
Mathematical Foundations of Deep Learning

Ather Gattami
Senior Research Scientist

RISE SICS
Stockholm, Sweden

February 14, 2018

Introduction Neural Networks Times series prediction

Outline

1 Introduction
Applications

2 Neural Networks
Structure and training
Complexity
Mathematical foundations

3 Times series prediction
Recurrent Neural Networks
Long Short Term Memory
Simulations

2

Introduction Neural Networks Times series prediction

Applications

APPLICATIONS

3

Introduction Neural Networks Times series prediction

Image Classification

4

Introduction Neural Networks Times series prediction

Colorization

5

Introduction Neural Networks Times series prediction

AlphaGo

6

Introduction Neural Networks Times series prediction

Video

7

Introduction Neural Networks Times series prediction

Structure & Training

STRUCTURE & TRAINING

8

Introduction Neural Networks Times series prediction

Neural Networks

9

Introduction Neural Networks Times series prediction

Neural Networks

h
(1)
1 = g(w

(0)
11 x1 + · · ·w(0)

1dx
xdx + b

(1)
1 · 1)

h
(1)
2 = g(w

(0)
21 x1 + · · ·w(0)

2dx
xdx + b

(0)
2 · 1)

...

h
(1)
d1

= g(w
(0)
d11
x1 + · · ·w(0)

d1dx
xdx + b

(0)
d1
· 1)

h(1)= g(W(0)x + b(0))

10

Introduction Neural Networks Times series prediction

Neural Networks

h
(2)
1 = g(w

(1)
11 h

(1)
1 + · · ·w(1)

1d1
h
(1)
d1

+ b
(1)
1 · 1)

h
(2)
2 = g(w

(1)
21 h

(1)
1 + · · ·w(1)

2d1
h
(1)
d1

+ b
(1)
2 · 1)

...

h
(2)
d2

= g(w
(1)
d21
h
(1)
1 + · · ·w(1)

d2d1
h
(1)
d1

+ b
(1)
d2
· 1)

h(2)= g(W(1)h(1) + b(1))

11

Introduction Neural Networks Times series prediction

Neural Networks
Similarly,

h(L)= g(W(L−1)h(L−1) + b(L−1))

Fitting the neural network parameters to the
pairs (xi, yi) is to minimize

J(W, b) =
N∑
i=1

1

2
|h(L)(W, b, xi)− yi|2

Gradient descent to find the optimum values of
W, b

W (i) ← W (i) − α∂J(W, b)

∂W (i)

12

Introduction Neural Networks Times series prediction

Neural Networks
Forward-backward propagation to calculate the
gradient ∂J(W,b)

∂W (i) .

Feedforward pass to caculate h(1), ..., h(L).

Compute

δ(L) = (h(L) − y)� g′(W (L−1)h(L−1) + b(L−1))

Backward propagation for l = L− 1, ..., 2

δ(l) =
(
(W (l))ᵀδ(l+1)

)
�g′(W (l−1)h(l−1)+b(l−1))

∂J(W, b)

∂W (l)
= δ(l+1) · (h(l))ᵀ

13

Introduction Neural Networks Times series prediction

Complexity

COMPLEXITY

14

Introduction Neural Networks Times series prediction

Neural Networks

Note that the optimization problem

min
W,b

1

2
|h(L)(W, b, x)− y|2

is never convex unless h(L)(W, b, x) is linear in (W, b). Why?

The minimization is equivalent to the optimization problem

min
W,b,γ

γ

subject to h(L)(W, b, x)− y ≤ γ

h(L)(W, b, x)− y ≥ −γ

15

Introduction Neural Networks Times series prediction

Neural Networks

Note that the optimization problem

min
W,b

1

2
|h(L)(W, b, x)− y|2

is never convex unless h(L)(W, b, x) is linear in (W, b). Why?

The minimization is equivalent to the optimization problem

min
W,b,γ

γ

subject to h(L)(W, b, x)− y ≤ γ

h(L)(W, b, x)− y ≥ −γ

15

Introduction Neural Networks Times series prediction

Neural Networks

Challenge: Study the quality of gradient descent based optimization for the
activation (ReLU) function max(0, x)

min
w,b

N∑
i=1

1

2
|max(0, wᵀxi + b)− yi|2

We can rewrite as

min
w,b,γ

N∑
i=1

1

2
γ2i

subject to max(0, wᵀxi + b)− yi ≤ γi

max(0, wᵀxi + b)− yi ≥ −γi
i = 1, ..., N

16

Introduction Neural Networks Times series prediction

Mathematical foundations

MATHEMATICAL FOUNDATIONS OF NEURAL NETWORKS

17

Introduction Neural Networks Times series prediction

Neural Networks
But how good are neural networks as
function approximators?

