], one gets

sin2(2θ) = 0.85. (4.25)

The detectable distribution of muon neutrinos, accounting for neutrino oscillations is
therefore

Ndet
νµ =

(
1− 1

2
sin2(2θ)

)
Nνµ +

(
1

2
sin2(2θ)

)
Nνe =

0.575Nνµ + 0.425Nνe

(4.26)

where Nνµ and Nνe are the original muonic and electronic neutrino distributions respec-
tively. By interchanging Nνµ with Nνe in the equation above, one gets the expression for
Ndet
νe .
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Chapter 5

Simulation outline

The simulation has been done following a paper by Bustamante et al. (2016) [17].
The main difference is that they used a Monte Carlo simulation program called Neu-
Cosma [18], while I have calculated the secondary particle distributions as outlined in
the previous chapter. The simulation is done in 1D using the multi-shell internal shock
model. The user can give several inputs to the simulation: The number of shells emitted,
distribution of shell bulk Lorentz factors, distance between each shell and the width of
the shells, total observed gamma radiation etc. The simulation consists of three major
parts: Burst setup, burst evolution, and observation.

5.1 Burst setup

Before the simulation can start, all the parameters of the burst must be set. After the
setup, there will beNshells shells, all of which has the set of parameters {Γk,0,mk,0, lk,0, rk,0}:
subscript k, 0 here indicates the k-th shell and initial values. Γk,0 is the initial bulk Lorentz
factor, mk,0 is its mass, lk,0 its width, and rk,0 is its (rear) radius to the central engine (i.e.
front radius is given by rk,0 + lk,0). In this thesis, I will study five different benchmark
GRBs. The benchmarks differ in the setup, and how the initial parameters are set will
be described presently.

5.1.1 Initial Lorentz factors

The bulk Lorentz factor for each shell are randomized from a lognormal distribution

ln

(
Γk,0 − 1

Γk0 − 1

)
= σlogn,k x, (5.1)

where x is a random variable from a normal (Gaussian) distribution with mean µnrm = 0
and standard deviation σnrm = 1. This gives

Γk,0 = (Γk0 − 1) eσ
logn,kx + 1 = (Γ0 − 1)y + 1. (5.2)

The simulation then uses MATLAB function lognrnd to generate Nshells values y, that
are lognormal random values with mean µlogn = 0 and standard deviation σlogn,k.

In GRB 1, Γk0 and σlogn,k are both constant and the same for all k, and they are input
parameters chosen by the user. In all other benchmarks, they will oscillate between two
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set values Γ0,1 and Γ0,2, and σlogn
0,1 and σlogn

0,2 . This can represent various different central
engine behaviors such as decreasing activity, increasing activity, varying emittance power
from a varying mass emittance to name a few scenarios. In these cases, Γk0 and σlogn,k

are given by

Γk0 = (Γ0,2 − Γ0,1)× sin2

(
k

Nshells

Nosc ·
π

2

)
+ Γ0,2,

σlogn,k = (σlogn
0,2 − σ

logn
0,1 )× sin2

(
k

Nshells

Nosc ·
π

2

)
+ σlogn

0,2 .

(5.3)

Here, Nosc is the number of oscillations between Γ0,1 and Γ0,2, specifically Nosc = 2 means
first an increase/decrease from Γ0,1 to Γ0,2 and then back again to Γ0,1. The calculated
Γk0 and σlogn, k are then plugged into equation (5.1) to get Γk,0. A figure of the initial Γ
distributions for GRB benchmarks 1-5 is shown in figure 5.1. The input parameters of
the benchmarks are given in table 5.1.

5.1.2 Initial masses

The masses of the shells are given from the relation Eiso
kin = (Γk,0−1)mk,0c

2 ≈ Γk,0mk,0c
2.

Eiso
kin is an input variable, common to all shells. Thus, the mass for the k-th shell is

mk,0 =
Eiso

kin

Γk,0c2
. (5.4)

The interpretation for this is that all shells are given the same amount of kinetic energy
but a varying mass, and this varying mass yields the different Lorentz factors. The input
variable Eiso

kin is directly proportional to the total emitted energy and will therefore only
scales the output energies up or down. By later scaling the energy to a set total radiated
gamma energy Eiso

γ,set, the choice of Eiso
kin will become irrelevant, see Appendix A for details.

5.1.3 Initial widths and shell distances

The widths of the shells lk,0 are set to be constant. More specifically, they are given as
the emission time δt times c:

lk,0 = δt c, (5.5)

for all k. The emission time is chosen similar to the variability time observed at Earth,
δt ∼ tv ≈ 0.01 s. The rest time in between emitting two shells is assumed to be the same
as the ejection time of a shell, and so if the distance between shell k and shell k + 1 is
called dk, then dk = 0.01 c, just as lk.

5.1.4 Initial radii

The radii for the initial shells can easily be calculated as

rk,0 = rinner + (Nshells − k)(l0 + d0), (5.6)

where rinner is the radius of the innermost shell, set by the user. I have set this value to
rinner = 108 cm, similar to Bustamante et al. (2016) [17]. The number of shells are given
such that k = 1 represents the shell emitted first. It is therefore the shell furthest away
from the central engine, and the higher the k value, the closer to the central engine.
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Table 5.1: GRB benchmark parameter inputs

GRB Γ0,1 Γ0,2 σlogn
0,1 σlogn

0,2 Nosc Eiso
γ,set

1 500 - 1 - - 1053

2 500 50 1 0.1 1 1053

3 50 500 0.1 0.1 2 1052

4 50 500 0.1 1 10 1053

5 50 500 0.1 0.1 10 1053
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Figure 5.1: Initial Γ-distribution as a function of r in cm for the five different benchmark
GRBs. The central engine is situated at r = 0.
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5.2 Burst evolution

After the burst setup, there are Nshells shells distributed equidistantly with the innermost
shell ar r = rinner for k = Nshells, and the radii between two neighboring shells differing by
l0 +d0. The bulk Lorentz factors of the shells are randomly distributed around set values
Γ0,1 and Γ0,2 and have predetermined deviations σlogn

0,1 and σlogn
0,2 . The Γ then determines

the initial masses through mk,0 = Eiso
kin/Γk,0. Once this setup is done, the simulation can

start.
The run follows the algorithm described in the following four steps:

1. Calculate the time until the next collision ∆tnext, and for what pair of shells this
will occur.

2. Propagate all non-interacting shells to their new positions rk,new = rk,previous +
vk∆tnext where vk is the speed of shell k.

3. Calculate the total energy radiated in the collision Eiso
coll and remove the two colliding

shells. Create a new merged shell with the parameter set {Γm,mm, lm, rm} at the
collision radius.

4. If at this stage, any of the following is true, the simulation ends:

• All shells have propagated beyond rcbm, the radius of the circumburst medium.

• All shells have ascending values of Γ, so that no shell can catch up with the
shell in front.

• Only one shell remains.

If not, it returns to step 1.

Below follows a description of the procedure in each step.

Step 1. Calculating the time until the next collision and for which pair this occurs
is straightforward. The time until a collision would occur between shell k and k + 1 is

∆tk,k+1 =
dk,k+1

vk+1 − vk
. (5.7)

The distance dk,k+1 is between the front radius of shell k+1 and the rear radius of shell k
is given by dk,k+1 = rk− (rk+1 + lk+1). If vk > vk + 1, then ∆tk,k+1 becomes negative and
is discarded. This represent the front shell being faster then the rear shell, and in such
a situation, a collision can never occur. When ∆tk,k+1 is calculated for all shell pairs,
∆tnext is set as the minimum of all valid ∆tk,k+1. The time for collision i is saved in a
vector as tcoll, i = tcoll, i−1 + ∆tnext.

