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Improving first/last-mile mass transit connectivity

« Widely viewed as a key factor in transit mode choice

« Often difficult to provide fixed transit at high level-of-service for a
reasonable operational cost
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Improving first/last-mile mass transit connectivity

« Widely viewed as a key factor in transit mode choice

« Often difficult to provide fixed transit at high level-of-service for a
reasonable operational cost
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o Offer more flexible transit feeder/last-mile solutions
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A popular use case for automated vehicles

 Integration of automated vehicles with existing public
transit a popular pilot study

« Automated vehicles (SAE level 4-5) potentially requires

no driver
* (~50-70% of operational cost in public transit in

developed countries)

« Sensor network and connected vehicles reduce
uncertainty in public transit situation awareness and real-
time cooperative fleet management
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A popular use case for automated vehicles

 Integration of automated vehicles with existing public
transit a popular pilot study

« Automated vehicles (SAE level 4-5) potentially requires

no driver
* (~50-70% of operational cost in public transit in

developed countries)

« Sensor network and connected vehicles reduce
uncertainty in public transit situation awareness and real-
time cooperative fleet management

How to evaluate such services prior to implementation?
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Research objectives

Research objectives:
1. Expand the set of simulation tools to evaluate flexible transit systems
2. Evaluate emerging public transit solutions

Research question:
Should vehicles within an automated feeder solution follow a fixed, or on-demand operational policy?

Example scenarios: Feeder/Last-mile
Fixed route &
"
ynamic

Empty-vehicle
redistribution

Pick-up/Drop-off
A points A‘\\:\ *“\§‘
Transfer station R ,‘ \ -7 "
@  to/from mass transit A " xv

Increasing flexibility

Dynamic route
& timetable
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Methodology
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Greedy and reactive strategy

FleetManager
Passenger RequestHandler TripPlanner Navigator Matcher Scheduler TransitVehicle
New unassigned vehicle
Update \«
’ Request Bundle -Generate 3 Check CFIeet Statﬁ
Requests Passenger Trip Fleet State Schedule
Stay at stop A Trips
Generate j A Finished trip
Submit Rebalancing Trip Estimate
Request New
Trip not found assignment
r N >{ MatchedTrips Usptdite
RequestSet Passenger Tri ate
Reblalancm Tri Add to
g e MatchedTrips/
Valid request | A
TripPlans
Add to Trip found
RequestSet > Match Trips \ 4
Add to ;
) Book trip
— Trip not found TripPlans @

Basic idea: Iteratively assign the closest in terms of expected travel time empty vehicle
to the highest currently known count of requests with shared OD
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Case study

« 2 fleets with comparable service capacity and
operational cost per hour with vehicle automation
« 2 non-AVs of passenger capacity 50
* 4 AVs of passenger capacity 25

Fixed circular feeder
A

« 5 demand levels, highest exceeding fixed service
capacity
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Performance evaluation

* Nominal travel times (Waiting, In-vehicle, Waiting if denied)
* Weighted travel costs

« Total waiting time reliability (CV)

« Equity of total waiting time (Gini coefficient)

« VKT

« System cost (operational + weighted travel costs)
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Results —average LoS

» Larger fleet improves LoS (not suprising)

» Lower average travel time with on-demand service

« Higher average weighted travel cost per passenger due to
differences in waiting time

Nominal travel times Weighted travel costs
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Results — waiting time reliability

» Fixed service operations more reliable in terms of waiting time
« On-demand strategy results in relative variance that decreases
with higher demand levels
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Results — equity of waiting time

* On-demand coordination results in more even distribution of waiting
time costs when service capacity is exceeded
« Waiting time distributed more evenly under fixed operations
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Results - VKT

Demand Level
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Fixed services drive continously, higher VKT for larger fleet
On-demand scheduling results in lower VKT per passenger for lower demand levels
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System costs

« On-demand coordination results in lower system costs for lowest levels of demand due to
reduction in distance-based costs
« When service capacity is exceeded, on-demand coordination is superior relative to fixed

System costs FC->DRT, automated System costs FC->DRT, non-automated
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Conclusions

* Fixed operations more reliable for all demand levels below maximum service
capacity and provides higher LoS for mid-range demand

* For decreasing levels of demand intensity, on-demand LoS tends to improve
for lower VKT/passenger. Total system costs are reduced for the lowest levels

of demand regardless of fleet

* When service capacity is exceeded, on-demand coordination results in a
higher, more equal LoS
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Future work

Two main directions:

1. Utilize existing framework to evaluate and compare additional
strategies for on-demand coordination

2. Extend framework to model co-existing fixed and flexible services
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Thank you for your attention!
David Leffler
dleffler@kth.se
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Appendix - Subproblems of on-demand fleet coordination

1. RequestHandler

L . . connects Stop - has
* receiving, bundling and sorting -
requests *
Passenger —generates—| Request —recieves— FleetManager Q—assigns% TransitVehicle
2. TripPlanner ¢
- feasibility of trip plans for vehicles to e 7 s 1 Vs
serve Currently known andlor RequestHandler TripPlanner Navigator Matcher Scheduler
forecasted requests A A + (]
V1. Vi Vi Vi
3_ MatCher <<RequestBundlingStrategy>> <<TripPlanningStrategy>> <<MatchingStrategy>> <<SchedulingStrategy>>
« evaluate candidate trip plans to & o o & [
matching with available vehicles - ca : o :
” BundlingStrategy [ RebalancingStrategy ' H SchedulingStrategy
4. SCthU/er H PassengerTripSItrategy ’T MatchingStrategy

« adjust dispatch, pick-up and drop-off
schedule of matched vehicles

5. Navigator
» Definition of shortest path
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Appendix: FleetManager strategy

Greedy algorithm for passenger — vehicle assignment:
e Request bundling — Group requests by shared OD

e Trip Planning — prioritizes generating trips for OD stop pair with the highest passenger count and most
direct (in terms of scheduled in-vehicle time) service route

e Vehicle Matching — Match the longest waiting on-call vehicle found at the origin stop of an unmatched
planned trip

e Empty-vehicle strategy — Generate a trip from the current stop of the closest on-call transit vehicle to the
origin stop of the OD with the highest passenger count.

e Vehicle Scheduling — Schedule matched trips for dispatch immediately

e Demand Prediction — None, all of the above are reactive to requests received in real-time
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