

Hur kan automatiserade fordon bidra till mer effektiv kollektivtrafik?

Erik Jenelius

Privately owned cars

- ⊖ No effect on car ownership
- No effect on number of parked cars (cars unused most of the day)
- ⊖ No effects on costs /km
- ⊖ No effects on mobility for people that do not own a car
- Even more car traffic

 (as it is even more comfortable and attractive to go by car)

Shared fleets

AV's will only help to meet public policy goals if they come as shared fleets integrated with PT Fleet cars INTEGRATED with traditional public transport services

- ♣ Large scale street reclaiming
- Highly improved access to public transport
- Highly improved mobility for people that do not own a car
- Strong decrease in VMT
- High gain of efficency (large and small vehicles perfectly mixed)
- ♣ Low costs/km

> Unsustainable, even more car traffic

Source: UITP (2017)

> Sustainable, better mobility and equity

Shared fleets as part of PT system

Evaluation of bus service automation

Scenario study: Group of lines gathered in a trunk corridor (city center) and branched in the periphery.

Comparison of three different technologies:

- conventional bus: current technology that needs drivers
- full-autonomous bus: drivers will be removed
- semi-autonomous bus: drivers will be partially removed working by platoons

Effect of capital and operating costs

Fully autonomous buses advantageous if similar commercial speed Semi-autonomous buses competitive mainly in inter-regional service

iQMobility

Automatiserad kollektivtransportlösning

för bussar i storstadsmiljö

How should the AV bus network be designed?

Where is the deployment of AV bus networks most profitable? Simulation Optimization approach Application to Stockholm

Input

Maintenance Costs Operation Costs

SMART

Simulation and Modeling of Automated Road Transport

- Modeling requirements for simulating shared AVs in mesoscopic simulation models?
- When can demand-responsive AVs be an alternative or complement to fixed-route, fixed-schedule public transit?
- How can real-time coordination of shared AVs influence operating and passenger costs in flexible public transit?

Methodology

BusMezzo public transit simulator (line-based)
Individual vehicle and passenger agents
Day-to-day learning for route and mode choice
Extension with dynamic routing and dispatching capabilities

Hur kan automatiserade fordon bidra till mer effektiv kollektivtrafik?

Erik Jenelius

