
Diagnostic Web-based Monitoring in CS1
Olle Bälter

KTH CSC
100 44 STOCKHOLM

SWEDEN
+46 8 790 6341

balter@kth.se

ABSTRACT
Students that fall behind during a course are a concern in any
teaching situation. Falling behind has negative effects both for
students, teachers and the university. Close monitoring of the
learning and development can be effective, but is in general time-
consuming and expensive. The use of a web-based diagnostic
system that can generate a large (infinite) number of questions
could make monitoring both time and cost effective.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education, learning.

General Terms
Experimentation.

Keywords
Computer Science Education, Pedagogy, Generic questions.

1. INTRODUCTION
Science teachers too often experience how a student approach
them towards the end of a course and reveal that they did not
understand the topic of the 2nd week of the course and therefore
have been unable to understand the rest. Teachers are of course
aware of this problem and therefore introduce various minor tests
and/or lab assignments before the final to promote continuous
learning. However, as s a natural part of laboratory assignments
there are also lot of support available from teachers and assistants.
While this support is essential to help some students forward it
can also be unintentionally misleading for some that can produce
lab results (reports or in computer science: source code), but
without understanding exactly why.

In some cases teachers blame the students that do not study or
seek help early enough, but after spending a semester at an
American top college with excellent students and still observing
the same phenomena, it is clear that this happens even among very
talented students. In general, an experienced teacher get a sense

rather quickly which students are in danger of failing, but without
hard evidence of the case it is difficult to initiate a discussion with
the student. The teacher may be wrong, and the student may be in
denial.

If we take the idea of assessment during the course to an extreme,
we would constantly be assessing the students. This might have
benefits, but takes time from teaching and interaction with the
students and also feels a lot like baby-sitting.

One alternative that adds only a little workload to the teacher is to
ask the students to hand in reflections over their learning.
However, although beneficial in many ways, it adds to the
workload for the students, and students with authoring skills may
hand in reflections that seems right, but still has misunderstood
some concepts, in similar ways that a verbally skilled student may
slip through an oral examination of a lab assignment.

The solution should therefore minimize the time spent both for the
teacher and the students and contain precise questions that can be
assessed automatically. This way, the teacher only have to read a
summary of the results and does not have to spend any time
reading answers that are correct, which normally should be the
vast majority.

2. RELATED RESEARCH
Introductory courses in computer science is a constant topic of
discussion among academics and the hurdles to learn
programming have been lowered by various tools, such as
narratives, visual programming, robots, Lego [15] and
visualizations of programs [14, 16]. One of the criticisms is that
many students do not know how to program after an introductory
course [13] and that programming assignments are subject to
plagiarism [5]. Students report that it is acceptable to copy the
majority of an assignment from a friend [19] and in one study,
40% of students plagiarized at least one assignment [3]. There are
reports of 20% of the students failing the course [12].
Computer Assisted Assessment (CAA) is often presented as THE
solution for education of the future. The opinions on Computer
Aided Assessment (CAA) is split among academics, but there are
claims that this is mostly due to experience with CAA[3]. There
are several systems for CAA [11, 12] and there are studies that
report no significant difference in examination between online
exercising and classroom exercising [8]. Among the advantages
with CAA is the possibility to personalize assignments and to
resubmit answers (which is important from a constructivist
perspective), which improved grades greatly, but the share of
failing students remain approximately the same (slightly under
20% in [12]).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Koli Calling’09, October 29–November 1, 2009, Koli, Finland.
Copyright 2009 ACM 978-1-60558-952-7/09…$5.00.

However, there are also disadvantages with CAA [24]. If CAA is
used on the web, the problem of knowing who is answering the
questions and also whether this person is receiving help or not [3]
becomes difficult. One negative aspects of CAA not mentioned in
the literature (maybe because it is too obvious) is that constructing
problems and evaluations that are correct becomes even more
essential, as slips, mistakes and errors cannot be handled as
smoothly as on a written exam or a lab assignment where that
teacher simply can admit the mistake and correct it immediately.
In order to improve learning, counter plagiarism and reduce the
number of failing students (regardless whether they fail the course
or not), we also need to improve assessment.
Lecturers often do not know how well students are doing until
after the first assessment. At this point, it may be too late to
prevent struggling students from falling [1]. We therefore need to
assess students early and with problems suitable for their learning.
We know that deep approach to learning not surprisingly leads to
higher grades [20], but also that students’ expectation of their own
grade on the introductory course is the most important indicator of
performance [18] and the students’ comfort level is the best
predictor of success [21], and the strongest relationship between
fifteen factors and performance on a programming module was a
student’s perception of their understanding of the module [1]. One
study suggest that weaker students should only be required to gain
the ability to read and understand programs, and thereby
demonstrating knowledge and comprehension (using Bloom’s
taxonomy) [9]. The initial assessment on these levels should be a
part of the early identification of struggling students. Passing
these simpler problems could strengthen their self-confidence and
perception of the subject and thereby improve learning in the
entire course.
There is at least one report of weekly tests [23], but this was made
in labs, which of course reduce time for interaction. However,
these weekly quizzes dramatically reduced failure rates [23] and
lab exams are better assessors of programming ability than
traditional methods such as written exams and programming
assignments [5] but an examination of novice programmers and
the SOLO (Structure of the Observed Learning Outcome)
taxonomy ends with a recommendation to mix training and
assessment of reading and writing tasks [10].
There are already online programming assessment tools [11, 17],
but unlike the proposal in [17], we are only suggesting a
pedagogical methodology, not a technical system. There is also an
argument against combined development and assessment systems:
the students are not learning to use the tools used in “real”
development. Self-assessment has also been used successfully for
terminology quizzes as a way to encourage reading lecture
material before class [22], our proposal goes a little further.

