Grading Criteria for DD2440 Advanced Algorithms 2018

Assessment tasks

• 3+1 individual assignments.

- **3 normal assignments.** Each assignment consists of 5-6 questions. Each question is assigned a grade between A-E.
- **1 make-up assignment**, consisting of 1-2 questions *only of grade E*.
- To be completed individually.
- Grade for each question: pass/fail

• 3 group exercises.

- To be completed in a group of 2-4.
- Possible to consult the internet, but cannot copy a solution from somewhere.
- Grade for each question: pass/fail

• 2-3 Projects.

- To be completed in a group of 2-4.
- Grade: Pass/fail, but possible to get grades A-E for some projects.

• Peer-reviews:

- Review peers' turn-ins for the above tasks.
- Required to pass any task above.
- In this an *individual responsibility*. You have to complete the peer review assigned to **you** (not your group). Consulting others is allowed though.

Checklist for passing with E

- Individual assignments: Pass 2 assignments.
 - To pass an assignment, pass one question from such assignment.
- Group exercises: Pass 1 question in total.
- Projects: Pass 1 Project
- **Peer-reviews:** To pass any task above, passing the corresponding peer review is mandatory.

Example: If you pass individual assignments #1 and #2, group exercise #1, and project #1, then you pass.

Checklist for grade $X \in \{A, ..., E\}$

- **Pass the course:** see the checklist for passing the course
- Get grade at least X from 3 among individual assignment questions* and projects.
 - To get grade X from a individual assignment, pass one question assigned with grade X.
 - Some (but not all) projects offer an opportunity to earn grades. Each of them has different rules.
- <u>Example 1</u>: If you get A from individual assignments #1 and #2 and project TSP, and pass group exercise #1, then you get A.
- <u>Example 2</u>: If you pass A- and B- questions individual assignments #1 and get B for project TSP, and pass group exercise #1, then you get B.

Bonus

<u>Usage:</u> You can use 4 points to "upgrade" your grade (e.g. from B to A) of one of your individual assignments or projects.

Remark: To upgrade your grade for any task, you must receive at least E for such task.

Earning: The bonus points could be earned by contributing to the learning of participants in the course. Examples:

- Scribe a note for a lecture (see examples from the previous years <u>here</u>).
- Find or construct materials or activities (a note, a video, etc.) that help understanding lectures better.
- Provide model solutions that are different from existing ones for group exercises or individual assignments.
- Provide extra practice questions and solutions.

Remarks: Please feel free to propose other opportunities yourself. It is possible to earn in group, but must justify the work of 2 hours each. Talk to the lecturer if you want to propose anything.

Intended Learning Outcomes

- 1. Explain different algorithmic concepts such as randomized algorithms, approximation algorithms, fixed-parameter algorithms
 - Assessment: Individual and group assignments
- 2. Analyze and verify algorithms that are based on the above concepts
 - Assessment: Individual and group assignments
- 3. Develop algorithms using the above concepts
 - Assessment: Individual and group assignments, and projects
- 4. Independently explore existing advanced algorithms, implement them, and improve them using heuristics.
 - Assessment: Projects
- 5. Communicate algorithmic ideas in a clear, formal, way.
 - Assessment: Individual and group assignments, and project reports

learning outcomes	E	D	C	В	Α
1. Explain different algorithmic concepts such as randomized algorithms, approximation algorithms, fixed-parameter algorithms	Explain definitions and principles of different concepts and models of computation	Pick concept or model that is suitable for each situation			
2. Analyze and verify	Analyze and verify algorithms similar to the simple ones covered in class	[C criterion] with given hints or with less complex problems	Analyze and verify algorithms similar to the complex ones covered in class and criticize algorithms developed by others	[A criterion] with given hints or with less complex problems	Analyze and verify algorithms that are different from those covered in class based on principles covered in class
algorithms that are based on the above concepts	Verify and comment on the algorithms and reports written by peers.				
3. Develop algorithms using above concepts	Develop algorithms along the same line of simple algorithms covered in class with proofs	[C criterion] with given hints or with less complex ideas	Develop algorithms based on the same idea as algorithms covered in class	[A criterion] with given hints or with less novel ideas	Develop algorithms to solve problems using principles covered in class that require some creativity (i.e. ideas that are not covered in class)
4. Independently explore existing advanced algorithms, implement them, and improve them using heuristics	In group and without much external help, survey, evaluate, and implement algorithms to solve assigned problems with sufficient efficiencies.				
5. Communicate algorithmic ideas in a clear, formal, way.	Clearly and formally explain algorithms, their analysis, and relevant literatures in the solutions and reports.				7