Step 2. In step 2, all shells are propagated using ∆tnext calculated in step 1. The
new positions for all shells are given by

rk, i = rk, i−1 + vk∆tnext, (5.8)

where rk, i is the position of shell k just as collision i occurs.
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Step 3. The energy radiated in a collision is the difference in energy between the
two parent shells and the resulting merged shell. In collision i between a fast shell k + 1
and a slower shell k, the energy is

Eiso,u
coll,i = (Γk+1mk+1c

2 + Γkmkc
2)− Γmmmc

2, (5.9)

where the superscript indicates that the energy release is isotropic in the progenitor source
frame (spherical symmetry in the burst). The superscript u indicates that the energies
are unscaled. The emitted energies will later be scaled to match a total observed γ-ray
energy Eiso

γ,set, as described in subsection 5.4.2. The parameter set for the merged shell is
calculated as in Bustamante et al. (2016) [17]. The bulk Lorentz factor for the merged
shell Γm is calculated as

Γm =

√
mk+1Γk+1 +mkΓk
mk+1/Γk+1 +mk/Γk

. (5.10)

The mass is trivially given as the sum of the masses of the parent shells

mm = mk+1 +mk. (5.11)

The width lm is more tricky. It was derived by Kobayashi et al. (1997) [6] to be

lm = lk
βfs − βm

βfs − βk
+ lk+1

βm − βrs

βk+1 − βrs

, (5.12)

where βfs(rs) is the β-factor of the forward (reverse) shock: βfs(rs) =
√

1− Γ−2
fs(rs). The

forward and reverse shocks are the fronts that are created in the merger between the two
shells, as the front of the faster shell propagates through the slower one, and the rear of
the slower shell is traveling towards the rear of the faster one, see figure 10 in [17] for an
illustration. The Lorentz factor Γfs(rs) is given by

Γfs(rs) = Γm

√
1 + 2Γm/Γk(k+1)

2 + Γm/Γk(k+1)

. (5.13)

The radius of the new merged shell is placed at the radius of its slower parent, i.e.,
rm = rk, of course after the propagation of rk, and the collision radii is recorded just as
the collision time.

With all of its quantities updated, the merged shell is left in the simulation with the
possibility to collide again.

Step 4. In step four, the simulation checks whether it should terminate or not. First,
it checks whether all shells are beyond the radius of the circumburst medium where the
shells starts decelerating. This is assumed to occur at rcbm = 5.5× 1016 cm. All collision
occurring further out than this are discarded in this simulation. If only some of the
shells have reached this distance, then those shells are removed but the simulation still
continues with the remaining ones. Secondly, it checks if all values of Γk are in ascending
order. If this is so, no more collisions can happen and the simulation ends. Lastly, if
there is only one shell remaining, the simulation ends as well.

If none of the criteria above is met, the simulation returns to step 1 and the procedure
is repeated.
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Figure 5.2: Shell Lorentz factor Γ as a function of radii during the burst evolution of GRB
5. By the end of the burst, all five pulses have smooth, sawtooth shapes with lower average

value than originally.

5.3 Control of the code

It is very important to control that the code behaves as predicted. This can be done by
seing how values of different quantities behave during the burst. It is also interesting to
see how properties evolve during the burst.

How the shell Lorentz factor Γ change during the burst evolution for GRB 5 can be
seen in figure 5.2. As the burst progresses, each of the five pulses in the burst tends more
and more to a smooth curve, with its highest value of Γ in front of the pulse. All initial
ruggedness disappears as the fastest shells catch up with their slower companions. An
overall decrease in Γ at the end of the burst compared to initial values is also visible.

Figure 5.3 depicts how some average values change during the burst evolution of
GRB 4. Light blue line depicts average mass over inital average mass 〈m〉 / 〈m0〉, the red
line is the ratio RMS(Γ)/RMS(Γ0) where RMS stands for root mean square, the yellow
line shows the fraction of shells remaining, and the average velocity 〈β〉 is shown in
purple. Each dot represent a collision and the energy emitted in that collision compared
to the average Eiso

coll,i/ 〈E〉, where E is the total energy emitted in the burst, including
subphotospheric collisions. Whether a collision was below or above the photosphere is
marked as well.

That the mass ratio increases is no surprise. In each shell collision, the merged shell’s
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average Γ decreases. The average shell speed is ≈ c throughout the burst. Collisions radii is

relatively evenly spread out, with a tendency to higher energy collisions towards the end.
Partial figure inspiration taken from Bustamante et al. (2016) [17].

mass is simply given as the sum of the two colliding shells masses, so naturally the mass
fraction rises as the number of shells left decreases. It is interesting to see how unaffected
the speed is, even though a large amount of energy is emitted. In the burst shown, there
were 985 collisions, and the average β value after the last collision was 〈β〉 = 0.99991. The
average Γ decreases during the burst. This is of course in direct correlation to a decrease
in β, even though that is not visible. The average Γ decrease is expected, because it is
the shells kinetic energy that is transformed into radiation, as no mass-energy conversion
is assumed. From the figure one can also see that the most energetic collisions happen
at a rather late time. This is due to the periodic outflow of GRB 4. These collision are
between the highest Γ of the pulse peaks with the lowest Γ of the pulse valleys. The
reason why they occur at such late time, is because it is not until then they have had
enough time to catch up; even the less energetic shells have β ≈ 1.

5.4 Observation

After the burst evolution is done, one has to interpret all the data. In this section, I will
describe how the saved data from the burst evolution leads to qualitative predictions.

5.4.1 Observation time

From the burst evolution, I have saved the time for each collision in a vector

tcoll = [tcoll,1, tcoll,2, . . . , tcoll,i, . . . , tcoll, Ncoll
], (5.14)
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where Ncoll is the total number of shell collisions in the burst (Ncoll . Nshells) and t = 0
at the start of the simulation. Similarly, I have saved all collision radii in the vector rcoll.
The time until we on Earth observe radiation from a collision, is then given by the time
it takes the radiation to travel to Earth plus the time that has already elapsed from the
burst start until the collision occurs. If the distance from the central emitter to earth is
D(z) for redshift z, then the observer time from the simulation start t̃obs is given by

t̃obs = (1 + z)

(
D(z)− rcoll

c
+ tcoll

)
. (5.15)

Two comments on this:

1. The term (1 + z)(D(z)/c) is only a dummy variable. What is of interest is the
observer time from the moment light reaches us tobs, and not from the simulation
start. The term (1 + z)(D(z)/c) is a constant that is removed from all terms when
the observation time is defined as tobs = t̃obs −min[t̃obs].

2. Even though the burst duration in the simulation stretches over weeks, the total
observed radiation will arrive within ∼ 80 seconds. This is because of the shells’
velocities are so extremely close to c, that the emitted radiation from a collision
hardly travels any faster than the shells themselves. Therefore, the observer time
span depends more on the radial extension of the burst rather than when collisions
occur. This can be see from figure 5.4, showing each collisions energy as a fraction
of the total, as function of observer time. The shapes are similar to the initial
Γ-distributions shown in figure 5.1.

