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Dynamical Systems Bellman’s Principle of Optimality Reinforcement Learning

Dynamical Systems

Let sk, yk, ak be the state, observation, and action at time step k, respectively.

Deterministic model:

sk+1 = fk(sk, ak)

yk = gk(sk, ak)

Stochastic model (Markov Decision Process):

P(sk+1 | sk, ak, sk−1, ak−1, ...) = P(sk+1 | sk, ak)
P(yk | sk, ak, sk−1, ak−1, ...) = P(yk | sk, ak)

We assume perfect state observation, that is yk = sk.
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Dynamical Systems

Find the policy ak = π(sk) that maximizes the average reward

V (s0) = E

( ∞∑
k=1

δkrk(sk, ak)

)

where 0 < δ < 1 is the discount factor.

Stationary Bellman Equation

Q∗(s, a) = E (r(s, a) + δ ·Q∗(s+, a+))
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Bellman’s Equation

Stationary Bellman Equation

Q∗(s, a) = E (r(s, a) + δ ·Q∗(s+, a+))

π?(s) = arg max
π

Qπ(s, π(s))

The optimal policy is
π∗(s) = arg max

a
Q∗(s, a)
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Finite Noncooperative Games

Player 2

L R

Player 1
U (1, 0) (1, 3)

D (0, 2) (2, 4)

Bimatrix game (Q1, Q2) with payoffs

Q1(a
1, a2) = (a1)ᵀA1a

2, Q2(a
1, a2) = (a1)ᵀA2a

2

Optimal a1 = (0, 1), and a2 = (0, 1).
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Finite Noncooperative Games

Player 2

L R

Player 1
U (4, 3) (1, 1)

D (0, 0) (3, 4)

Bimatrix game (Q1, Q2) with payoffs

Q1(a
1, a2) = (a1)ᵀA1a

2, Q2(a
1, a2) = (a1)ᵀA2a

2

Mixed strategies: a1, a2 ≥ 0, a11 + a12 = 1, a21 + a22 = 1.
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Prisoner’s Dilemma

Inefficient Nash Equilibrium:

Prisoner 2

Cooperate Defect

Prisoner 1
Cooperate (−1,−1) (−10, 0)

Defect (0,−10) (−5,−5)
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Stochastic Games

Given a Markov process (S,A1, A2, P ) with

P (s, a1, a2, s+) = P(s+ | s, a1, a2), s ∈ S, (a1, a2) ∈ A1 × A2

and initial state s0 = s.

Reward of Player 1:

V1(s, π1, π2) = E

( ∞∑
k=1

δkr1k(sk, π1(sk), π2(sk))

)
Reward of Player 2:

V2(s, π1, π2) = E

( ∞∑
k=1

δkr2k(sk, π1(sk), π2(sk))

)
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Nash Equilibrium

Definition:

A Nash equilibrium is a pair of strategies (π?1, π
?
2) such that for all s ∈ S,

V1(s, π
?
1, π

?
2) ≥ V1(s, π1, π

?
2), ∀π1

V2(s, π
?
1, π

?
2) ≥ V2(s, π

?
1, π2), ∀π2

Theorem (Filar and Vrieze, 1997)

Every (finite) stochastic game given by the tuple (S, a1, a2, P, r1, r2) possesses
at least one Nash Equilibrium.
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Q-Learning (1 Player)

Let s = sk and s+ = sk+1.

Update rule with some 0 < αk(sk, ak) < 1:

Q(s, a)← Q(s, a) + α(r(s, a) + δmax
a+

Q(s+, a+)−Q(s, a))

The optimal policy is estimated from Q(s, a):

π(s) = arg max
a

Q(s, a)

Nash Equilibrium is not equivalent to maximizing the Q function!
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Q-Learning (1 Player)

Theorem
Consider the Q-learning algorithm given by

Q(s, a)← Q(s, a) + α(s, a)(r(s, a) + δmax
a+

Q(s+, a+)−Q(s, a))

where 0 < αk(sk, ak) < 1,

0 < αk(s, a) < 1,
∑
k

αk(s, a) =∞,
∑
k

α2
k(s, a) <∞, ∀ (s, a)

The Q-learning algorithm converges to the optimal action-value function,
Q(s, a)→ Q∗(s, a).
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Reinforcement Learning in Stochastic Games

Dynamic programming implies

Q?
1(s, a

1, a2) = E(r1(s, a1, a2) + δQ?
1(s+, a

1
+, a

2
+))

Q?
2(s, a

1, a2) = E(r2(s, a1, a2) + δQ?
2(s+, a

1
+, a

2
+))
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Assumption

Assumption 1
The stochastic game satisfies one of the following properties:
(i) The Nash Equilibrium is global optimal.

V1(s, π
?
1, π

?
2) ≥ V1(s, π1, π2), V2(s, π

?
1, π

?
2) ≥ V2(s, π1, π2), ∀π1, π2

(ii) If the Nash Equilibrium is not global optimal, then an agent receives a higher
payoff when the other agent deviates from the Nash Equilibrium strategy.

