Skip to main content
To KTH's start page To KTH's start page

ICME guided study of mass transport in production and application of cemented carbides

Time: Fri 2022-11-18 09.00

Location: D31, Lindstedtsvägen 5, Stockholm

Video link:

Language: English

Subject area: Materials Science and Engineering

Doctoral student: Armin Salmasi , Strukturer

Opponent: Docent José Garcia, Sandvik Coromant AB

Supervisor: Docent Henrik Larsson, Strukturer; Docent Lars Höglund, Strukturer; Andreas Blomqvist, Materialvetenskap; Professor Joakim Odqvist, Strukturer; Professor John Ågren, Strukturer

Export to calendar


Cemented carbides are metallic composites consisting of a WC hard phase and a ductile binder, usually Co-based, produced by powder metallurgy and sintering. Cemented carbides are an essential part of modern material and manufacturing processes. However, Co powder is classified as a carcinogenic material with serious health hazards, and most virgin Co reservoirs are located in conflict regions. In addition, there are monopolies in the market for pure tungsten. Therefore, reducing the consumption of cobalt or replacing it with other non-hazardous elements would increase the sustainability of cemented carbide production. Furthermore, advances in production technology can help overcome raw material limitations. One such advancement is non-homogeneous structures and properties for optimization of microstructure which is the topic of this thesis. 

Integrated computational materials engineering (ICME) and its complementary tools, calculation of phase diagram (CALPHAD), and ab-initio modeling are strong tools that bridge experimentation and modeling. In this thesis, a framework for the material design of non-homogeneous cemented carbides is proposed and tested using these computational tools. 

The workflow of the material design of non-homogeneous microstructure and properties were studied on different length scales. Atomistic modeling with density functional theory (DFT), ab-initio molecular dynamics (AIMD), and generalized hydrodynamics (GHD) were used to model the viscosity of liquid Co binder. In addition, the mobility of Ti and Fe in disordered BCC TiFe alloy was assessed using new experimental data from the diffusion couple experiments and an electron probe micro-analyzer (EPMA). These two studies were conducted to complete the data necessary to study cemented carbides’ processing and performance. 

The other studied phenomenon studied by experimentation and modeling is the formation of the gradient zone and the γ cone structure. In addition, a phenomenological model for liquid phase migration (LPM) was created and implemented using the homogenization approach. The LPM pro- cess was studied experimentally and modeled with the YAPFI software. A study of these performers was necessary to link processing and microstructure. On the performance side, the chemical interaction between cutting tools and Ti alloys was studied in detail through experimentation and modeling of diffusion. In addition, hardness and toughness models were applied to predict the longevity of studied cemented carbides. Finally, by applying ICME and material design, a high entropy alloy (HEA) alternative to Co binder was designed, produced, and tested. 

The research presented in this dissertation attempts to fill the gaps in the material design workflow of cemented carbides by developing new tools and methods based on ICME and CALPHAD paradigms. This goal is achieved by studying different length scales, processing methods, microstructure, properties, and performance of cemented carbides.