5.4.2 Energy output normalization

From the burst evolution, the energy emitted in each collision Eiso
coll,i is calculated as in

equation (5.9). This energy becomes internal energy in the merged shell, which is assumed
to cool instantly and radiate this energy as secondary particles. How the energy is split, is
an input parameter. Using the notation εp, εe, and εB for the fractions of energy given to
protons, electron and magnetic field respectively, I have in this work assumed εp = 10/12
and εe = εB = 1/12. This is the same assumption made in Bustamante et al. (2016), and
it gives the often used baryonic loading εp/εe = 10 [4]. The electrons are further assumed
to instantaneously radiate their total energy fraction in EM-radiation. The total energy
radiated in γ-rays in a GRB is an experimentally determinable quantity, and I therefore
require the total γ-ray energy radiated in the simulation to equal the values of Eiso

γ,set given
in table 5.1. This is done by determining a scaling coefficient CE, through the condition

Eiso
γ,set = CEE

iso,u
γ = CE

Ncoll∑
i=1

Eiso,u
γ,i = CE

Ncoll∑
i=1

εeE
iso,u
coll,i, (5.16)

where the sum runs over all collisions, both above and below the photosphere. Once CE
is obtained, the energies of actual interest are given by

Eiso
α,i = CEεαE

iso,u
coll,i, (5.17)
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Figure 5.4: Fractional energy released per collision as a function of observer time for the five
GRBs. One can see the similarity to the initial Γ-distribution for each burst. Collisions
marked with black are subphotospheric, and are thus the earliest collisions in the source

frame. Evidently, this does not correspond to an earlier observation time in the OF.
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where α = p, e, B. This condition guarantees that the total emitted energy in γ-ray equals
Eiso
γ,set. This requirement also makes our choice of initial Eiso

kin irrelevant, see Appendix A
for details. The consequences of such a normalization will be discussed in section 6.2.1.

The magnetic field in the SRF, necessary for the computation of synchrotron cooling
of particles, is

B′i ' 44.7

(
Γm

102.5

)−1(
εB
εe

)1/2( Eiso
γ,i

1050 erg

)1/2(
rcoll,i

1914 cm

)−1(
lm

108 cm

)−1/2

kG, (5.18)

as given by [17]. This translates into a magnetic field energy density as

U ′B,i = 106B
′2
i

8π
erg. (5.19)

5.4.3 Proton and photon distributions

The energy released will result in protons and photons with various energies. The like-
lihood of creating a photon of energy ε is given by the photon distribution nγ(ε), with
units number of photons per energy and volume. The simulation does not generate the
photon or proton spectra. Instead, I use the well established broken power law spectrum
for photons, and the power law spectrum characteristic for Fermi acceleration for protons.

The broken power law used for the photon distribution is

n′γ(ε
′) = Cγ


(

ε′

ε′break

)α
ε′ < ε′break(

ε′

ε′break

)β
ε′ ≥ ε′break,

(5.20)

where the slope before the break energy is α = −1 and the slope after is β = −2. The
break energy is set to ε′break = 1 keV as in Bustamante et al. (2016) [17]. The primes
indicate that the distribution is in the SRF. The distributions from each collision i is
then normalized as

V ′iso,i

∫ ε′max

ε′min

dε′ ε′ n′γ(ε
′) =

Eiso
γ,i

Γm,i

, (5.21)

where the RHS is the energy released in the collision in γ-rays in the SRF. The volume
V ′iso,i is of the merged shell and ε′min = 0.2 eV and ε′max = 1 PeV are the integral limits,
taken from [17]. From the equation above, the coefficient Cγ can be determined. In fact,
apart from the coefficients, the photon distribution is common to all collisions. Using the

terminology n′γ,common(ε′) = n′γ(ε
′)/Cγ and I =

∫ ε′max

ε′min
dε′ ε′ n′γ,common(ε′), the coefficients

are determined as

Cγ,i =
Eiso
γ,i

I V ′iso,i Γm,i

=
Eiso
γ,i

I · 4πr2
coll,ilm,i · Γ2

m,i

, (5.22)

where lm,i is the width of the merged shell after collision i. The extra Lorentz factor
appears because of the length contraction of the width in the observer frame: l′m,i =
lmΓm,i.

The proton distribution is a power law with slope −2 and an exponential cutoff at
very high energy. It is given by

n′p(E
′) = Cp · E ′−2 e−E

′/E′max . (5.23)
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The characteristics of the proton distribution is a constant slope that stretches over all
energies up to E ′ ∼ E ′max, where it starts decaying exponentially. The result is that very
few/no protons have energies above E ′max. The maximum energy E ′max is important for
the outcome, and can be found by balancing acceleration rate with synchrotron cooling,
and adiabatic and photohadronic energy losses [17], and have been set as in Hümmer
et al. (2010) to E ′max = 6.9 · 108 GeV. The proton distribution is normalized as the
photon distribution in equation (5.21), but with the substitutions n′γ(ε

′) → n′p(E
′) and

Eiso
γ,i → Eiso

p,i , and the coefficients are determined in a similar fashion.

5.4.4 Obtaining neutrino spectra

From the theory in chapters 3 and 4, one can obtain the neutrino spectra from the
proton and photon spectra determined in the previous section. The process is pretty
straightforward, although tedious. In this subsection, I will make some remarks on my
specific approach.

Common proton and photon distributions

Even though the simulation generates different distributions for each shell collision, this
difference is only in the coefficients Cγ and Cp; the energy range and distribution shape
will be identical for all collisions. Therefore, it is enough to calculate the pion spectra
and resulting neutrino distribution once for n′γ,common(ε′) and n′p,common(E ′). This greatly
reduces the computational time and is one of the main advantages over a Monte Carlo
simulation approach.

Resonances

In equation (3.17), there is a double integral that has to be evaluated for each specific pion
energy Eπ,i (subscript i added to be iterated over to generate the whole pion spectrum,
i.e., has nothing to do with a specific shell collision i). I approximate this double integral
as two log space midpoint Riemann sums:

Qπ,i(Eπ,i) ≈
N∑
j=1

M∑
k=1

Np(Ej)∆Ej
Ej

nγ(εk)∆εk ×

∑
IT

1

2

(
mp

Ejεk

)2 ∫ 2Ejεk
mp

εth

dεr εr σ
IT
R (εr)M

ITδ

(
Eπ,i
Ej
− χIT(εr)

)
,

(5.24)

where the summation upper and lower limits are made to match the integral limits. Please
observe that the equation above is in the SRF, where the primes have been omitted for
clarity in the equation.

As previously mentioned, the Dirac δ-function has the property

δ(g(x)) =
∑
x0

δ(x− x0)

|g′(x0)|
, (5.25)
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where x0 are the zeros of g(x). For each pion energy Eπ,i and proton energy Ej, the
equation

gIT
ij (εr) =

Eπ,i
Ej
− χIT(εr) = 0, (5.26)

has only one solution εITr,ij, and this solution is obtained by inserting specific energies Eπ,i
and Ej into equation of interest of (3.31 - 3.34).

The value εITr,ij has to be compared to the integral limits. Thus, for a specific value of
proton energy Ej, photon energy εk and interaction IT, the contribution to the produced
number of pions is

Qπ,ijk(Eπ,i)
IT ≈ Np(Ej)∆Ej

Ej
c · nγ(εk)∆εk ×

1

2

(
mp

Ejεk

)2

εITr,ij
∣∣gIT′(εITr,ij)

∣∣−1
σIT

R (εITr,ij)M
IT, εth ≤ εITr,ij ≤

2Ejεk
mp

,

(5.27)

and if εITr,ij is not within the integral limits, then Qπ,ijk(Eπ,i)
IT = 0.

