Generalized mixed finite element methods: cut elements and virtual elements
Tid: Fr 2024-10-25 kl 14.00
Plats: F3 (Flodis), Lindstedtsvägen 26 & 28, Stockholm
Språk: Engelska
Ämnesområde: Tillämpad matematik och beräkningsmatematik, Numerisk analys
Respondent: Erik Nilsson , Numerisk analys, optimeringslära och systemteori, Numerisk analys
Opponent: Professor Harald van Brummelen,
Handledare: Professor Sara Zahedi, Numerisk analys, optimeringslära och systemteori
QC 2024-10-07
Abstract
Ett flertal fysikaliska fenomen modelleras noggrant av partiella differentialekvationer (PDE). Dessa ekvationer är generellt svåra att lösa, och när en analytisk lösning inte kan hittas kan en numerisk metod ge en ungefärlig lösning. Detta kan vara mycket användbart inom många tillämpningar. Denna avhandling utvecklar och analyserar skurna finita elementmetoder (CutFEM) för PDE med fokus på att bevara divergensvillkor som är väsentliga inom tillämpningar som strömningsdynamik och elektromagnetism. CutFEM har utvecklats med syftet att förenkla diskretiseringen av PDE i domäner med komplicerade geometrier, genom att tillåta att geometrin placeras godtyckligt relativt beräkningsnätet. Traditionella CutFEM klarar ej att bevara divergensvillkoren, vilket leder till numeriska fel. Inom ramen för den mixade finita elementmetoden (FEM) introducerar forskningen i denna avhandling nya strategier som bevarar divergensen på diskret nivå och hanterar övriga viktiga utmaningar rörandes diskretiseringen av PDEer ställda inom geometrier som inte passar till beräkningsnätet. Till exempel kan teknikerna också kontrollera konditionstalet för de linjära systemen. Virtuella elementmetoden (VEM) är en annan metod som kan hantera komplicerade geometrier vid nätgenerering. Den sista delen av avhandlingen undersöker det spektrala konditionstalet för den mixade VEM och visar effektiviteten av hjälprums-prekonditionering för att begränsa spektrala konditionstal oberoende av kvoten av elementens diameter i kvadrat över area.