3. PROPOSAL
A web-based system for small diagnostic tests would liberate
students from coordinating assessments in time and place and the
teacher could automatically be sent a summary by email.
However, creating sufficient number of questions in such a system
would be a very time-consuming endeavor, and if the number of
questions is too few, there is always a risk that some students will
copy answers from others.

A remedy to this problem is to use generic questions. A generic
question is a question formulated in a way that makes it possible
to construct a large (even infinite) number of questions from it.

For example, as a first problem in CS1, the following code is
provided:

a = 17

b = a

a = 42

and the question follows: what is the value of b? Depending on
whether a and b are primitive or reference variables, the answer
will be 17 or 42, respectively. Examining the question we can
realize that a can be replaced with any valid variable name, as can
b; and 17 and 42 can be replaced with any variable value.

Similar constructions can easily be transferred to mathematics
(and are in use in web courses at our university) and possible to
other science subjects as well. The foundation is that the question
is determinable (that is, all answers can be classified as 100%
right or 100% wrong) and input dependent (that is, there is input
to the question and this input can be varied and effect output).

The web technology makes it possible to give students a small test
every day (or before or after a lecture, a lab etc.). A student that
fail the test may, thanks to the generic formula, be given a new
test immediately in the spirit of constructivism (this idea was
proposed by Keller in 1968 [6, 7]). This monitoring could
improve the situation for students, teachers and the university.

From a student perspective this system could improve
· learning, as the tests will inspire some students to study first,
· clarifying whether the student has understood or not (it is

easy to think you can because everything seems so simple when
the teacher explains),

· teacher support, as failing the test repeatedly will give a clear
signal that the student needs assistance, both to the student and
the teacher.

From a teacher perspective the system can give information in
several ways:
· Individual level: which students failed (more than once on a

question) this can be used to approach these students to give
them support

· Group level: Reports on how many (percentage) have failed
(the first time) on each question and use that to repeat
instructions during the course and improve the explanation to
the next course

· With test results stored in a database it could also be used to
detect negative trends (students that never use to fail suddenly
fails)

From a university perspective the system could improve:
· Throughput of students as failures can be detected and

corrected much earlier.
· Results in general as study habits improve.
· If the system is used in several courses, it could also be used

to identify students that struggle in several subjects (many
failures in several courses).

We have experience of similar attempts from the test system in a
previous project [2]. A minor part of that project is still in use in

on-campus courses in programming for the mid-term. The main
difference between this project and previous is

· We now have an infrastructure for development and
maintenance of the system.

· The focus on generic questions that has undisputedly right or
wrong answers.

· The technical solution is far more evolved with a complete
database, logging of web activities, etc.

Initially we will start with courses in computer science where we
have most knowledge and experience, but we clearly see how
these ideas can be extended into other sciences and for parts of
social science and humanities.

4. STUDY DESIGN
There is a web-based system in use at our university, but today it
is only used for distance education. This system will be a stable
foundation for the experiments we intend to perform. There are
generic questions on math and programming in the system, but
these are ad hoc and there is no general way to introduce new
questions, and no teacher interface for this.

In order to add functionality for generic questions and student
monitoring we intend to:
· Observe how the ad-hoc solution to generic exam questions

that are in use today can be used for diagnostic purposes, as
proposed.

· Based on these observations, propose a design for the system
so that any teacher can add new generic questions and use the
system.

· Develop a model for organization and continuous
improvement of a database with generic questions that all
teachers have access to.