In my simulation, I loop over i and for every iteration I evaluate all jk combinations
for each of the nine resonances. As this is a double sum, the complexity and simulation
time for each iteration scales as N ×M , but the code is quite fast so for N,M < 1000,
it is fine (∼ 0.7 s for each iteration i when N = M = 1000).

Direct and multipion production

The contribution from direct production and multipion production is given by equation
(3.47). As the δ-function has been used to remove the integral over proton energies, and
the integral over εr has been replaced by a polynomial in both cases, there is only one
integral left to compute. As with resonances, this is done by approximating the integral
as a logspace midpoint Riemann sum

Qπ(Eπ) =Np

(
Eπ
χIT

)
· c

M∑
k=1

∆εk nγ(εk)×

∑
IT

1

2

(
mpχ

IT

εEπ

)2
M IT

χIT
f IT

(
2Eε

mp

)
.

(5.28)

This complexity scales as M and thus these contributions are much faster to compute.
Once again, the above equation is in the SRF even though the primes have been omitted.

Time integration of production rate

In chapter 3, I obtained the expressions for the production rate of pions. To get the total
number of pions created, one has to integrate over time. I have taken this time to be
the average time for photons to escape the shell in which they were created. The escape
time for radiation created after shell collision i calculated in the OF, is the time it takes
the radiation to catch up with the shell’s front boundary

tesc,i =
〈di〉

c− vm,i

=
lm,i

2(c− vm,i)
=

lm,i
2c(1− βm,i)

≈
lm,iΓ

2
m,i

c
, (5.29)
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where the 〈di〉 is the average distance radiation has to the shell’s front boundary, assumed
to be lm,i/2. In the equation above, I have assumed the radiation to travel along the line
of sight, which is justified in the OF. The radiation in a GRB will be beamed towards
Earth, else it would not be observable at all. The beaming angle is proportional to Γ−1 so
all GRBs are strongly beamed. Radiation traveling outside the cone with opening angle
1/Γ, will travel towards regions with higher opacity. The reason in simple: radiation
in the beaming direction travels along the flow of electron while radiation outside of
the beaming cone travel against the electron flow, and are therefore much more likely
to scatter. For collisions just above the photosphere, the most important collisions for
neutrino production, the opacity increase outside of the beaming cone is so quick, that
photons traveling in this direction can be assumed to scatter instantaneously. In this
scattering, the probability of radiating outside the beaming cone will be suppressed once
again. Thus, in collisions above the photosphere, almost all radiation will end up traveling
along the line of sight, and one can assume they do so instantaneously.

The time elapsed in the SRF will be dilated by a factor Γ−1 and so the total number
of produced pions for collision i is given by multiplying the production rate with the
average escape time in the SRF:

N ′π,i(E
′
π) = Q′π,i(E

′
π) · tesc,iΓ

−1
m,i =

lm,iΓm,i

c
Q′π,i(E

′
π). (5.30)

In the observer frame, the spectral shape is of course identical, but shifted towards higher
energies with a factor of Γm,i.

In this simplified approach, I have not taken into account what I call secondary
photohadronic interactions; photohadronic interaction between protons and photons from
different shells. I will discuss what effect including this would have on the outcome in
section 6.2.5.

5.4.5 Implemented photosphere

The expression for the photospheric radius derived in the background chapter is obtained
by integrating from r to infinity for the optical depth. This indicates that a photon
created at r must reach infinity to be regarded as having escaped. This approach is well
suited for a continuous outflow, where the interaction probability is non-zero at all points
in space. However, in the discrete outflow used in my simulation, one can instead define
escape as the photon reaching the edge of the shell in which is was created. Assuming a
photon emitted on the line of sight, the expression for optical depth is then instead

τ =

∫ resc

rcoll

n′eσTΓ(1− β)dr′. (5.31)

Assuming collisions occur sufficiently far out in the jet, the electron density will have
decreased to a point where it remains roughly constant during the light escape timescale,
and can then be taken outside of the integral:

τ = n′eσTΓ(1− β)

∫ resc

rcoll

dr′ =
n′eσT

2Γ
(resc − rcoll). (5.32)

As previously, I assume that the electron density can be associated with the proton
density and the proton density of shell k is

n′p =
mk

mpV ′iso,k
=

mk

4πr2l′kmp

. (5.33)
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The escape radius for shell k is given by resc,k = rcoll + c tesc,k. The average escape time
for photons was found in equation (5.29) so the escape radius is

resc,k = rcoll + lkΓ
2
k = rcoll + l′kΓk. (5.34)

Inserting this expression into equation (5.32) yields

τk =
n′eσT

2Γk
(l′kΓk) =

mkσT

8πr2mp

. (5.35)

Once again, the photospheric radius is defined as τ(rph) = 1, so for shell k one gets rph,k

as

rph,k =

√
σTmk

8πmp

≈ 1.627× 10−13

√
mk

mp

cm. (5.36)

One important thing to notice, is that mk needs to be scaled with the energy coeffient
CE as well, as mk ∝ Eiso

kin. This means that if rph,k are calculated with initial masses, it

has to be multiplied by a factor C
1/2
E .

The photosphere is the surface of the last scattering, above which the plasma in the
shell becomes optically thin. As I have adapted a photon distribution shape to mimic
observed γ-ray spectra from real GRBs, and as such data will mainly come from super-
photospheric collisions per definition, it is not justifiable to assume a similar shape below
the photosphere. Therefore, the results in this thesis will be based on collisions above
the photosphere only. It will be discussion in section 6.2.2 how including effects from
below the photosphere would influence the results.

In figure 5.5, we can see the energy output in γ-rays and neutrinos as a function
of radii. Subphotospheric γ-ray energies are shown in cyan, while γ-ray energies from
collisions above the photosphere are shown in blue. Neutrino energies shown in red are
from collisions above the photosphere only.

5.4.6 Gamma-ray pulse per collision and observed light curve

For each shell collision a γ-ray pulse is emitted by the cooled electrons. The pulse shape
can be parametrized as in Kobayashi et al. (1997) [6]. If the first observed light from a
collision i above the photosphere is at tobs,i, then the flux at Earth is given by

Fγ,i(t) =
1

4πdL(z)2
×



0 t < tobs,i

hi

[
1−

(
1 +

2Γ2
m,ict

(1+z)rcoll,i

)−2
]

tobs,i ≤ t < tobs,i + trise,i

hi

[(
1 +

(2Γ2
m,it

1+z
− δte,i

)
c

rcoll,i

)−2

−(
1 +

2Γ2
m,ict

(1+z)rcoll,i

)−2
]

t ≥ tobs,i + trise,i,

(5.37)

where dL(z) is the luminosity distance to Earth for redshift z and t is the time in the
OF. If collision i instead occurred below the photosphere, its contribution is discarded by
setting Fγ,i = 0. The redshift z was set to 2, and assuming a flat universe, ΩΛ = 0.714,
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(e) GRB 5

Figure 5.5: Energy released in γ-rays and neutrinos for each burst. Subphotospheric γ-ray
energies are shown as well. All GRBs but GRB 3 have strongest neutrino emittance close to

the photosphere. Picture inspiration taken from Bustamante et al. (2016) [17].
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Ωm = 0.286, and H0 = 69.6 (km/s)/Mpc, the luminosity distance to Earth was calculated
to dL(2) = 51.594 Gly [19]. The emission timescale δte,i is given by the time it takes the
reverse shock to cross the fast shell

δte,i ≡
lf

c(βf − βrs)
. (5.38)

The pulse peak height hi is given by

hi =
Eiso
γ,i

(1 + z)trise,i
, (5.39)

where the rise time, defined as the time it takes to reach the pulse peak height, is given
by

trise,i ≡
δte,i
2Γ2

m,i

(1 + z). (5.40)

The observed light curve is obtained as a superposition of the pulses from all collisions

Fγ(t) =

Ncoll∑
i=1

Fγ,i. (5.41)
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Chapter 6

Results and discussion

In this chapter, I will present my results and discuss how this should be interpreted and
how one can improve upon my work to refine the results.

