Skip to main content
To KTH's start page To KTH's start page

Assessment of shear and energy‐absorption capacity of reinforced concrete elements under impulsive loads

Time: Wed 2023-09-20 13.00

Location: L42, Drottning Kristinas väg 30, Stockholm

Video link:

Language: English

Subject area: Civil and Architectural Engineering, Concrete Structures

Doctoral student: Viktor Peterson , Betongbyggnad

Opponent: Associate Proffessor Yanyan Sha, Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger

Supervisor: Professor Anders Ansell, Betongbyggnad; Docent Mikael Hallgren, Betongbyggnad

Export to calendar

QC 230828


Impulsive loads have been observed to cause brittle shear failure in reinforced concrete elements designed for ductile failure modes under static loads. Brittle failure modes exhibit poorer energy absorption capabilities compared to ductile flexural failure modes due to their limited deformation capacity, leading to premature failure. The discrepancy between the responses under static and extreme dynamic loads arises from inertia and wave propagation effects, which tend to increase as the load duration decreases relative to the fundamental period of the element.

This thesis investigated the occurrence of shear failures in reinforced concrete elements subjected to impulsive loads, both experimentally and numerically, and evaluated to what extent current analysis methods for impulse-loaded structures can predict shear failure. Furthermore, the study examined the influence of crucial parameters on the energy absorption capacity during flexural failure modes when shear failure was inhibited.

The results demonstrated that shear-plug damage, prevalent during impact loads, may lead to premature shear failure during sequential impact testing. This occurred for a statically flexure-critical beam with a significantly larger static flexural-shear capacity relative to its flexural capacity. Similar conclusions applied to the residual static capacity after an initial impact introduced shear-plug damage. These findings indicate potentially severe consequences of shear-plug damage, which should be considered when assessing structures damaged by impact loads.

The energy absorption capacity of reinforced concrete elements is closely related to the plastic work capacity of the reinforcement. The experimental study showed how the plastic work capacity varied with reinforcement properties, concrete properties, and impact velocity using static and dynamic four-point flexural tests. The results revealed that the reinforcement type, specifically whether the steel is mild or stiff, governs the strain distribution during static and low-velocity impact testing. Generally, stiff steels result in strain localization before rupturing, indicating a lower plastic work capacity. Factors such as stress and strain capacity also proved significant. However, as the impact velocity increased, wave propagation effects governed strain distribution rather than reinforcement type. 

Numerical studies comparing results with outcomes using proposed design methods indicated agreement for support reactions used to verify the shear capacity in the later stages of the response. However, this agreement decreased in the initial stages of the response. This may be because the dynamic equilibrium method only considers a global response, while the local response due to wave propagation is influential in the initial stages of the response. Today, resources such as Biggs [8] and the Swedish Fortifications Agency [86] recommend using two stages of the response to determine the internal forces; an elastic global response and a later elastoplastic global response. From the observations in the papers, it is suggested to add a third initial stage of the response considering wave propagation effects. However, it is deemed that this response stage only has a significant effect for high-intensity blast loads with short rise times relative to the shear wave velocity.