We will do this in two simultaneous pilot studies, one at an
American college, and one at a Swedish university. At both sites
the pilot will be run in an introductory course in computer science
using Java or Python.
An example of output from the system to the teacher can be found
in Figure 1. This could be sent via email to the teacher or be
shown on a secure web page. The amount of information
presented should be limited and the thresholds should be possible
to configure. The information is divided in three sections. The
general section is to get a sense for how the entire class has done
on the test. The student section lists names of students with more
than two attempts. The purpose is that the teacher should get
information on which students that may need extra support. In this
mock example, Britney Spears does not seem to need any
assistance but Adam Sandler definitely does. The section with
questions is not interesting at all in this example, but in case there
is something wrong with one of the questions it will be clear
which from this information. This may be attributed to a failure in
formulating the question or if the question is correct, there might
be something overseen in the teaching and course material.

5. DISCUSSION QUESTIONS
· Is this a good idea from a teacher’s perspective?
· Is this a good idea from a student’s perspective?
· How should the pilots be evaluated?
· Are there more efficient ways to achieve the same goals?

6. ACKNOWLEDGMENTS
Thanks to the project Virtual Campus at Resource Centre for Net-
based Education, KTH Royal Institute of Technology for
financing and STINT, Swedish Foundation for International
Cooperation in Research and Higher Education for additional
travel grants.

7. REFERENCES
[1] Bergin, S. and Reilly, R. 2005. Programming: factors that

influence success. In Proceedings of the 36th SIGCSE
Technical Symposium on Computer Science Education (St.
Louis, Missouri, USA, February 23 - 27, 2005). SIGCSE '05.
ACM, New York, NY, 411-415.

[2] Bälter, O. 2004. WIKKED (in Swedish) URL:
www.nada.kth.se/utbildning/projekt/wikked Last Visited
June 8, 2009.

[3] Carter, J., Ala-Mutka, K., Fuller, U., Dick, M., English, J.,
Fone, W., and Sheard, J. 2003. How shall we assess this?. In
Working Group Reports From ITiCSE on innovation and
Technology in Computer Science Education (Thessaloniki,
Greece, June 30 - July 02, 2003). D. Finkel, Ed. ITiCSE-
WGR '03. ACM, New York, NY, 107-123.

[4] Daly, C. and Horgan, J.M., (2001), Automatic Plagiarism
Detection, Proceedings of the IASTED International

Introduction to Computer Science

Summary of test 1 September 9 2009

General

85% passed on their first attempt

10% passed on their second attempt

5% needed more than two attempts

Students with none or more than two
attempts

Adam Sandler: 7 Failed

Britney Spears: 3 Passed

Questions

Attempts: 1 2 3 3+

Q1 45 3 2

Q2 48 2

Q3 45 3 1 1

Figure 1. Example of output from the system to the
teacher.

Conference Applied Informatics, pp.255-259. Innsbruck,
Austria, Feb 2001.

[5] Daly, C. and Waldron, J. 2004. Assessing the assessment of
programming ability. In Proceedings of the 35th SIGCSE
Technical Symposium on Computer Science Education
(Norfolk, Virginia, USA, March 03 - 07, 2004). SIGCSE '04.
ACM, New York, NY, 210-213.

[6] Herzberg P. 2001. The Keller Plan: 25 Years of Personal
Experience. In Positive Pedagogy – Successful and
Innivative Strategies in Higher Education, vol. 1, #1. ISSN:
1496-8126.

[7] Keller F S. 1968. “Goodbye, teacher...” J. Appl. Behavioral
Analysis. Vol 1(1), pp 79-89.

[8] Korhonen, A., Malmi, L., Myllyselkä, P., and Scheinin, P.
2002. Does it make a difference if students exercise on the
web or in the classroom?. In Proceedings of the 7th Annual
Conference on innovation and Technology in Computer
Science Education (Aarhus, Denmark, June 24 - 28, 2002).
ITiCSE '02. ACM, New York, NY, 121-124.

[9] Lister, R. and Leaney, J. 2003. Introductory programming,
criterion-referencing, and bloom. In Proceedings of the 34th
SIGCSE Technical Symposium on Computer Science
Education (Reno, Navada, USA, February 19 - 23, 2003).
SIGCSE '03. ACM, New York, NY, 143-147.

[10] Lister, R., Simon, Thompson, E., Whalley, J. L., and Prasad,
C. 2006. Not seeing the forest for the trees: novice
programmers and the SOLO taxonomy. In Proceedings of
the 11th Annual SIGCSE Conference on innovation and
Technology in Computer Science Education (Bologna, Italy,
June 26 - 28, 2006). ITICSE '06. ACM, New York, NY, 118-
122.