6.1 Results

As mentioned in the beginning of this thesis, one of the most intriguing things about
GRBs are their vast difference in observed light curve shapes. The light curves, together
with the corresponding neutrino light curves for each of the five GRBs, can be seen
in figure 6.1. Plotted in the figure are the observed light curves for photons, obtained
through the method described in subsection 5.4.6. For the neutrino light curve, the same
process has been used. The total neutrino energy in each collision i was calculated as

Eiso
ν,i =

∫ ∞
0

dEν Eν Nν,i(Eν), (6.1)

where energies are in the OF and Nν,i includes all neutrino flavors. From the figure, one
can see that the simulation manages to get pretty diverse curve shapes. GRB 1 has a high
variability but a static mean value, as one would expect from initial Γ randomized around
the same mean. GRB 2 and GRB 3 both exhibit a shape somewhat similar to FRED
(fast rise exponential decay) although GRB 2 has a lot of variability which GRB 3 seems
to lack almost completely. GRB 4 and GRB 5 both show periodic behavior, which again
is not surprising if one remembers the oscillating progenitors they are supposed to imi-
tate. GRB 5 have fewer spikes than GRB4, due to fewer collisions above the photosphere.

In figure 6.2, the predicted all sky fluxes Jνµ for each GRB can be seen. Assuming a
rate of 667 GRBs per year, one can get a prediction of the all sky flux by scaling the
result from the GRB of interest with the event rate:

JGRBj
νµ (Eν) =

NGRBj
νµ (Eν)

4πdL(z)2

667

4π
yr−1sr−1, (6.2)

where NGRBj
νµ (Eν) is the sum of all νµ and νµ created in shell collisions above the pho-

tosphere for GRB j, dL(z) is still the luminosity distance, and the extra factor of 4π
appears to get the flux per steradian. The shape is similar for all GRBs. It is char-
acterized by a quite broad peak, centered around 107 GeV. Shown in each subfigure is
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the IceCube 2017 upper limit [4] for comparison. Only the weakest neutrino emitters
GRB 3 and GRB 5, are below the upper limit. GRBs 1 and GRB 2 are the strongest
neutrino emitters with peak heights at 7 × 10−10 GeVcm−2s−1sr−1, and GRB 4 with a
peak height of 4 × 10−10 GeVcm−2s−1sr−1 is the third strongest. GRB 3 is the weakest
neutrino emitter with a peak height of more than two orders of magnitude less than the
others at 5 × 10−13 GeVcm−2s−1sr−1. The solid lines shown in each subfigure are the
shell collisions that contributes most to the flux.

As no one of the benchmarks can imitate all recorded GRBs alone, I have also included
the average all sky flux in figure 6.3, as a slightly more realistic approach. There, I
assume that GRBs 1 to 5 contribute one fifth each to the yearly rate. In this figure, the
2016 upper limit computed by the IceCube collaboration, shown in figure 6 in [17], has
been included as well for reference. All GRBs are below the 2016 limit, but as already
seen, only GRB 3 and 5 are below the 2017 limit. The average calculated flux peaks at
∼ 4×10−10 GeVcm−2s−1sr−1 and is above the 2017 limit by a factor ∼ 2. As this limit is
set with a confidence level of 90 %, this result disfavors the internal shock model as the
main process behind GRB energy dissipation. This result is only valid under my current
assumptions though, see section 6.2.4.

In figure 6.4 every hundredth shell collision above the photosphere is plotted. The sub-
figures show the evolution of neutrino fluxes during each of the five bursts. A general
tendency seems to be that earlier collisions have higher total fluxes peaked at lower ener-
gies. This is easy to explain. The earlier collisions are more likely to happen at small r,
where both photon density nγ and magnetic field energy density U ′B are higher. Higher
photon density leads to more created pions that subsequently can decay to more neu-
trinos pushing up the flux. A higher magnetic field energy density however, makes the
created pions and muons cool quicker, and thus they loose more of their energy. This
shifts the peak to lower energies, even though the total flux is still higher than for colli-
sions happening at larger r.

This behavior is also seen in figure 6.5, where it is clearly visible how the neutrino
flux decreases as a function of collision radii. The red line marks an r−2 slope. It can be
seen in subfigure 6.5a that the fluxes deviates from this r−2 dependence, with a slightly
less steep slope. This is due to a weaker U ′B further out and so less cooling losses. The
behavior in the other subfigures are not as easily determined. GRBs 3 and 5 (subfigures
6.5c and 6.5e) have similar behavior, with high energy collisions occurring far out. There
are downwards curling patterns that clearly stand out amidst the other, more randomly
distributed dots. Remembering the initial Γ-distributions, GRB 3 and 5 both oscillated
with little spread. The visible patterns come from the shells with the highest Γ at the
peaks of the pulses, having caught up with the slowest shells in the pulse valleys. As the
initial distribution spread is low, they all catch up at almost the same radii. One can
compare the radii at which this occurs for GRB 5, to the Γ-distribution shape in figure
5.2 after 500 collisions. As GRB 3 only has one pulse this behavior occurs much further
out.

44



0 10 20 30 40 50 60 70 80

Observer time t
obs

10
-12

10
-10

10
-8

10
-6

10
-4

O
b

s
e

rv
e

d
 f

lu
x
 [

G
e

V
 c

m
-2

]

 + anti 

(a) GRB 1

0 10 20 30 40 50 60 70 80

Observer time t
obs

10
-12

10
-10

10
-8

10
-6

10
-4

O
b

s
e

rv
e

d
 f

lu
x
 [

G
e

V
 c

m
-2

]

 + anti 

(b) GRB 2

0 10 20 30 40 50 60 70 80

Observer time t
obs

10
-12

10
-10

10
-8

10
-6

10
-4

O
b

s
e

rv
e

d
 f

lu
x
 [

G
e

V
 c

m
-2

]

 + anti 

(c) GRB 3

0 10 20 30 40 50 60 70 80

Observer time t
obs

10
-12

10
-10

10
-8

10
-6

10
-4

O
b

s
e

rv
e

d
 f

lu
x
 [

G
e

V
 c

m
-2

]

 + anti 

(d) GRB 4

0 10 20 30 40 50 60 70 80

Observer time t
obs

10
-12

10
-10

10
-8

10
-6

10
-4

O
b

s
e

rv
e

d
 f

lu
x
 [

G
e

V
 c

m
-2

]

