Kalender
To 11 december
-
Examensarbete
torsdag 2025-12-11, 08.30 - 09.30
Plats: Cramérrummet (mötesrum 12), Albano, Hus 1, Vån 3
Respondent: Zahra Alimoradzadeh
2025-12-11T08:30:00.000+01:00 2025-12-11T09:30:00.000+01:00 Zahra Alimoradzadeh: Asymptotic Analysis and Comparison of Model-Based and Model-Free Methods for the Linear Quadratic Regulator (Examensarbete) Cramérrummet (mötesrum 12), Albano, Hus 1, Vån 3 (KTH, Stockholm, Sweden)Zahra Alimoradzadeh: Asymptotic Analysis and Comparison of Model-Based and Model-Free Methods for the Linear Quadratic Regulator (Examensarbete) -
Seminarium, Differentialgeometri och allmän relativitetsteori
torsdag 2025-12-11, 10.00 - 11.00
Medverkande: Penelope Gehring, Stockholm University
Plats: Cramér room, Roslagsvägen 26
2025-12-11T10:00:00.000+01:00 2025-12-11T11:00:00.000+01:00 Penelope Gehring: Finite propagation speed vs. non-local boundary conditions (Seminarium, Differentialgeometri och allmän relativitetsteori) Cramér room, Roslagsvägen 26 (KTH, Stockholm, Sweden)Penelope Gehring: Finite propagation speed vs. non-local boundary conditions (Seminarium, Differentialgeometri och allmän relativitetsteori) -
Examensarbete
torsdag 2025-12-11, 13.00 - 14.00
Plats: Mittag-Lefflerrummet (mötesrum 16), Albano, Hus 1, Vån 3
Respondent: Andreas Karlsson
2025-12-11T13:00:00.000+01:00 2025-12-11T14:00:00.000+01:00 Andreas Karlsson: Machine Learning in Kreĭn Spaces: An Exposition to the Main Representer Theorems (Examensarbete) Mittag-Lefflerrummet (mötesrum 16), Albano, Hus 1, Vån 3 (KTH, Stockholm, Sweden)Andreas Karlsson: Machine Learning in Kreĭn Spaces: An Exposition to the Main Representer Theorems (Examensarbete) -
Disputationer
Matematik
torsdag 2025-12-11, 14.00
Plats: Kollegiesalen, Brinellvägen 8, Stockholm
Respondent: Viktor Nilsson , Sannolikhetsteori, matematisk fysik och statistik
2025-12-11T14:00:00.000+01:00 2025-12-11T14:00:00.000+01:00 On large deviations in probabilistic deep learning and generative modeling (Disputationer) Kollegiesalen, Brinellvägen 8, Stockholm (KTH, Stockholm, Sweden)On large deviations in probabilistic deep learning and generative modeling (Disputationer)