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Neural Networks

O = gul® + S g, + 501
hgl) = g(wg(i)xl + - -wég)x:cdw + bgo) 1)
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Neural Networks
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Neural Networks

Similarly,
h— g(w(L—l)h(L—l) + b(L—l))

Fitting the neural network parameters to the

pairs (x;,y;) is to minimize
—>Py=0]x

N
1
JW.b) = 37 SIh B (Wb ) = yif?

i=1

—> Ply=1]x)

—> Ply=2x)

Gradient descent to find the optimum values of

Wb

8.J (W, b)

(4) (@ _ 22\
W «— W o BT%0)
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Neural Networks

Forward-backward propagation to calculate the
. 8J(Wb)
gradient —=—5~.

Feedforward pass to caculate h(1), ..., h(5).

Compute
—3 P(y=0 | x)

o) = (hB) — o) @ ¢/ (WEDpE=D 4 pE=D))

—> Ply=1]x)

—> Ply=2]x)

Backward propagation for [ =L —1,...,2

5 — ((W(l))T5(l+1)) g (WD =1 p=1)y

0.J (W, b)

o = WD (T
ow
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COMPLEXITY
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Neural Networks

Note that the optimization problem

1
ml’? 2|h (W, b, z) —y|

is never convex unless hX) (W, b, x) is linear in (W,b). Why?
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Neural Networks

Note that the optimization problem

1
ml’? 2|h (W, b, z) —y|

is never convex unless hX) (W, b, x) is linear in (W,b). Why?

The minimization is equivalent to the optimization problem

min
W,b,y
subject to h(L)(W, byr) —y <~

W (Wb, ) —y > —
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Neural Networks

Challenge: Study the quality of gradient descent based optimization for the
activation (ReLU) function max(0, x)
g
min ~|max(0, wTa; + b) — y;|?
w,b 4 2
=1
We can rewrite as
Al
i ZA2
g}gg ; 2%
subject to  max(0,wTz; +b) —y; <
max(0, wTx; +b) —y; > —v;
i=1,..,N

16



Neural Networks
©00000000

Mathematical foundations

MATHEMATICAL FOUNDATIONS OF NEURAL NETWORKS
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Neural Networks

But how good are neural networks as
function approximators?
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Neural Networks

But how good are neural networks as
function approximators?

Neural Networks are universal
approximators!

Let o denote the sigmoidal function

1

o) =T

-6 -4 -2 0 2 4 6
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Neural Networks

But how good are neural networks as
function approximators?

Neural Networks are universal Theorem (Cybenko, 1989)

approximators! The set of functions of the form
Let o denote the sigmoidal function
Zw o((wM) Tz + by)
(0) =
o
1+e

. where w) € R™, and wj(?), bj € R, are
dense in the space of continuous
os functions in the range x € [—1,1]™.
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Neural Networks

Definition: A function ¥ : R — [0, 1] is a squashing function if it is
non-decreasing, limy_,o U(A) = 1 and limy_,_ o ¥(A\) — 0.

Squashing functions

w(n)
| |

00 02 04 06 08 1.0
N

-2 -1 0 1 2
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Neural Networks

Let M" be the set of Borel mearsurable functions f : R” — R, and let

={A(z) | A:R" =R, A(z) =wTzx + b}
For any Borel measurable mapping G : R — R, define

Y1 (@) =

={f R > R| fz Zﬁz )),r €ER". B, € R, A; € A" g € N}
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Neural Networks

English
There is a single hidden layer feedforward network that approximates any
measurable function to any desired degree of accuracy on some compact set K.

Math

For every function g in M" there is a compact subset K of R" and an

f € X7(¢) such that for any € > 0 we have p(K) > 1 — € and for every v € K
we have | f(z) — g(x)| < €, regardless of ¥, r, or the measure . (Hornik, 1989)
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Neural Networks

English
Functions with finite support can be approximated exactly with a single hidden
layer.

