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Applications

APPLICATIONS
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Image Classification

4



Introduction Neural Networks Times series prediction

Colorization
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AlphaGo
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Neural Networks

h
(1)
1 = g(w

(0)
11 x1 + · · ·w(0)

1dx
xdx + b

(1)
1 · 1)

h
(1)
2 = g(w

(0)
21 x1 + · · ·w(0)

2dx
xdx + b

(0)
2 · 1)

...

h
(1)
d1

= g(w
(0)
d11
x1 + · · ·w(0)

d1dx
xdx + b

(0)
d1
· 1)

h(1)= g(W(0)x + b(0))

10



Introduction Neural Networks Times series prediction

Neural Networks
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Neural Networks
Similarly,

h(L)= g(W(L−1)h(L−1) + b(L−1))

Fitting the neural network parameters to the
pairs (xi, yi) is to minimize

J(W, b) =
N∑
i=1

1

2
|h(L)(W, b, xi)− yi|2

Gradient descent to find the optimum values of
W, b

W (i) ← W (i) − α∂J(W, b)

∂W (i)
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Neural Networks
Forward-backward propagation to calculate the
gradient ∂J(W,b)

∂W (i) .

Feedforward pass to caculate h(1), ..., h(L).

Compute

δ(L) = (h(L) − y)� g′(W (L−1)h(L−1) + b(L−1))

Backward propagation for l = L− 1, ..., 2

δ(l) =
(
(W (l))ᵀδ(l+1)

)
�g′(W (l−1)h(l−1)+b(l−1))

∂J(W, b)

∂W (l)
= δ(l+1) · (h(l))ᵀ
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Complexity

COMPLEXITY
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Neural Networks

Note that the optimization problem

min
W,b

1

2
|h(L)(W, b, x)− y|2

is never convex unless h(L)(W, b, x) is linear in (W, b). Why?

The minimization is equivalent to the optimization problem

min
W,b,γ

γ

subject to h(L)(W, b, x)− y ≤ γ

h(L)(W, b, x)− y ≥ −γ
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Neural Networks

Challenge: Study the quality of gradient descent based optimization for the
activation (ReLU) function max(0, x)

min
w,b

N∑
i=1

1

2
|max(0, wᵀxi + b)− yi|2

We can rewrite as

min
w,b,γ

N∑
i=1

1

2
γ2i

subject to max(0, wᵀxi + b)− yi ≤ γi

max(0, wᵀxi + b)− yi ≥ −γi
i = 1, ..., N
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Mathematical foundations

MATHEMATICAL FOUNDATIONS OF NEURAL NETWORKS
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Neural Networks
But how good are neural networks as
function approximators?

Neural Networks are universal
approximators!

Let σ denote the sigmoidal function

σ(x) =
1

1 + e−x

Theorem (Cybenko, 1989)

The set of functions of the form

N∑
j=1

w
(2)
j σ((w(1))ᵀx+ bj)

where w(1) ∈ Rn, and w(2)
j , bj ∈ R, are

dense in the space of continuous
functions in the range x ∈ [−1, 1]n.
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Neural Networks

Definition: A function Ψ : R→ [0, 1] is a squashing function if it is
non-decreasing, limλ→∞Ψ(λ) = 1 and limλ→−∞Ψ(λ)→ 0.
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Neural Networks

Let M r be the set of Borel mearsurable functions f : Rr → R, and let

Ar = {A(x) | A : Rr → R, A(x) = wᵀx+ b}

For any Borel measurable mapping G : R→ R, define

Σr(G) =

= {f : Rr → R | f(x) =

q∑
i=1

βiG(Aj(x)), x ∈ Rr, βj ∈ R, Aj ∈ Ar, q ∈ N}
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Neural Networks

English
There is a single hidden layer feedforward network that approximates any
measurable function to any desired degree of accuracy on some compact set K.

Math
For every function g in M r there is a compact subset K of Rr and an
f ∈ Σr(ψ) such that for any ε > 0 we have µ(K) > 1− ε and for every x ∈ K
we have |f(x)− g(x)| < ε, regardless of ψ, r, or the measure µ. (Hornik, 1989)
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Neural Networks

English
Functions with finite support can be approximated exactly with a single hidden
layer.

Math
Let {x1, ..., xn} be a set of distinct points in Rr and let g : Rr → R be an
arbitrary function. If Ψ achieves 0 and 1, then there is a function f ∈ Σr(Ψ)
with n hidden units such that f(xi) = g(xi) for all i.