Neural Networks are universal
approximators!

Let σ denote the sigmoidal function

σ(x) =
1

1 + e−x

Theorem (Cybenko, 1989)

The set of functions of the form

N∑
j=1

w
(2)
j σ((w(1))ᵀx+ bj)

where w(1) ∈ Rn, and w(2)
j , bj ∈ R, are

dense in the space of continuous
functions in the range x ∈ [−1, 1]n.

18

Introduction Neural Networks Times series prediction

Neural Networks
But how good are neural networks as
function approximators?

Neural Networks are universal
approximators!

Let σ denote the sigmoidal function

σ(x) =
1

1 + e−x

Theorem (Cybenko, 1989)

The set of functions of the form

N∑
j=1

w
(2)
j σ((w(1))ᵀx+ bj)

where w(1) ∈ Rn, and w(2)
j , bj ∈ R, are

dense in the space of continuous
functions in the range x ∈ [−1, 1]n.

18

Introduction Neural Networks Times series prediction

Neural Networks
But how good are neural networks as
function approximators?

Neural Networks are universal
approximators!

Let σ denote the sigmoidal function

σ(x) =
1

1 + e−x

Theorem (Cybenko, 1989)

The set of functions of the form

N∑
j=1

w
(2)
j σ((w(1))ᵀx+ bj)

where w(1) ∈ Rn, and w(2)
j , bj ∈ R, are

dense in the space of continuous
functions in the range x ∈ [−1, 1]n.

18

Introduction Neural Networks Times series prediction

Neural Networks

Definition: A function Ψ : R→ [0, 1] is a squashing function if it is
non-decreasing, limλ→∞Ψ(λ) = 1 and limλ→−∞Ψ(λ)→ 0.

19

Introduction Neural Networks Times series prediction

Neural Networks

Let M r be the set of Borel mearsurable functions f : Rr → R, and let

Ar = {A(x) | A : Rr → R, A(x) = wᵀx+ b}

For any Borel measurable mapping G : R→ R, define

Σr(G) =

= {f : Rr → R | f(x) =

q∑
i=1

βiG(Aj(x)), x ∈ Rr, βj ∈ R, Aj ∈ Ar, q ∈ N}

20

Introduction Neural Networks Times series prediction

Neural Networks

English
There is a single hidden layer feedforward network that approximates any
measurable function to any desired degree of accuracy on some compact set K.

Math
For every function g in M r there is a compact subset K of Rr and an
f ∈ Σr(ψ) such that for any ε > 0 we have µ(K) > 1− ε and for every x ∈ K
we have |f(x)− g(x)| < ε, regardless of ψ, r, or the measure µ. (Hornik, 1989)

21

Introduction Neural Networks Times series prediction

Neural Networks

English
Functions with finite support can be approximated exactly with a single hidden
layer.

Math
Let {x1, ..., xn} be a set of distinct points in Rr and let g : Rr → R be an
arbitrary function. If Ψ achieves 0 and 1, then there is a function f ∈ Σr(Ψ)
with n hidden units such that f(xi) = g(xi) for all i.

22

Introduction Neural Networks Times series prediction

Sensitivity of Neural Networks

SENSITIVITY OF NEURAL NETWORKS

23

Introduction Neural Networks Times series prediction

Sensitivity of Neural Networks

[Intriguing properties of neural networks] 24

Introduction Neural Networks Times series prediction

Neural Networks

Robust training:

Fitting the neural network parameters to the pairs (xi + εi, yi) to minimize

J(W, b) = max
|ε|≤c

N∑
i=1

1

2
|h(L)(W, b, xi + εi)− yi|2

subject to

h(L) = g(W (L−1)h(L−1) + b(L−1)), h(0) = xi + εi

25

Introduction Neural Networks Times series prediction

Time Series Prediction

TIME SERIES PREDICTION

26

Introduction Neural Networks Times series prediction

Times Series Prediction and Neural Networks

Consider the time series give by T data samples

(x1, y1), (x2, y2), ..., (xt, yt), ..., (xT , yT)

Suppose that
ht = f(xt, ht−1)

yt = g(ht)

for some measurable functions f : Rm+n → Rn and g : Rn → Rp.

