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Project Background
• Predict demand and route choice for scenario evaluation

and action ranking
• Offline processes for demand prediction and scenario 

evaluation
• Online processes for classification of traffic situation 

and choice of control measure
• Example

• Tow directly or after peak
• Early information to travelers of severe incidents (i.e. 

do not use car)
• In this presentation focus on clustering methods for 

demand prediction
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Demand Prediction
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• To enable evaluation of traffic control measures we need to estimate
(offline evaluation) and predict (online evaluation) demand

• Clustering + Classification VS Time series analysis
– Important component to get an understanding of traffic patterns
– With distinct traffic patterns we can determine how control measures

perform for different scenarios patterns
• 1) Clustering

– What type of data shall we cluster and at which aggregation level?
– Which method shall we use for clustering?
– How many clusters should we have?

• 2) How well does clustering-based demand prediction work?



Datasets and Preprocessing
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• Special days
– Nyårsdagen
– Trettondagen 
– Skärtorsdag
– Långfredag
– Påskafton
– Påskdagen
– Annandag påsk
– Valborg
– Kristi himmelsfärd
– Klämdagar 
– Nationaldagen
– Skolavslutning
– Studenten 
– Midsommarafton
– Midsommardagen
– Midsommarsöndag
– Julafton
– Juldagen
– Annandag jul
– Nyårsafton

• Special periods
– Januaridagar

– Sportlov

– Påsklov 

– Sommar/semester

– Juli

– Höstlov 

– Mellandagar



Datasets and Preprocessing
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• 14 selected sensors on 7 major roads in 
Stockholm

• 2 sensors on each direction of Essingeleden

• Speed and flow aggregated to 15 minute
intervals from 05-22

• Days with missing time intervals removed

• Special days, weekends and holiday
periods removed

• Days with incidents are (still) included

• Remaining: 169 regular weekdays



Special days, Weekends and Holidays 8



Clustering Methods
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• Standard K-means per sensor (KmeanSensors)
– Local pattern for each sensor

• K-means jointly for several sensors 
(KmeanVector)
– Network effects, but no location clustering

• 3D speed maps (3Dmap)
– Network effects and location included in 

clustering
• Median observation vector (MOV)

– Hybrid between 3D speed map and joint K-
means (2-dimensional)



Clustering Results Example 10



MOV profiles3Dmap profiles



Clustering Similarity
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• What matters?

– Clustering method?

– Clustering variables?

– Sensor selection?

• Day clustering similarity

– Optimum overlap

– NMI and Rand’s index

• Cluster time profile similarity

𝑑𝑑𝑖𝑖𝑖𝑖 = 1 −
∑𝑘𝑘𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎(𝑣𝑣𝑖𝑖𝑘𝑘 − 𝑣𝑣𝑖𝑖𝑘𝑘)
∑𝑘𝑘𝑁𝑁𝑚𝑚𝑎𝑎𝑚𝑚(𝑣𝑣𝑖𝑖𝑘𝑘 ,𝑣𝑣𝑖𝑖𝑘𝑘)



Day Clustering Similarity Results
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Speeds Flows

Adjusted mutual information: 1 – the same /  0 – nothing in common



Clustering Profile Similarity Results
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3Dmap_12 1.00 0.95 0.96 0.96 0.95 0.96 0.94 0.92 0.96
3Dmap_18 0.95 1.00 0.96 0.96 0.95 0.96 0.95 0.93 0.96
3Dmap_6 0.96 0.96 1.00 0.95 0.94 0.95 0.92 0.90 0.95
MOV_12 0.96 0.96 0.95 1.00 0.96 0.97 0.94 0.92 0.97
MOV_18 0.95 0.95 0.94 0.96 1.00 0.97 0.95 0.93 0.97
MOV_6 0.96 0.96 0.95 0.97 0.97 1.00 0.92 0.90 0.96
KmeanVector_12 0.94 0.95 0.92 0.94 0.95 0.92 1.00 0.91 0.94
KmeanVector_18 0.92 0.93 0.90 0.92 0.93 0.90 0.91 1.00 0.94
KmeanVector_6 0.96 0.96 0.95 0.97 0.97 0.96 0.94 0.94 1.00

Speed Flow
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3Dmap_12 1.00 0.87 0.88 0.89 0.88 0.90 0.84 0.80 0.89
3Dmap_18 0.87 1.00 0.89 0.90 0.89 0.91 0.87 0.83 0.90
3Dmap_6 0.88 0.89 1.00 0.88 0.87 0.89 0.80 0.73 0.88
MOV_12 0.89 0.90 0.88 1.00 0.91 0.93 0.86 0.81 0.92
MOV_18 0.88 0.89 0.87 0.91 1.00 0.93 0.89 0.85 0.93
MOV_6 0.90 0.91 0.89 0.93 0.93 1.00 0.81 0.73 0.91
KmeanVector_12 0.84 0.87 0.80 0.86 0.89 0.81 1.00 0.77 0.87
KmeanVector_18 0.80 0.83 0.73 0.81 0.85 0.73 0.77 1.00 0.86
KmeanVector_6 0.89 0.90 0.88 0.92 0.93 0.91 0.87 0.86 1.00
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Demand Prediction
• Prediction for 2 hours (8 x 15 

minute time intervals) into the 
future at the 08:00 and 15:00

• Match the current day with
closest profile considering all 
past intervals to the 08:00 and 
15:00

• Clustering of weekdays 2017 
• Prediction of weekdays 2018

min
𝑖𝑖
�
𝑘𝑘

𝐾𝐾

𝑎𝑎𝑎𝑎𝑎𝑎(𝑣𝑣𝑖𝑖𝑘𝑘 − 𝑐𝑐𝑘𝑘)



Demand Prediction Results
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Demand Prediction Results
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Demand Prediction Based on Speed/Travel times?
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• Increasing amount of network-
wide probe data

• Can we find network-wide
demand patterns using travel
time / speed data?

– Cluster link speeds or OD 
matrix?

• Do we need network-wide
clustering?

– Large-scale actions that
affects route choice

Normalized mutual information: 
1 – the same /  0 – nothing in common

Clustering similarity between flows 
and speeds clusters [NMI]

Number of clusters
Method 6 12 18 24
3Dmap 0.17 0.23 0.35 0.52
MOV 0.32 0.38 0.46 0.50

KmeanVector 0.41 0.42 0.44 0.54
KmeanSensors 0.27 0.31 0.36 0.42



Scenario Evaluation Example
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• 25/8 2017: Malfunctioning bridge splice (”broskarv”) on Essingeleden

– How to manage lane blocking?

– What information should be given to travellers and when?

E4N 18/8 2017



Scenario Evaluation Example
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E4N 25/8 2017 E4N 25/8 2017 Model

• 25/8 2017: Malfunctioning bridge splice (”broskarv”) on Essingeleden

– How to manage lane blocking?

– What information should be given to travellers and when?



Conclusions and Future Work
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• Is clustering useful for scenario evaluation?
– Yes, to determine typical days

• Does clustering method/variables matter?
– Yes, especially for day clustering
– However, small variations for weekdays and profiles quite similar

• Does cluster-based prediction work?
– Yes, and tentatively quite little differences between clustering methods

• More work needed
– To evaluate clustering effects on action ranking 
– To understand network-wide clustering and relationship between

speed/flow-based clustering
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