22



Introduction Neural Networks Times series prediction

Sensitivity of Neural Networks

SENSITIVITY OF NEURAL NETWORKS
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Sensitivity of Neural Networks

[Intriguing properties of neural networks] 24
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Neural Networks

Robust training:

Fitting the neural network parameters to the pairs (xi + εi, yi) to minimize

J(W, b) = max
|ε|≤c

N∑
i=1

1

2
|h(L)(W, b, xi + εi)− yi|2

subject to

h(L) = g(W (L−1)h(L−1) + b(L−1)), h(0) = xi + εi
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Time Series Prediction

TIME SERIES PREDICTION
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Times Series Prediction and Neural Networks

Consider the time series give by T data samples

(x1, y1), (x2, y2), ..., (xt, yt), ..., (xT , yT )

Suppose that
ht = f(xt, ht−1)

yt = g(ht)

for some measurable functions f : Rm+n → Rn and g : Rn → Rp.

Approximate f and g with neural networks.
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Recurrent Neural Networks

Approximate f and g with neural networks

ht+1 = σh(Wxhxt + Uhht−1 + bh)

yt = σy(Whyht + by)

Figure: Is this structure good enough?
28
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Recurrent Neural Networks

min
W,U,b

T∑
t=1

|σy(Whyht + by)− yt|2

subject to
ht+1 = σh(Wxhxt + Uhht−1 + bh)

yt = σy(Whyht + by)

Forward-backward propagation over layers and time.

Unfolding over time gives a chain of T hidden layers.

Important constraint: The weights Wxh, Uh, bh,Why, by are identical for each
layer.
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Recurrent Neural Networks

Solution: Forward pass h1, ..., hT .

Consider each parameter as if it was different for each layer:

ht+1 = σh(W
(t)
xh xt + U

(t)
h ht−1 + b

(t)
h )

yt = σy(W
(t)
hy ht + b(t)y )

This is called Back-Propagation Through Time (BPTT).
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Long Short Term Memory

However, there is a problem of exploding/vanishing gradient in RNN.

Suppose that σh = σy = id (or ReLU) in

ht+1 = σh(Wxhxt + Uhht−1 + bh)

yt = σy(Whyht + by)

Then we see that
ht = U t−1

h h1 + · · ·

One solution is to introduce Long Short Term Memory (LSTM).
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Long Short Term Memory

LONG SHORT TERM MEMORY
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Applications of LSTM

Handwriting recognition

Speech recognition

Handwriting generation

Machine translation

Image captioning

Text parsing

Prediction of stock price evolution
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Long Short Term Memory

The solution is to introduce Long Short Term
Memory (LSTM)

ft = σ(Wfxt + Ufht−1 + bf )

it = σ(Wixt + Uiht−1 + bi)

yt = σ(Wyxt + Uyht−1 + by)

ct = ft � ct−1 + it � σc(Wcxt + Ucht−1 + bc)

ht = yt � σh(ct)

with c0 = 0 and h0 = 0.

Remark: h0 = 0 is a rough approximation.

ot = yt in the figure below.
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Long Short Term Memory

Consider

hk = Ahk−1 +Bxk

yk = Chk

Then,

hk = Akh0 +
k∑
t=1

Ak−tBxt

LSTM should be used cautiously for regression

35



Introduction Neural Networks Times series prediction

Simulations

SIMULATIONS
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Example

Consider the dynamic system

yt = (xt + yt−1) mod (2)

y0 and the input xt ∈ {0, 1} are randomly generated for t = 1, ..., T , T = 105.

The memory in the dynamic system is of order 1

yt = f(xt, yt−1)

yt = g(yt)

with g = id.
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Example

f can be approximated by a static neural network with L layers, with input
(xt, yt−1) and output yt.
Training of the static neural network is given by

min
W,b

T∑
t=1

|h(L)(W, b, xt, yt−1)− yt|2

Training: 70% of the data samples.

Test: 30% of the remaining data.

Prediction accuracy: ≈ 50%.
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Example

Introduce memory in the static neural
network

yt = f(xt, yt−1, yt−2, ..., , yt−M )

M = 1000

Prediction accuracy is ≈ 60%.

Prediction accuracy with LSTM is
100%!
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End of Presentation

QUESTIONS?
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