Approximate f and g with neural networks.

27

Introduction Neural Networks Times series prediction

Recurrent Neural Networks

Approximate f and g with neural networks

ht+1 = σh(Wxhxt + Uhht−1 + bh)

yt = σy(Whyht + by)

Figure: Is this structure good enough?
28

Introduction Neural Networks Times series prediction

Recurrent Neural Networks

min
W,U,b

T∑
t=1

|σy(Whyht + by)− yt|2

subject to
ht+1 = σh(Wxhxt + Uhht−1 + bh)

yt = σy(Whyht + by)

Forward-backward propagation over layers and time.

Unfolding over time gives a chain of T hidden layers.

Important constraint: The weights Wxh, Uh, bh,Why, by are identical for each
layer.

29

Introduction Neural Networks Times series prediction

Recurrent Neural Networks

Solution: Forward pass h1, ..., hT .

Consider each parameter as if it was different for each layer:

ht+1 = σh(W
(t)
xh xt + U

(t)
h ht−1 + b

(t)
h)

yt = σy(W
(t)
hy ht + b(t)y)

This is called Back-Propagation Through Time (BPTT).

30

Introduction Neural Networks Times series prediction

Long Short Term Memory

However, there is a problem of exploding/vanishing gradient in RNN.

Suppose that σh = σy = id (or ReLU) in

ht+1 = σh(Wxhxt + Uhht−1 + bh)

yt = σy(Whyht + by)

Then we see that
ht = U t−1

h h1 + · · ·

One solution is to introduce Long Short Term Memory (LSTM).

31

Introduction Neural Networks Times series prediction

Long Short Term Memory

LONG SHORT TERM MEMORY

32

Introduction Neural Networks Times series prediction

Applications of LSTM

Handwriting recognition

Speech recognition

Handwriting generation

Machine translation

Image captioning

Text parsing

Prediction of stock price evolution

33

Introduction Neural Networks Times series prediction

Long Short Term Memory

The solution is to introduce Long Short Term
Memory (LSTM)

ft = σ(Wfxt + Ufht−1 + bf)

it = σ(Wixt + Uiht−1 + bi)

yt = σ(Wyxt + Uyht−1 + by)

ct = ft � ct−1 + it � σc(Wcxt + Ucht−1 + bc)

ht = yt � σh(ct)

with c0 = 0 and h0 = 0.

Remark: h0 = 0 is a rough approximation.

ot = yt in the figure below.

34

Introduction Neural Networks Times series prediction

Long Short Term Memory

Consider

hk = Ahk−1 +Bxk

yk = Chk

Then,

hk = Akh0 +
k∑
t=1

Ak−tBxt

LSTM should be used cautiously for regression

35

Introduction Neural Networks Times series prediction

Simulations

SIMULATIONS

36

Introduction Neural Networks Times series prediction

Example

Consider the dynamic system

yt = (xt + yt−1) mod (2)

y0 and the input xt ∈ {0, 1} are randomly generated for t = 1, ..., T , T = 105.

The memory in the dynamic system is of order 1

yt = f(xt, yt−1)

yt = g(yt)

with g = id.

37

Introduction Neural Networks Times series prediction

Example

f can be approximated by a static neural network with L layers, with input
(xt, yt−1) and output yt.
Training of the static neural network is given by

min
W,b

T∑
t=1

|h(L)(W, b, xt, yt−1)− yt|2

Training: 70% of the data samples.

Test: 30% of the remaining data.

Prediction accuracy: ≈ 50%.

38

Introduction Neural Networks Times series prediction

Example

Introduce memory in the static neural
network

yt = f(xt, yt−1, yt−2, ..., , yt−M)

M = 1000

Prediction accuracy is ≈ 60%.

Prediction accuracy with LSTM is
100%!

39

Introduction Neural Networks Times series prediction

Example

Introduce memory in the static neural
network

yt = f(xt, yt−1, yt−2, ..., , yt−M)

M = 1000

Prediction accuracy is ≈ 60%.

Prediction accuracy with LSTM is
100%!

39

Introduction Neural Networks Times series prediction

End of Presentation

QUESTIONS?

40

	Introduction
	Applications

	Neural Networks
	Structure and training
	Complexity
	Mathematical foundations

	Times series prediction
	Recurrent Neural Networks
	Long Short Term Memory
	Simulations

