Electrochemical Biosensing Platforms for Human and Plant Monitoring
Time: Wed 2024-10-16 10.00
Location: F3 (Flodis), Lindstedtsvägen 26
Language: English
Subject area: Chemistry
Doctoral student: Qianyu Wang , Tillämpad fysikalisk kemi, Chemical Sensing Group
Opponent: Docent Georgios Sotiriou, Karolinska Institutet
Supervisor: Universitetslektor Gaston A. Crespo, Tillämpad fysikalisk kemi
QC 20240924
Abstract
A growing demand has emerged for new point-of-care (POC) platforms capable of delivering reliable clinical data in real-time through minimally invasive procedures. Currently, the majority of clinical data is derived from analyzing collected biological samples, primarily blood or plant sap. Unfortunately, these methods cost discomfort to patients, and are even destructive to plants. For example, conventional sap collection requires sacrifice the plants. The lack of portable tools for fast, on-site patient/plant monitoring has driven research into alternative strategies using biosensors.
The glucometer (i.e. blood glucose meter) stands out as one of the most successful examples of a POC device. It reflects the key features we strive for in such a biosensing platform: minimal limitations on who and where it can be used, combined with high reliability and affordability. Electrochemical readouts are advantageous in this case due to its fast response, wide detection range, and ease of integration into portable devices. This doctoral thesis introduces advancements of electrochemical biosensing platforms for detecting various analytes both in humans and plants. The key findings are summarized in the Results and Discussion section based on the four published research articles.
Briefly, the first type of electrochemical biosensor was developed for the determination of glycine in various human biofluids (e.g., blood, sweat, and urine). Considering the increasing importance of amino acid detection for clinical applications, we then created a new biosensing platform based on microneedles (MN) that aims to measure in dermal interstitial fluid. This minimally invasive strategy highlights the novelty of our second work. Third, we extended MN-based biosensors to another important analyte, lactate, which is previously widely analyzed in sweat. Finally, we demonstrated the first example of applying the MN sensors for continuous and real-time plant monitoring.