 + anti 

(e) GRB 5

Figure 6.1: The γ and neutrino light curves as observed on earth for z = 2 for the five
benchmark GRBs. Neutrino light curves include contributions from both νµ and νµ. Figure

inspiration taken from Bustamante et al. (2016) [17].
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Figure 6.2: Computed all sky flux of νµ + νµ from the different GRBs, showed as red lines.
The solid lines below are the distributions from the most contributing shell collisions. The

black dotted line is the IceCube collaboration’s upper limit with 90 % CL [4]. Figure
inspiration taken from Bustamante et al. (2016) [17].
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Figure 6.3: Predicted all sky fluxes from all five GRBs together with their average, shown as
a red dashed line. The IceCube collaboration’s 2017 upper limit as well as their 2016 upper

limit are shown [4,17].
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(c) GRB 3
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(d) GRB 4
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(e) GRB 5

Figure 6.4: Plot of how much every hundredth collision above the photosphere contributes
to the computed all sky flux. Gives an indication of the shell collision evolution of the burst.
The legend indicates collision number, and subphotospheric collisions are marked with an s.
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Figure 6.5: Neutrino flux as a function of collision radii for the five bursts. Black circles
mark subphotospheric collisions while blue circles are superphotospheric collisions. The
average photospheric radius has been marked. The red line shows an r−2 slope. Figure

inspiration taken from Bustamante et al. (2016) [17].
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6.2 Discussion

The results obtained in this thesis give good predictions of the neutrino fluxes observable
at earth from different types of GRBs. However, there are limits to the model and
improvements that can be made. Some of them will be discussed in this section.

6.2.1 Energy scaling and initial Γ spread

In the simulation I scale the emitted radiation, as already mention in equation (5.16), by
determining a scaling coefficient CE as

CE =
Eiso
γ,set

Eiso,u
γ

, (6.3)

where Eiso,u
γ is defined as

Eiso,u
γ =

Ncoll∑
i

εeE
iso,u
coll,i. (6.4)

While this has the advantage of scaling the emitted energy in γ-rays to something that
is actually observable, it also poses some problems.

What is effectively being done, is a scaling of the total energy emitted by the progen-
itor with a factor CE. As described in Appendix A, Eiso,u

coll,i is directly proportional to the

choice of Eiso
kin. As the total emitted energy from the progenitor is

EGRB
tot ≈ Eiso

kinNshells, (6.5)

the effect of scaling the individual collisions is to scale the total energy emitted by the
progenitor. With Eiso

kin = 1051 erg, this is no problem as long as CE ∼ 1. To acquire
CE ∼ 1 however, one has to have effective energy conversion. This is why the initial Γ
need to have such a large spread (see figure 5.1). This is a well known problem with the
internal shock model, that for effective energy conversion to be possible, Γk+1/Γk � 1
in a collisions between shells k and k + 1. For less extreme distributions as can be seen
in figure 6.6 (initial values given in table 6.1), the coefficients become C6

E = 239 and
C7
E = 21, resulting in EGRB6

tot = 2.4 ·1056 and EGRB7
tot = 2.1 ·1055, both unrealistically high.

Thus, the validity of the simulation relies on the central engine being able to create such
large variety, something which might be questionable [3].

Due to the large values of σlogn in GRBs 1, 2, and 4, they all have shells with bulk
Lorentz factor Γ reaching almost 104, which is much to high. As a more realistic approach,
those three GRBs were run again with an upper threshold of Γth = 1000; if a random
value was generated with Γk,0 > Γth = 1000, the simulation was told to generate a new
value for Γk,0. The result can be seen in figure 6.7. All three GRBs have a significantly
lower flux than before, even though they are all still over the IceCube 2017 upper limit.

6.2.2 Effects of subphotospheric collisions

As is evident from figure 6.5, the largest energy contributions often come from shell
collisions just above the photosphere. As previously mentioned, this work completely
discard all collisions below the photosphere. Although the distributions I have given to
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Figure 6.6: Two less extreme initial distribution of Γ.

protons and photons is not valid below the photosphere, photohadronic interactions will
probably still occur to some extent. Because the neutrinos are only weakly interacting,
those that are produced below the photosphere will be able to escape the plasma and
contribute to the neutrino flux. However, for any extensive amount of neutrino production
to occur, one needs highly relativistic protons, and the question is if protons can be
accelerated to such high energies below the photosphere. If the collision occurs where
the optical depth is very high, the charged particles will be so tightly bound to the photons
that no major acceleration can take place. If there is an intermediate region close to the
photosphere, in which protons could be accelerated while τ > 1 still, collisions here could
possible contribute to the observed flux. As the optical depth is very quickly decreasing
with r, this has to bee a narrow region though.

The radiation trapped in shell collisions below the photosphere would raise the in-
ternal energy of the shell. Because the shell is optically thick, the photon spectrum is
similar to one from a blackbody. the thermal radiation created below the photosphere
could shape the photon distribution to one with a power law spectra in the high energy
band, and a thermal contribution to the lower energies [20]. If a first generation merged
shell, a shell that have interacted once, were to collide just above the photosphere again,
is is reasonable to believe that its thermal radiation resulting from the previous collisions
could contribute to the neutrino flux. As the total flux is dominated by collisions close
to rph, this might have effect on the result. That many collisions like this would occur
seems implausible however, as the collision frequency is much lower than the timescale
at which the shell cools once it reaches rph.

If any of these two aspect would influence the results, it would be in increasing the
calculated flux. Thus, the fluxes shown in figure 6.2 should be considered lower bounds.

Table 6.1: Less extreme GRB parameter inputs.

GRB Γ0,1 Γ0,2 σlogn
0,1 σlogn

0,2 Nosc Eiso
γ,set

6 300 - 0.1 - - 1053

7 100 300 0.1 0.1 4 1053
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0 1 2 3 4 5 6

Distance [cm] 10
11

0

200

400

600

800

1000

S
h

e
ll 

-f
a

c
to

r

Initial shell -distribution

(e) Γ-distribution of GRB 4 with upper threshold
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Figure 6.7: GRBs 1, 2, and 4 with an upper threshold to the initial shell bulk Lorentz
factor, set to Γth = 1000. The new Γ-distributions are shown to the left, with the resulting

predicted all sky flux to the right. Although, all fluxes have decreased, they are still above the
IceCube 2017 limit [4].
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6.2.3 External contributions

In this work, I have not considered any contributions further out than rcbm, so called
external contributions. The density of protons and photons is so low at these radii, that
photohadronic interactions are much less significant. Furthermore, the simulation is set
up so that Ncoll . Nshells, so the number of shells that reaches rcbm are only a few tens at
the most. Neutrino production during the afterglow is not within the scope of this thesis.
During the afterglow, there will be low densities but much more time for interactions to
occur, which is quite the opposite of what I have studied. This could be interesting to
include in future research. Including external contributions would raise the flux, so again
my computed fluxes could be seen as lower bounds.

6.2.4 Varying assumptions

It is important to note the many assumptions made in this work. The simplifications
made when calculating the neutrino flux should not have any significant impact on the
result (see Hümmer et al. (2010) [8] for comparisons between their method and Monte
Carlo simulations). However, there are several quantities in my simulation that are not
predicted by the simulation itself, but are decided by the user, and the chosen values
of these quantities have large influence. In this subsection, I will motivate some of the
choices made, and also expand on how varying the parameters would effect the result.
As the simulation was made to mimic Bustamante et al. (2016) [17], many numerical
parameter values have been copied from them directly.

The radius of the innermost shell is set to rinner = 108 cm. This is the same assumption
made in [17], and it is of the same order as the initial widths of the shells rinner ∼ l0. The
interpretation is that the simulation is set to start once the final shell has been emitted
by the progenitor. As the shells in a GRB are accelerated up to the coasting radius rs,
and as each shell in the simulation is given a constant Γ to begin with, the simulation
might more appropriately start at rinner = rs. The coasting radius can be approximated
as rs ∼ Γ0l0 ∼ 1011 cm. The effect of changing rinner is just to push all collisions further
out by a constant, and as the most important collisions happen at a collisions radii of
rcoll & 2× 1013 cm, the effect of adding 1011 cm is negligible.

