Till innehåll på sidan
Till KTH:s startsida

Stability of Alternative Nuclear Fuel Materials in Aqueous Systems

Tid: Ti 2022-12-20 kl 10.00

Plats: Kollegiesalen, Brinellvägen 8, Stockholm

Språk: Engelska

Ämnesområde: Kemi

Respondent: Sawsan El Jamal , Tillämpad fysikalisk kemi, Nuclear Chemistry Group

Opponent: Professor Claire Corkhill, University of Sheffield, Department of Materials Science and Engineering

Handledare: Professor Mats Jonsson, Tillämpad fysikalisk kemi; Professor Mats Johnsson, Stockholm University, Department of Materials and Environmental Chemistry

Exportera till kalender

QC 2022-11-25

Abstract

Kärnkraft står för en stor del av den globala elproduktionen. Det har varit den största energikällan med låga koldioxidutsläpp i över 30 år och har i många länder spelat en viktig roll för att trygga energiförsörjningen. Trots dess fördelar är kärnkraftens framtida roll osäker, främst på grund av de risker som det radioaktiva kärnbränslet medför. Delvis därför har fjärde generationens reaktorkoncept introducerats. Dessa koncept innebär ett hållbart och ekonomiskt sätt att producera energi och samtidigt minskade risker jämfört med dagens kärnreaktorer. UC och UN har fördelaktiga egenskaper jämfört med konventionellt UO2-baserat bränsle vilket gör dem till lovande bränslekandidater för fjärde generationens kärnreaktorer. En fördel med dessa bränslematerial (som har en högre densitet med avseende på klyvbart material) är att det är ekonomiskt fördelaktigt eftersom färre avstängningar kommer att krävas för bränslebyte. Även om det använda GenIV-bränslet planeras att upparbetas, kan oväntade politiska beslut ändra dessa planer, och det använda bränslet kan hamna i ett geologiskt  djupförvar. Därför måste beteendet hos dessa nya bränslematerial kunna förutspås i samband med olycksscenarier i reaktorer såväl som under geologiska djupförvarsförvarsförhållanden. Radioaktiviteten hos det använda bränslet kommer att inducera radiolys av vatten som kommer i kontakt med det. Detta möjliggör oxidativ upplösning av bränslet vilket är en av de potentiella vägarna för utsläpp av radionuklider till omgivningen. 

I denna avhandling har stabiliteten för UC och UN undersökts i vattenlösningar under anoxiska förhållanden och under påverkan av extern γ-strålning och H2O2 (den huvudsakliga produkten vid α-radiolys av vatten). Hydrolysen av dessa material i vattenbaserade system resulterade i matrisupplösning vilket inte är fallet för UO2. Den oxidativa upplösningen som induceras av H2O2 dominerar över hydrolys i vatten med eller utan tillsatt HCO3-. Dessutom diskuteras skillnaderna i reaktivitet mot H2O2 för dessa material där UN har högst reaktivitet följt av UC och slutligen UO2. Upplösningsutbytet (mängd upplöst uran per konsumerad H2O2) är dock lägst för UN. Förändringen i reaktivitet för UC och UN vi flera på varandra följande exponeringar för H2O2 tillskrevs en förändring i ytreaktivitet där katalytisk nedbrytning av H2O2 blir möjlig (pga bildning av oxid).

Även extern γ-bestrålning inducerar upplösning av UN och UC i betydligt högre omfattning än hydrolys. Vid γ-bestrålning av vattenlösningar innehållande 10 mM HCO3- och pulver av UC, UN och UO2 observerade oväntat höga halter av H2O2. Detta visade sig bero på att nanopartiklar av studtit hade bildats och dessa partiklar kunde inte separeras från provlösningen genom filtrering. Närvaron av dessa partiklar gör det omöjligt att bestämma de fria U(VI)- och H2O2-koncentrationerna.

Slutligen undersöktes stabiliteten hos rena och ZrN-innehållande UN-kutsfragment i vattensystem under extern γ-bestrålning eller H2O2-exponering. Kutsfragmenten uppvisade ett beteende snarlikt UN-pulver där upplösningen av uran ökade under oxiderande förhållanden jämfört med under anoxiska förhållanden (hydrolys). Konsekutiva exponeringar av UN-kutsfragment för H2O2 ledde till en förändring i ytreaktivitet. Denna förändring tillskrivs bildandet av ett oxidskikt på ytan av UN, eftersom UO2 är mindre reaktivt mot H2O2 och UO2-kutsar uppvisar lägre upplösningsutbyten än UN-kutsar. Dessutom har effekten av ZrN som tillsats till UN-kutsar studerats. Tillsats av ZrN till UN förväntas stabilisera UN-matrisen och därmed göra bränslet mer olyckstolerant. Intressant nog visades det under oxiderande förhållanden, att ZrN inte hade en signifikant inverkan på stabiliteten hos UN-kutsar i vatten.

urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-321858