[11] Malmi, L., Karavirta, V., Korhonen, A. and Nikander, J.
(2005): Experiences on automatically assessed algorithm
simulation exercises with different resubmission policies. In
ACM Journal of Educational Resources in Computing, 5 (3)

[12] Malmi, L., Korhonen, A., and Saikkonen, R. 2002.
Experiences in automatic assessment on mass courses and
issues for designing virtual courses. In Proceedings of the 7th
Annual Conference on innovation and Technology in
Computer Science Education (Aarhus, Denmark, June 24 -
28, 2002). ITiCSE '02. ACM, New York, NY, 55-59.

[13] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Kolikant, Y. B., Laxer, C., Thomas, L., Utting, I.,
and Wilusz, T. 2001. A multi-national, multi-institutional
study of assessment of programming skills of first-year CS
students. In Working Group Reports From ITiCSE on
innovation and Technology in Computer Science Education
(Canterbury, UK). ITiCSE-WGR '01. ACM, New York, NY,
125-180.

[14] Naps, T. L., Eagan, J. R., and Norton, L. L. 2000. JHAVÉ—
an environment to actively engage students in Web-based
algorithm visualizations. In Proceedings of the Thirty-First
SIGCSE Technical Symposium on Computer Science
Education (Austin, Texas, United States, March 07 - 12,
2000). S. Haller, Ed. SIGCSE '00. ACM, New York, NY,
109-113. DOI= http://doi.acm.org/10.1145/330908.331829

[15] Powers, K., Gross, P., Cooper, S., McNally, M., Goldman,
K. J., Proulx, V., and Carlisle, M. 2006. Tools for teaching
introductory programming: what works? In Proceedings of
the 37th SIGCSE Technical Symposium on Computer Science
Education (Houston, Texas, USA, March 03 - 05, 2006).
SIGCSE '06. ACM, New York, NY, 560-561.

[16] Rajala, T., Laakso, M.-J., Kaila, E. and Salakoski, T. (2007).
VILLE - a language-independent program visualization tool.
In Proc. Seventh Baltic Sea Conference on Computing
Education Research (Koli Calling 2007), Koli National Park,
Finland. CRPIT, 88. Lister, R. and Simon, Eds. ACS. 151-
159.

[17] Roberts, G. H. and Verbyla, J. L. 2003. An online
programming assessment tool. In Proceedings of the Fifth
Australasian Conference on Computing Education - Volume
20 (Adelaide, Australia). T. Greening and R. Lister, Eds.
Conferences in Research and Practice in Information
Technology Series, vol. 140. Australian Computer Society,
Darlinghurst, Australia, 69-75.

[18] Rountree, N., Rountree, J., and Robins, A. 2002. Predictors
of success and failure in a CS1 course. SIGCSE Bull. 34, 4
(Dec. 2002), 121-124.

[19] Sheard, J., Dick, M., Markham, S., Macdonald, I., and
Walsh, M. 2002. Cheating and plagiarism: perceptions and
practices of first year IT students. In Proceedings of the 7th
Annual Conference on innovation and Technology in
Computer Science Education (Aarhus, Denmark, June 24 -
28, 2002). ITiCSE '02. ACM, New York, NY, 183-187.

[20] Simon, Fincher, S., Robins, A., Baker, B., Box, I., Cutts, Q.,
de Raadt, M., Haden, P., Hamer, J., Hamilton, M., Lister, R.,
Petre, M., Sutton, K., Tolhurst, D., and Tutty, J. 2006.
Predictors of success in a first programming course. In
Proceedings of the 8th Austalian Conference on Computing
Education - Volume 52 (Hobart, Australia, January 16 - 19,
2006). D. Tolhurst and S. Mann, Eds. ACM International
Conference Proceeding Series, vol. 165. Australian
Computer Society, Darlinghurst, Australia, 189-196.

[21] Wilson, B. C. and Shrock, S. 2001. Contributing to success
in an introductory computer science course: a study of twelve
factors. In Proceedings of the Thirty-Second SIGCSE
Technical Symposium on Computer Science Education
(Charlotte, North Carolina, United States). SIGCSE '01.
ACM, New York, NY, 184-188.

[22] Williams, G. C., Bialac, R., and Liu, Y. 2006. Using online
self-assessment in introductory programming classes. J.
Comput. Small Coll. 22, 2 (Dec. 2006), 115-122.

[23] Woit, D. and Mason, D. 2003. Effectiveness of online
assessment. In Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education (Reno, Navada,
USA, February 19 - 23, 2003). SIGCSE '03. ACM, New
York, NY, 137-141.

[24] Zhang, D., Zhao, J. L., Zhou, L., and Nunamaker, J. F. 2004.
Can e-learning replace classroom learning?. Commun. ACM
47, 5 (May. 2004), 75-79.