Assumptions that do have significant influence are the values of the fractions εp, εp,
and εB. The limiting factor are the number of available energetic protons, so a change
of the baryonic loading 1/fe = εp/εe directly scales the predicted neutrino flux. A great
visual example of this is shown in figure 3 in Hümmer et al. (2012) [18]. In this thesis, I
have used the value 1/fe = 10, as it seems to be a popular value in the literature [4,17,18],
but this value is not certain. Lowering the baryonic loading to 1/fe = 1 decreases the all
sky flux significantly. GRB 1, and 2 are still above the IceCube 2017 limit but barely,
while GRB 4 is then below. Keeping the baryonic loading constant, but increasing the
energy given to magnetic field decreases the flux as well, because the pions and muons are
more effected by synchrotron cooling. Increasing the magnetic field in the shock would
effect the initial proton distribution however, and as this is not something I have taken
into account here, these results should be treated with care.

Similarly to the energy fractions, the result relies a lot on the choice of Eiso
γ,set. This

is hardly surprising; increasing Eiso
γ,set scales the amount of energy given to both protons

and photons. It is not a direct proportionality though, as the energy given to magnetic
field increases as well, leading to higher cooling losses.
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The way the photospheric radius is calculated outlined in subsection 5.4.5, results in
an unusually large rph. A large value of rph effectively lowers the fluxes. Implementing a
photospheric radius as described in the background, section 2.2, yields fluxes 1-2 orders
of magnitude higher. The peaks are also shifted to lower energies in this case, due to
higher U ′B at lower radii.

The redshift has been set to z = 2, just as in Bustamante et al (2016). In the cal-
culation of the all sky fluxes seen in figure 6.2, all GRBs are assumed to occur at same
z. Although z = 2 is close to the average redshift for GRBs, this is of course a naive
assumption. A more refined model can be found in Baerwald et al. (2012) [21], where
they study the GRB rate as a function of redshift, as well as the effect of varying redshift
on neutrino production. As the neutrino fluxes scale as dL(z)2 (see equation (5.37)), the
effect of varying redshift is significant. If all bursts are assumed to occur at z = 1 instead,
the fluxes increase by a factor 5.6 [19].

It is important to realize, that the results obtained are only valid under these assump-
tions. Should any of the assumptions later turn out to be unreasonable, this might have
large impact on the outcome.

6.2.5 Secondary photohadronic interactions and kaon decay

Radiation escaping one shell could in principle interact in another. Although definitely
possible, this contribution will be suppressed. Radiation will spend a large fraction of
time in between shells, where the probability of photohadronic reaction is negligible.
Furthermore, any large amount of neutrino production requires a proton field extending
to very high energies. Protons are accelerated at the shock front in the collisions between
shells. The extremely energetic protons created in this way will very quickly cool due to
synchrotron cooling, as can be seen from equation (4.8), and photons reaching a new shell
will not have any high energy protons to interact with. An effect could possibly come
from the excess amount of photons from previous collisions in a shell that is just undergo-
ing collision. However, the density of forward traveling photons will decrease the further
out the radiation reaches. It turns into a weighting of two different aspects: Radiation
from shell collisions at small radii have longer time where secondary photohadronic inter-
action could occur in other shells, but the density will drop quickly. For shell collisions at
larger radii, the radiation density will stay roughly constant, but the time for secondary
photohadronic interactions will be shorter. Thus, in both cases, approximating the total
pion production as only originating from the initial shell seems justified. With all this in
mind, it seems likely that secondary photohadronic interaction plays a very minor roll.
Just as with the contribution from subphotospheric collisions and external contributions
previously discussed, secondary photohadronic interaction would effectively increase the
predicted flux and so figure 6.2 should display a lower bound.

In this work, I have not considered the contribution to the neutrino production from
kaon decay. As is evident from Hümmer et al. (2010) [8], this contribution is relatively
small. Due to the higher mass of the kaons and therefore shorter lifetime, kaon decay
does contribute at the highest neutrino energies after synchrotron cooling is considered.
It could also be important for precise flavor ratio predictions [8,21,22]. Therefore, this is
something that would be interesting to include in a future, more detailed consideration.
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Including kaon decay would further increase the neutrino flux.

55



Chapter 7

Conclusion

In this thesis, I have studied five different benchmark GRBs and predicted the neutrino
fluxes for each. I have used the multi-shell internal shock model, following a paper pub-
lished by Bustamante et al. 2016 [17]. The secondary particles have been calculated
with a semi-analytical model instead of using a Monte-Carlo software, following a pro-
cedure outline by Hümmer et al. 2010 [8]. The purpose was to estimate neutrino all sky
fluxes, and to compare these with IceCube’s recently published data [4]. With the values
εp = 10/12, εB = 1/12, and εe = 1/12 for the energy fractions given to protons, magnetic
field, and electrons respectively, and a set, total emitted γ-ray energy of 1052-1053 erg,
three out of five GRBs resulted in neutrino all sky fluxes above the IceCube 2017 upper
limit, set with 90% CL. Taking the average all sky flux for all five GRBs also resulted in
a flux above the upper limit. This result speaks against the internal shock model as the
main process of GRB energy dissipation, under my current assumptions.

Contributions from below the photosphere, secondary photohadronic interactions,
external contributions, and contributions from kaon decays have not been considered.
As all these would likely add positively to the flux, my predictions could be seen as lower
bounds. However, the results rely heavily on some pre-made assumptions, such as εp, εB,
and εe, redshift z, and set γ-energies, and by varying these, the fluxes can be decreased
below the upper bound.
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Figure reproduced from Hümmer et al. (2010) [8]. . . . . . . . . . . . . . 20

4.1 The effect of synchrotron cooling. The thin lines depict the initial distri-
bution Nπ+ and the thick lines show the particle decay distribution Ndec

π+ .
The figure was obtained with a magnetic field energy density UB = 1012

GeVcm−3 and tesc = Γl/c = 0.5 s. . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Initial Γ-distribution as a function of r in cm for the five different bench-
mark GRBs. The central engine is situated at r = 0. . . . . . . . . . . . 29

5.2 Shell Lorentz factor Γ as a function of radii during the burst evolution of
GRB 5. By the end of the burst, all five pulses have smooth, sawtooth
shapes with lower average value than originally. . . . . . . . . . . . . . . 32

5.3 Burst evolution of quantities for GRB 4. The average mass increases, while
the average Γ decreases. The average shell speed is ≈ c throughout the
burst. Collisions radii is relatively evenly spread out, with a tendency to
higher energy collisions towards the end. Partial figure inspiration taken
from Bustamante et al. (2016) [17]. . . . . . . . . . . . . . . . . . . . . . 33

5.4 Fractional energy released per collision as a function of observer time for
the five GRBs. One can see the similarity to the initial Γ-distribution for
each burst. Collisions marked with black are subphotospheric, and are
thus the earliest collisions in the source frame. Evidently, this does not
correspond to an earlier observation time in the OF. . . . . . . . . . . . . 35

5.5 Energy released in γ-rays and neutrinos for each burst. Subphotospheric
γ-ray energies are shown as well. All GRBs but GRB 3 have strongest
neutrino emittance close to the photosphere. Picture inspiration taken
from Bustamante et al. (2016) [17]. . . . . . . . . . . . . . . . . . . . . . 41

