Numerisk studie av partikelsuspensioner i Newtonska och icke-Newtonska vätskor

Tid: Fr 2019-12-06 kl 10.15

Plats: Ångdomen (Rumsnr: 5209), Osquars backe 31, KTHB, våningsplan 2, KTH Campus, Stockholm (English)

Ämnesområde: Teknisk mekanik

Respondent: Dhiya Alghalibi , Mekanik, Linné Flow Center, FLOW, SeRC - Swedish e-Science Research Centre, Kufa Univ, Coll Engn, Al Najaf, Iraq.

Opponent: Metin Muradoglu, Koc University/ Department of Mechanical Engineering

Handledare: Luca Brandt, Mekanik, Linné Flow Center, FLOW, SeRC - Swedish e-Science Research Centre

Abstract

Suspensioner av solida eller deformerbara partiklar iviskösa vätskor är av vetenskapligt och teknologiskt intresse för ett stortspann av applikationer. Några typiska exempel inkluderar pyroklastiskaflöden från vulkaner, sedimenterande flöden i flodbäddar,livsmedelsindustrin, oljebrunnsborrning, blodflödet i människokroppen samtrörelsen hos mikroorganismer (till exempel plankton) i havet. I dessapartikelflöden kan den bärande vätskan ha ett icke-elastiskt ellerviskoelastiskt icke-Newtonskt beteende. Att förstå beteendet hos dessasuspensioner är en mycket svår uppgift. Komplexiteten hos, och utmaningenmed, multifasflöden beror till största delen på det stora antal styrandeparametrar. Dessa inkluderar de fysikaliska partikelegenskaperna (tillexempel form, storlek, styvhet, densitetsskillnad mot det bärande medietsamt volymfraktion), den stora mängden interaktioner mellan partiklarnasamt egenskaperna hos den bärande fluiden (Newtonsk eller icke-Newtonsk).Variationer i vardera av dessa parametrar kan leda till stora kvantitativaoch kvalitativa förändringar i suspensionens beteende och kan påverka denövergripande dynamiken på många, ibland överraskande, sätt. Målet meddenna avhandling är därför att ge en djupare förståelse avpartikelsuspensioner i laminära, Newtonska och icke-Newtonska(icke-elastiska och/eller visko-elasiska), flöden för ett stort spann avparametrar. För detta används ett effektivt och precist simuleringsverktygsom tillåter partikelupplösta, numeriska simuleringar av sfäriskapartiklar. Koden är baserad på Immersed boundary-metodiken (IBM) förfluid-strukturinteraktion med lubrikations-, friktions- ochkollisionsmodeller för partikel-partikel- och partikel-vägginteraktioner.Både icke-elastiska (Carreau och power-law) och viskoelastiska (Oldroyd-Boch Giesekus) modeller betraktades för att, i isolering, undersökaeffekterna av skjuvförtunnande, skjuvförtjockande, viskoelasticitet samtkombinationen av skjuvförtunning och viskoelastik, vilka vanligen förekommerhos icke-Newtonska fluider. Därutöver användes en Eulerisk numeriskalgoritm baserad på en en-kontinuumformulering för att undersöka fallet meden hyperelastisk, neo-Hookisk och deformerbar partikel i en Newtonsk vätska.

Till att börja med undersöks suspensioner av solida sfärer i Netwonska,skjuvförtunnande samt skjuvförtjockande fluider i ett skjuvflöde genereratmellan två väggar som rör sig i motsatt riktning. Varierandevolymfraktioner (av partiklar) och partikel-Reynoldstal (dvs inkluderandeav fluidtröghet) betraktas. Resultaten visar att den dimensionslösarelativa viskositeten hos suspensionen och medelvärdet av den lokalaskjuvhastigheten kan väl förutsägas av homogeniseringsteori, speciellttillförlitligt vid låga partikelkoncentrationer. Därutöver visas att deneffektiva viskositeten hos dessa suspensioner avviker från suspensioner iStokesflöde när flödeströghet inkluderas.

Därutöver undersöktes rollen hos elasticitet, skjuvförtunnande samtkombinerad skjuvförtunnande och viskoelasticitet i det bärande mediet påett linjärt Couetteflöde med densitetsmatchade, rigida och sfäriskapartiklar. Den effektiva viskositeten växer monotont medpartikelvolymfraktionen och alla icke-Newtonska fall uppvisar en lägreeffektiv viskositet än de motsvarande Newtonska fallen. Det visas även attelastiska effekter dominerar vid låg elasticitet medan skjuvförtunnandeeffekter dominerar vid höga skjuvhastigheter. Dessa variationer i effektivviskositet beror främst på förändringar i den partikelinduceradekomponenten av skjuvspänningen.

Efter detta studeras sedimentering av sfäriska partiklar i ettstillastående flöde mellan två väggar. Både Newtonska och skjuvförtunnandevätskor betraktas vid tre olika partikelvolymfraktioner. Det visas attmedelvärdet av sedimenteringshastigheten minskar med partikelkoncentrationpå grund av den hindrande effekten av omgivande partiklar. Därutöver ärmedelsedimentationshastigheten alltid större i en skjuvförtunnande än enNewtonsk vätska på grund av reduktionen i lokal fluidviskositet runtpartiklarna, vilket leder till en lägre motståndskraft.

Slutligen undersöks även tröghetsinducerad migration av hyperelastiska ochdeformerbara partiklar i ett laminärt rörflöde. Olika flöden och nivåer avelasticitet hos partikeln betraktas. Partikeldeformation och lateralrörelse observeras för partiklarna när de rör sig nedströms längs röret,vilket leder till att partiklarna alltid finner en stabil position vidrörets centerlinje.

urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263657

Innehållsansvarig:Kerstin Gustafsson
Tillhör: Skolan för teknikvetenskap (SCI)
Senast ändrad: 2019-11-14