V1(s, π
?
1, π

?
2) ≤ V1(s, π

?
1, π2), ∀π2

V2(s, π
?
1, π

?
2) ≤ V2(s, π1, π

?
2), ∀π1
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Reinforcement Learning in Stochastic Games

Theorem
Under Assumption 1, the Q-learning algorithm given by

Qj(s, a)← Qj(s, a)+α(s, a)(rj(s, a)+δQj(s+, π(s+))−Qj(s, a)), j = 1, 2

where π(s) = (π1(s), π2(s)) is a pair of Nash Equilibrium strategies for the the
bimatrix game (Q1, Q2)

0 < αk(s, a) < 1,
∑
k

αk(s, a) =∞,
∑
k

α2
k(s, a) <∞, ∀ (s, a)

The Q-learning algorithm converges to the optimal action-value function,
Q(s, a)→ Q∗(s, a).

14
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Zero-Sum Games

r1(s, a1, a2) = −r2(s, a1, a2)
Implies

V1(s, π1, π2) = −V2(s, π1, π2)

Assumption 1.(ii) is satisfied:

V1(s, π
?
1, π

?
2) ≤ V1(s, π

?
1, π2), ∀π2

V2(s, π
?
1, π

?
2) ≤ V2(s, π1, π

?
2), ∀π1

Nash Equilibrium in mixed strategies can be found by linear programming.
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Q-Learning for Zero-Sum Games

Theorem (Q-learning for zero-sum games)

Consider the Q-learning algorithm given by

Q(s, a1, a2)←Q(s, a1, a2) + α(s, a1, a2)(r(s, a1, a2)+

δmax
a1+

min
a2+

Q(s+, a
1
+, a

2
+)−Q(s, a1, a2))

where

0 < αk(s, a) < 1,
∑
k

αk(s, a) =∞,
∑
k

α2
k(s, a) <∞, ∀ (s, a)

The Q-learning algorithm converges to the optimal action-value function,
Q(s, a)→ Q∗(s, a).
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Multi-Objective Reinforcement Learning

Industry: Production volume, cost, delivery, profit.

Telecom: QoS, number of users, bit rate.

Digital advertising: Reach vs. cost and return of investment.
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Multi-Objective Reinforcement Learning

Single objective:

E

( ∞∑
k=0

δkr(sk, ak)

)
≥ γ

Maximize γ subject to the above inequality.

Multiple objectives

E

( ∞∑
k=0

δkrj(sk, ak)

)
≥ γj, j = 0, ..., J − 1
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Multi-Objective Reinforcement Learning

Lemma

Let βj = (1− δ)γj , for j = 0, ..., J − 1. If there exists a policy π ∈ Π such that

E

( ∞∑
k=0

δkrj(sk, π(sk))

)
≥ γj, j = 0, ..., J − 1

then

max
π

min
j∈ZJ

E

( ∞∑
k=0

δk
(
rj(sk, π(sk))− βj

))
≥ 0

(1 + δ + δ2 + · · · )βj = 1/(1− δ) · βj = γj
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( ∞∑
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Multi-Objective Reinforcement Learning

Theorem
Consider a Markov Decision Process given by (S,A, P ) and suppose that there
exists a policy π such that

E

( ∞∑
k=0

δkrj(sk, π(sk))

)
≥ γj, j = 0, ..., J − 1

Let βj = (1− δ)γj and introduce

r(s, a, j) , rj(s, a)− βj
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Multi-Objective Reinforcement Learning

Theorem (Cont’d)

Let Qk be given by the stochastic game Q-learning algorithm.

Then, Qk → Q? as k →∞. Furthermore, the policy

π?(s) = arg max
π

min
j∈ZJ

E (Q?(s, π(s), j))

satisfies

E

( ∞∑
k=0

δkrj(sk, π
?(sk))

)
≥ γj, j = 0, ..., J − 1
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Example

rj(a) =

{
1
2 if a = j

0 otherwise

Let the discount factor be δ = 1
2 and let

γ0 = γ1 = γ2 = γ =
1

3

E

( ∞∑
k=0

δkrj(ak)

)
≥ 1

3
, j = 0, 1, 2

23



Dynamical Systems Bellman’s Principle of Optimality Reinforcement Learning

Example

Now suppose that the agent takes action ak = 0 with probability p0. Then we
have that

E

( ∞∑
k=0

δkr0(ak)

)
= p0

Similarly,

E

( ∞∑
k=0

δkrj(ak)

)
= pj

for j = 1, 2.
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Example

Suppose that p0 ≤ p1 ≤ p2,

p0 + p1 + p2 = 1

We have that
1

3
=
p0 + p1 + p2

3
≥ 3
√
p0p1p2 ≥ p0

with equality if and only if p0 = p1 = p2 = 1
3 .

The agent’s mixed strategy is unique and given by p0 = p1 = p2 = 1
3 .
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Example

Figure: A plot of the maximum of |p0 − p̂0|+ |p1 − p̂1|+ |p2 − p̂2| over 1000 iterations, as a
function of the number of time steps.
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End of Presentation

QUESTIONS?
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