6.1 The γ and neutrino light curves as observed on earth for z = 2 for the five
benchmark GRBs. Neutrino light curves include contributions from both
νµ and νµ. Figure inspiration taken from Bustamante et al. (2016) [17]. . 45

58



6.2 Computed all sky flux of νµ + νµ from the different GRBs, showed as red
lines. The solid lines below are the distributions from the most contribut-
ing shell collisions. The black dotted line is the IceCube collaboration’s
upper limit with 90 % CL [4]. Figure inspiration taken from Bustamante
et al. (2016) [17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3 Predicted all sky fluxes from all five GRBs together with their average,
shown as a red dashed line. The IceCube collaboration’s 2017 upper limit
as well as their 2016 upper limit are shown [4,17]. . . . . . . . . . . . . . 47

6.4 Plot of how much every hundredth collision above the photosphere con-
tributes to the computed all sky flux. Gives an indication of the shell
collision evolution of the burst. The legend indicates collision number,
and subphotospheric collisions are marked with an s. . . . . . . . . . . . 48

6.5 Neutrino flux as a function of collision radii for the five bursts. Black circles
mark subphotospheric collisions while blue circles are superphotospheric
collisions. The average photospheric radius has been marked. The red
line shows an r−2 slope. Figure inspiration taken from Bustamante et al.
(2016) [17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.6 Two less extreme initial distribution of Γ. . . . . . . . . . . . . . . . . . 51
6.7 GRBs 1, 2, and 4 with an upper threshold to the initial shell bulk Lorentz

factor, set to Γth = 1000. The new Γ-distributions are shown to the left,
with the resulting predicted all sky flux to the right. Although, all fluxes
have decreased, they are still above the IceCube 2017 limit [4]. . . . . . . 52

59



List of Tables

5.1 GRB benchmark parameter inputs . . . . . . . . . . . . . . . . . . . . . 29

6.1 Less extreme GRB parameter inputs. . . . . . . . . . . . . . . . . . . . . 51

60



Appendix A

Justification of arbitrary initial
kinetic energy

In the beginning of the simulation, all shells are assigned a common kinetic energy Eiso
kin.

As this initial value is chosen somewhat randomly, it is important to prove that its value
does not influence any of the results. In this appendix this will be shown, but proving
that Eiso

kin is directly proportional to the total emitted energy in γ-rays Etot
γ . As Etot

γ is
required to equal Eiso

γ,set, the value of Eiso
kin is indeed irrelevant.

The emitted energy in each collision is calculated as in equation (5.9):

Eiso
coll,i = (Γk+1mk+1c

2 + Γkmkc
2)− Γmmmc

2, (A.1)

and the initial masses are chosen as

mk,0 =
Eiso

kin

Γk,0c2
. (A.2)

As the initial Γ-values are randomized completely independently of Eiso
kin, the only thing

affected by the choice of initial energy are the initial masses of each shell. As long as
these masses always appear together with their respective Γ-value in the emitted energy,
it will be directly proportional to Eiso

kin.
In the case of a first generation collision, between two shells that have not interacted

previously, equation (A.1) reduces to

Eiso
coll,i = 2Eiso

kin − Γm,1mm,1c
2, (A.3)

where the subscript m, 1 indicates a first generation merged shell. The Lorentz factor for
the merged shell is calculated as

Γm =

√
mk+1Γk+1 +mkΓk
mk+1/Γk+1 +mk/Γk

, (A.4)

which, in the case of a first generation collision can be rewritten as

Γm,1 =

√
c2

c2

mk+1Γk+1 +mkΓk
mk+1/Γk+1 +mk/Γk

=

√
2Eiso

kin

Eiso
kin/Γ

2
k+1 + Eiso

kin/Γ
2
k

=√
2

1/Γ2
k+1 + 1/Γ2

k

=

√
2 Γ2

k Γ2
k+1

Γ2
k + Γ2

k+1

= Γk Γk+1Ck,k+1

(A.5)
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where Ck,k+1 is a constant independent of Eiso
kin. As the mass of the merged shells only is

the sum of the masses of the parent shells, one can rewrite equation (A.3) as

Eiso
coll,i =2Eiso

kin − Γk Γk+1Ck,k+1(mk +mk+1)c2 =

Eiso
kin

(
2− Ck,k+1(Γk + Γk+1)

)
∝ Eiso

kin.
(A.6)

To treat higher generation collisions, we first look at the Lorentz factor of a second
generation merged shell:

Γm,2 =

√
mm,1Γm,1 +mk+2Γk+2

mm,1/Γm,1 +mk+2/Γk+2

. (A.7)

We have already established that

Γm,1mm,1c
2 = Eiso

kinCk,k+1(Γk + Γk+1) = Eiso
kinDk,k+1 ∝ Eiso

kin (A.8)

where Dk,k+1 ≡ Ck,k+1(Γk + Γk+1) is a constant only dependent on initial Lorentz fac-
tor, and therefore still independent of initial energy. Using this, equation (A.6) can be
evaluated

Γm,2 =

√
Dk,k+1 + 1

Dk,k+1/Γ2
m,1 + 1/Γ2

k+2

= Γm,1Γk+2

√
Dk,k+1 + 1

Γ2
k+2Dk,k+1 + Γ2

m,1

=

Γk Γk+1Γk+2Ck,k+1

√
Dk,k+1 + 1

Γ2
k+2Dk,k+1 + Γ2

k Γ2
k+1C

2
k,k+1

=

Γk Γk+1Γk+2Ck,k+1,k+2,

(A.9)

where Ck,k+1,k+2 is nasty constant, but a constant non the less and still independent of
Eiso

kin. As the merged second generation mass is mm,2 = mm,1 +mk+2 = mk +mk+1 +mk+2

the contribution becomes

Γm,2mm,2c
2 =Eiso

kinCk,k+1,k+2(ΓkΓk+1 + ΓkΓk+2 + Γk+1Γk+2) =

Eiso
kinDk,k+1,k+1 ∝ Eiso

kin,
(A.10)

and the energy emitted in a second generation collision becomes

Eiso
coll,i = (Γm,1mm,1c

2 + Γk+2mk+2c
2)− Γm,2mm,2c

2 ∝ Eiso
kin. (A.11)

Higher generation Γ-factors behaves in the same way: it can ultimately be rewritten
as a product of all initial Γ-factors from previous collisions multiplied by a constant,
and as these Γ-factors always appears together by the mass, which is simply a sum of
all previous shells’ masses, they are proportional to the initial choice of kinetic energy.
Putting a requirement on the total emitted γ-radiation thus renders the choice of Eiso

kin

irrelevant. This can be tested by putting Eiso
kin = 1 or Eiso

kin = 10100, which yields no
difference in output.

One very important thing to observe however, is that the photospheric radius is
proportional to the mass ejection rate Ṁ . The photospheric radius must therefore be
scaled together with the output energies.
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[18] S. Hümmer, P. Baerwald, and W. Winter. Neutrino Emission from Gamma-Ray
Burst Fireballs, Revised, Physical Review Letters: 108, 231101; (2012).

[19] E. L. Wright. A Cosmology Calculator for the World Wide Web, The Publications
of the Astronomical Society of the Pacific: 118, 850, 1711-1715; (2006). http:

//www.astro.ucla.edu/~wright/CosmoCalc.html
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