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Reinforcement Learning in A Nutshell

Used in problems where actions
(decisions) have to be made

Each action (decision) affects future
states of the system

Success is measured by a scalar
reward signal

Goal: Take actions (decisions) to
maximize reward (or minimize cost)
where no system model is
available
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Dynamical Systems

Let sk, yk, ak be the state, observation, and action at time step k, respectively.

Deterministic model:

sk+1 = fk(sk, ak)

yk = gk(sk, ak)

Stochastic model (Markov Decision Process):

P(sk+1 | sk, ak, sk−1, ak−1, ...) = P(sk+1 | sk, ak)
P(yk | sk, ak, sk−1, ak−1, ...) = P(yk | sk, ak)

We assume perfect state observation, that is yk = sk.
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Dynamical Systems

Given a dynamical system with states, observations, and actions given by sk, yk
and ak, respectively, and scalar valued rewards rk(sk, ak), find the actions ak
that maximize the average reward

RT = E

(
T∑
k=1

δkrk(sk, ak)

)

where 0 < δ < 1 is the discount factor.
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Example

Let rk(θk, Fk) = −θ2k where θk and Fk
are time discretized values.
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Example

What are the rewards in Go?
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Bellman’s Principle of Optimality
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Bellman’s Equation

Definition
A policy π(sk) defines a probability distribution over actions given a state sk,

P(Ak = ak | Sk = sk)

For deterministic policies, the action is given by ak = π(sk) with probability 1.
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Bellman’s Equation

Let st = s, at = a.

The total reward:

Qπ
0 (s, a) = E

(
T∑
k=0

δkrk(sk, ak)

∣∣∣∣∣s0 = s, a0 = a

)

The reward to go:

Qπ
t (s, a) = E

(
T∑
k=t

δk−trk(sk, ak)

∣∣∣∣∣st = s, at = a

)
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Bellman’s Equation

Let st = s, at = a.

The infinite reward (to go):

Qπ
t (s, a) = E

( ∞∑
k=t

δk−trk(sk, ak)

∣∣∣∣∣st = s, at = a

)
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Bellman’s Equation

Qπ
i (s, a)

= E

(
ri(si, ai) +

T∑
k=i+1

δk−irk(sk, ak)

∣∣∣∣∣si = s, ai = a

)

= E

(
ri(s, a) + δ ·

T∑
k=i+1

δk−i−1rk(sk, ak)

)

= E

(
ri(s, a) + δ ·

T∑
k=i+1

δk−(i+1)rk(sk, ak)

)
= E

(
ri(s, a) + δ ·Qπ

i+1(s+, a+)
)
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Bellman’s Equation

Define
π?(s) = argmax

π
Qπ
i (s, π(s))

and
Q∗i (s, a) = Qπ∗

i (s, a)

The policy is optimal for all i:

π∗(s) = argmax
a

Q∗i (s, a)

Bellman’s Equation

Q∗i (s, a) = E
(
ri(s, a) + δ ·Q∗i+1(s+, a+)

)
15



Introduction Dynamical Systems Bellman’s Principle of Optimality Reinforcement Learning

Dynamic Programming

Q∗i (s, a) = E
(
ri(s, a) + δ ·Q∗i+1(s+, a+)

)
The value function

Vi(s) = max
a

Q∗i (s, a)

The Bellman Equation is given by

Vi(s) = max
a

E (ri(s, a) + Vi+1(s+))

= max
a

∑
s+∈S

P(s+ | s, a) (ri(s, a) + Vi+1(s+))

16



Introduction Dynamical Systems Bellman’s Principle of Optimality Reinforcement Learning

Model Free Optimization and Reinforcement Learning

What if we don’t have the system model?

If the system is deterministic, the model is given by

sk+1 = fk(sk, ak)

If the system is stochastic, the model is given by

P(sk+1 | sk, ak)
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Q-Learning

Let s = sk and s+ = sk+1.

Update rule with some 0 < αk(sk, ak) < 1:

Q(s, a)← Q(s, a) + α(r(s, a) + δmax
a+

Q(s+, a+)−Q(s, a))

The optimal policy is estimated from Q(s, a):

π(s) = argmax
a

Q(s, a)
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Q-Learning

Theorem
Consider the Q-learning algorithm given by

Q(s, a)← Q(s, a) + α(s, a)(r(s, a) + δmax
a+

Q(s+, a+)−Q(s, a))

where ∑
k

αk(s, a) =∞,
∑
k

α2
k(s, a) <∞, ∀ (s, a)

The Q-learning algorithm converges to the optimal action-value function,
Q(s, a)→ Q∗(s, a).
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Q-Learning

What if the state/action spaces are very large?
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Deep Reinforcement Learning

Deep Reinforcement Learning:

Q function is approximated with a deep neural network.

Training:

Minimize the loss function with respect to the neural network weights w

l(w) = (r(s, a) + δmax
a+

Q(s+, a+,w−)−Q(s, a,w))2
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Deep Reinforcement Learning
1: Initialize w,w− arbitrarily
2: for (each episode): do
3: Initialize s
4: repeat
5: Set a = argmaxaQ(s, a,w)
6: Apply a, observe s+
7: Set a+ = argmaxa+ Q(s+, a+,w−)
8: V (s) = r(s, a) + δQ(s+, a+,w)
9: w− ← w

10: Minimize l(w) = (V (s)−Q(s, a,w))2

11: s← s+
12: until final state s
13: end for
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Simulations

SIMULATIONS
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Simulations
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Research Questions

1. Extend Q-learning to continuous state/action spaces.

s(k + 1) = As(k) +Ba(k), y(k) = Cs(k). Only solved when C is left invertible and
A is stable, simultaneously.

Unsolved for unstable matrix A.

2. Explore structures for Q-learning to find argmaxaQ(s, a) efficiently.

3. Analyze convergence of Deep Reinforcement Learning.
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End of Presentation

QUESTIONS?
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