Math
Let {x1,...,x,} be a set of distinct points in R" and let g : R" — R be an

arbitrary function. If ¥ achieves 0 and 1, then there is a function f € X"(¥)
with n hidden units such that f(z;) = g(z;) for all 7.
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Sensitivity of Neural Networks

SENSITIVITY OF NEURAL NETWORKS
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Sensitivity of Neural Networks

[Intriguing properties of neural networks] v
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Neural Networks

Robust training:

Fitting the neural network parameters to the pairs (x; + €;,y;) to minimize

N
1
J(W,b) = max §|h(L)(W b, xi + &) — i’

le|<c <
=1

subject to

) = (W EDRE=D L pE=y - p0) — g 4
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TIME SERIES PREDICTION
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Times Series Prediction and Neural Networks

Consider the time series give by 1" data samples

(xlvyl)v (1'2, y2>7 SREE) (xhyt)a ceey (xTvyT)

Suppose that
he = f(@e, he1)

ye = g(he)

for some measurable functions f : R™*" — R™ and g : R" — RP.

Approximate f and g with neural networks.
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Recurrent Neural Networks

Approximate f and g with neural networks

hiv1 = on(Wanxe + Uphi—1 + bp,)
Yt = Uy(Whyht + by)

¥

O 'ho

¥
Twh, Why Why T
h h,
b i

f 1
— >0~ 0=
Unfald T T
Wixh Wxh Wxh
x[ X

* ]

Figure: Is this structure good enough?
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Recurrent Neural Networks

T

. 2
min ; |0y (Whyhe + by) — wil

subject to
hiv1 = on(Wenze + Uphy—1 + by)

Y = Jy(Whyht + by)
Forward-backward propagation over layers and time.
Unfolding over time gives a chain of T" hidden layers.

Important constraint: The weights W, Uy, by, Why, by are identical for each
layer.
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Recurrent Neural Networks

Solution: Forward pass hq, ..., hp.

Consider each parameter as if it was different for each layer:

hiy1 = Uh(WQEZ)CEt + U,(lt)ht—l + b,(f))

This is called Back-Propagation Through Time (BPTT).
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Long Short Term Memory

However, there is a problem of exploding/vanishing gradient in RNN.
Suppose that oj, = 0, = id (or ReLU) in

his1 = on(Wenxy + Uphi—1 + bp)
yr = oy(Whyht + by)

Then we see that
hy = U,tl‘lhl 4.

One solution is to introduce Long Short Term Memory (LSTM).
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Long Short Term Memory

LONG SHORT TERM MEMORY
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Applications of LSTM

Handwriting recognition

Speech recognition

Handwriting generation

@ Machine translation

Image captioning

Text parsing

Prediction of stock price evolution
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Long Short Term Memory

The solution is to introduce Long Short Term

Memory (LSTM) 0y = Yy in the figure below.
fir=0Wysxy + Uphi—1 + by)
. -1 g i
1 = O'(Willit + Uhi—1 + bz> inpulr' 5 ./ll autput
Yt = U(Wyflft + Uyht—l + by) .rrgate‘ @ celk e ¥
¢t = fr ©cio1 + i © oe(Weay + Uchy—1 + be) ;@_"X"ﬂ_}h!
I (5
ht :thO-h(Ct) l X
forget
B,

with ¢g = 0 and hg = 0.

Remark: hy = 0 is a rough approximation.
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Long Short Term Memory

Consider

hi = Ahi_1 + By,
yr = Chy,
Then,

k
hye = A¥hg + Z A+t By,
t=1

LSTM should be used cautiously for regression
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SIMULATIONS
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Example

Consider the dynamic system

Yr = (x¢ +14—1) mod (2)

Yo and the input z; € {0, 1} are randomly generated for t = 1, ..., T, T = 10°.

The memory in the dynamic system is of order 1

Ut = f(l‘t, yt—1)
ye = 9(yt)
with g = id.
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Example

f can be approximated by a static neural network with L layers, with input
(z¢,y¢—1) and output y;.
Training of the static neural network is given by

T
Hv%/i})l ; IR (Wb, 2, ye1) — ye?

Training: 70% of the data samples.
Test: 30% of the remaining data.

Prediction accuracy: ~ 50%.
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Example

Introduce memory in the static neural
network

Yt = f(xt,yt_byt_z, e ,yt_M)
—> P(y=0|x)
—> Ply=1]|x)
M = 1000

—> Ply=2]x)

Prediction accuracy is ~ 60%.

LR
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Example

Introduce memory in the static neural
network

Yt = f(xt,yt_byt_z, e ,yt_M)
—> P(y=0|x)
—> Ply=1]|x)
M = 1000

—> Ply=2]x)

Prediction accuracy is ~ 60%.

Prediction accuracy with LSTM is
100%!
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End of Presentation

QUESTIONS?
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