Skip to main content

Metal-assisted chemical etching for nanofabrication of hard X-ray zone plates

Time: Fri 2021-04-30 10.00

Location: Via zoom, https://kth-se.zoom.us/j/61021538255, (English)

Subject area: Material and Nano Physics Optics and Photonics

Doctoral student: Rabia Akan , Biomedicinsk fysik och röntgenfysik

Opponent: Dr. Lucia Romano, ETH Zürich, Schweiz

Supervisor: Professor Ulrich Vogt, Biomedicinsk fysik och röntgenfysik; Professor Muhammet Toprak, Biomedicinsk fysik och röntgenfysik; Dr. Carmen Vogt, Biomedicinsk fysik och röntgenfysik

Export to calendar

Abstract

Hard X-ray scanning microscopes, or nanoprobes, make it possible to image samples and probe their chemical, elemental and structural properties at nanoscale resolution. This is enabled by the use of nanofocusing optics. Commonly used optics in nanoprobes for high resolution X-ray experiments are zone plates. Zone plates are circular diffraction optics with radially decreasing grating periods. Their performance depends on their geometrical properties and material. The width of the outermost zone, which today is in the order of a few tens of nanometers, defines the zone plate resolution, while the zone thickness and the material define the X-ray focusing efficiency. For hard X-ray zone plates, the required zone thickness is several micrometers. Therefore, high-aspect ratio nanostructures are a prerequisite for high-resolution, high-efficiency zone plates. The very small structures together with the high-aspect ratios make zone plates one of the most challenging devices to fabricate. A wet-chemical nanofabrication process that has proved its capability of providing silicon nanostructures with ultra-high aspect ratios is metal-assisted chemical etching (MACE). MACE is an electroless, autocatalytic pattern transfer method that uses an etching solution to selectively etch a predefined noble metal pattern into silicon. In this thesis, MACE is optimized specifically for zone plate nanostructures and used in the development of a new zone plate device nanofabrication process. The MACE optimization for silicon zone plate nanostructures involved a systematic investigation of a wide parameter space. The preferable etching solution composition, process temperature, zone plate catalyst design and silicon type were identified. Parameter dependencies were characterized with respect to etching depth and verticality, mechanical stability of zones and silicon surface roughness. Zone plate molds with aspect ratios of 30:1 at 30 nm zone widths were nanofabricated using the optimized MACE process. For use with hard X-rays, the silicon molds were metallized with palladium using electroless deposition (ELD). The first order diffraction efficiency of such a palladium/silicon zone plate was characterized as 1.9 %. Both MACE for the zone plate pattern transfer and ELD for the silicon mold metalization are conceptually simple, relatively low-cost and accessible methods, which opens up for further developments of zone plate device nanofabrication processes.

urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292566